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Abstract: The act of accessing the exact location, or position, of a node in a network is known as the
localization of a network. In this methodology, the precise location of each node within a network
can be made in the terms of certain chosen nodes in a subset. This subset is known as the locating set
and its minimum cardinality is called the locating number of a network. The generalized hexagonal
cellular network is a novel structure for the planning and analysis of a network. In this work, we
considered conducting the localization of a generalized hexagonal cellular network. Moreover, we
determined and proved the exact locating number for this network. Furthermore, in this technique,
each node of a generalized hexagonal cellular network can be accessed uniquely. Lastly, we also
discussed the generalized version of the locating set and locating number.

Keywords: locating set; locating number; generalized hexagonal cellular network; fault-tolerant
locating set; resolving set
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1. Introduction

The localization of a network is a methodology by which to access the exact location
or position of a vertex (or a node). A compelling prototype is found in determining the
precise location of a vertex in a network. When a computer sends a printing instruction in
a workplace, localization will assist in: finding the nearest printer; a malfunctioning node;
a network intruder; damaged equipment; illegal or misused connections; as well as the
location of a roving robot [1]. The localization of a network is a strenuous, exorbitant costly,
tedious, and laborious process. Multiple nodes or vertices are chosen in such a manner
that the location of the required vertex can be determined by its distinct representation
(alternatively, we can say that this is either the labeling, orientation, or location) with the
help of chosen nodes. We have to pick the smallest amount of vertices possible to make
this method efficient. The most important object in this procedure is the locating set, also
known as the metric basis (in pure theoretical form), which is the set of chosen vertices.
The cardinality of the smallest feasible set of the chosen vertices (also known as the metric
dimension) is called a locating number. The task of identifying a graph’s locating number
is a non-deterministic polynomial-time hard problem (NP); in addition, the algorithmic
challenge is, as of yet, unknown [2–5].

The researcher in [6] put forward the idea of a locating set. This study was the
first research work on the idea of determining the locating number of a graph, specifically
conducted from the definition of a locating set. The locating number has the least cardinality
of a locating set. The LORAN and sonar stations were the motivation for developing the
idea of locating the set. After this, many researchers used this idea and renamed it in many
other different ways. In the research work of [7] the concept of a locating set was renamed
to a metric dimension. While understood in this pure theoretical way, the researchers
in [8,9] renamed the same concept as the metric basis or resolving set. In the recent decade,
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a one-step advanced definition of the locating set was developed, in which the concept of
one node faultiness from the locating set was discussed [10]. The concept is known as a
fault-tolerant locating set and we can say it is a generalized version of a locating set. In the
generalized view of the locating set, many ideas and implementations have since evolved.
In the broader view, this idea is used in [11–14].

In the broader view, this idea is used in: pharmaceutical chemistry [5]; image process-
ing [6]; some complex games or robotic roving [15]; combinatorial optimization [16]; and
complex networks [11,12]. Furthermore, a technique to investigate various polyphenyl
structures, particularly with respect to the polymer industry [13], and a recent advancement
shows the implementation of a locating set (and its generalizations) in electronics [14].

Due to its vast variations and implementations in numerous fields, metric dimension
(i.e., the locating set) has an extensive literature. However, we will only discuss the recent
and most generalized results in this study. In [17], a generic graph of a kayak paddle
and a few more graphs pertaining to cycles are discussed. Authors of [18] researched a
cellulose network and calculated some upper boundaries for the structure. In [19], a graph
metric that resembles a coronoid shape is restored. With the idea of locating numbers, a
hydrocarbon-based class of structure was investigated in [20] and some other versions were
also found. With the help of the definition of the locating set [21], the generalized class of
the Harary family was investigated. In addition, the authors of [22] discussed multi-graphs
and generalized Peterson graphs along with the idea of a metric basis. The academics
that explored this concept on the Cayley graph and determined the locating number for
such a generalized class are cited in [23]. Moreover, some recent study and the literature is
available at [24–26].

There is a variety of literature on this subject: for example, one can check some current
studies on this term found in [27–31]. In [32], the internet graph and its fault-tolerant
topology are covered. In [33], the notion of a fault-tolerant locating number is used to study
a quartz structure, ref. [34] as well as the studies networks of connections associated to
computers. In [35], convex polytopes were studied in relation to a fault-tolerant locating
set, and their precise fault-tolerant locating numbers were thus discovered.

Hexagonal tessellation is an arrangement of shapes, specifically of polygons without
any gaps. It is in infinite geometric shape patterns specifically that the hexagonal arrange-
ments are obtained, as proposed in [36]. After its discovery, it has become available in
different fields, such as in the form of networks, the recent advancement found in [1], and
with respect to cellular networks [37]. The hexagonal cellular network is widely used in differ-
ent fields in a broader sense, such as in the planning and analysis of a network. Furthermore,
its usage, planning, and analysis in terms of academia are available in the book [38]. For
industrial usage, the study is available at [39–42]; moreover, detail on the topology of the
hexagonal cellular network is the main point of discussion of [43].

We will now first start by introducing some fundamental concepts that will be used
below in the development of our results.

Definition 1 ([1]). Suppose a graph G is connected and that it has the vertex set V(G). The
distance between a pair of vertices v1 and v2 in V(G) is defined as the length of the shortest path
between them. This distance is signified by d(v1, v2).

Definition 2 ([44]). Define ls(G) = {a1, a2, . . . , ai} for some vertex a ∈ V(G) as an ordered
simple subset. The location (or position, representation) l(a|ls) of a with respect to ls is defined
as the i-tuple distances (d(a, a1), d(a, a2), . . . , d(a, ai)). For any two vertices of G, if they have
different locations l(a|ls) with respect to the chosen subset ls, then ls is said to be a locating set
for G.

Definition 3 ([44]). We define the cardinality of a minimal locating set as the locating number of
the graph. This is denoted by ln(G).
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Definition 4 ([44]). A locating set ls is called a fault-tolerant locating set ls f if it satisfies the
following condition: ls f \a for every vertex a ∈ ls f and if it remains a locating set.

Definition 5 ([44]). The cardinality of a minimal fault-tolerant locating set is called the fault-
tolerant locating number of the graph. This is denoted by ln f (G).

2. Certain Important Results

Certain important results were very useful in regard to computing our main work.

Theorem 1 ([6,8,45]). If G is a simple, undirected and connected graph, then
(1) ln(G) = 1 iff G = Pn,
(2) ln(G) = n− 1 iff G = Kn,
(3) ln f (G) = 2 iff G = Pn,
(4) ln f (G) = n iff G = Kn,
(5) ln(G) = 2 if G = Cn,
(6) ln f (G) = 3 if G = Cn,
(7) Let T be a tree that is not a path and define l(T) to be the number of leaves (nodes of

degree 1) in T. Further, define σ(T) as the number of exterior major vertices in T,. Specifically, that
is vertices with a degree of at least 3, which are also connected to at least one leaf by an edge or a
path of vertices that are of degree 2. Then, the metric dimension of T is ln(T) = l(T)− σ(T).

Theorem 2 ([19,46]). If ln(G) and ln f (G) are the locating number and fault-tolerant locating
number of a graph G respectively, then ln f (G) ≥ ln(G) + 1.

In this work, localizing a generalized hexagonal cellular network will be taken into
consideration. Moreover, we will identify and validate the precise network locating number.
This method allows for the unique access to every node in a generalized hexagonal cellular
network. We will also discuss the locating set and locating number in their generalized
form. Moreover, we will also discuss the generalization of localization in this work, which
is called a fault-tolerant localization, for this chosen hexagonal cellular network.

3. Construction
The network shown in Figure 1, is a generalized hexagonal cellular network. It

contains three variables or parameters for its six-dimensional shape. As we named the
network GHCN(m, k, n), the parameters were set as m, k, n ≥ 2. These three parameters
can be entirely different or the same, as well. Furthermore, we labeled the nodes and edges
of this network for the proofs of our main result, as shown below.

V(GHCN(m, k, n)) ={ai,j : j = 1, 2, . . . , 2(n + i)− 1, i = 1, 2, . . . , m} ∪ {b1,j : j = 1, 2,

. . . , 2(n + m), either k = m + 1 with m = n or k = m + 1 with k

= n} ∪ {bi,j : j = 1, 2, . . . , 2(n + m− i) + 3, i = 2, 3, . . . , k, either

k = m + 1 with m = n or k = m + 1 with k = n} ∪ {bi,j : j = 1, 2,

. . . , 2(n + m− i) + 1, i = 1, 2, . . . , k},
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E(GHCN(m, k, n)) ={ai,jai,j+1 : j = 1, 2, . . . , 2(n + i− 1), i = 1, 2, . . . , m} ∪ {b1,jb1,j+1 :

j = 1, 2, . . . , 2(n + m)− 1, either k = m + 1 with m = n or k = m+

1 with k = n} ∪ {bi,jbi,j+1 : j = 1, 2, . . . , 2(n + m− j + 1), i = 2, 3,

. . . , k, either k = m + 1 with m = n or k = m + 1 with k = n}∪
{bi,jbi,j+1 : j = 1, 2, . . . , 2(n + m− i), i = 1, 2, . . . , k} ∪ {am,jb1,j+1 :

j = 1, 3, . . . , 2(n + m)− 1, } ∪ {am,jb1,j+1 : j = 1, 3, . . . , 2(n + m)− 1,

either k = m + 1 with m = n or k = m + 1 with k = n} ∪ {ai,jai+1,j+1 :

j = 1, 3, . . . , 2(n + i)− 1, i = 1, 2, . . . , m− 1} ∪ {bi,jbi+1,j−1 : j = 2, 4,

. . . , 2(n + m− i) + 1, i = 1, 2, . . . , k− 1} ∪ {b1,jb2,j : j = 1, 3, . . . ,

2(n + m)− 1, either k = m + 1 with m = n or k = m + 1 with k = n}∪
{bi,jbi+1,j−1 : j = 2, 4, . . . , 2(n + m− i− 1), i = 1, 2, . . . , k− 1, either k

= m + 1 with m = n or k = m + 1 with k = n}.

The order and size of this network is summarized as:

|V(GHCN(m, k, n))| =


18m2 + 30m + 12 if m = k = n;
18k2 + 42k + 22 if m = k 6= n;
18n2 + 54n + 38 if m 6= k = n.

|E(GHCN(m, k, n))| =


3(m + 1)(3m + 2) if m = k = n;
3k(3k + 7) + 11 if m = k 6= n;
9n(n + 3) + 19 if m 6= k = n.

Figure 1 is with its particular values regarding the parameters m = 3 = k, n = 4.
These labels are used in the proofs of the theorems. Further, they can be generalized for
all natural values of parameters (m, k, n), by focusing on the Figure 1 labels, as well as the
presented edge and vertex sets.

a1,1 a1,3 a1,5 a1,7 a1,9

a2,11a2,1
a2,3 a2,5 a2,7 a2,9

a3,13a3,1
a3,3 a3,5 a3,7 a3,9 a3,11

b1,1 b1,13

b2,11

b3,9
b3,1

b2,1

n-hexagons

n-hexagons

m
-h

ex
a
g
o
n
s

m
-h

exa
g
o
n
s

k-hexagons

k-
he

xa
go

ns

Figure 1. Generalized Hexagonal Cellular Network with m = 3 = k, n = 4.
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There is a relevant survey on network design [47]. Moreover, there are some local-
ization techniques apart from this method that are presented in this study, as detailed
in [48,49]. Moreover, there are some results on the metrics of a network with the shortest
path technique, such as the method presented here, which are also elaborated in [50,51].
Furthermore, the same structure is also considered a peri-condensed benzenoid system
with the formal name, in chemistry, of hexagonal-shaped graphene flakes [52].

In the next part of this section, we will discuss some of the main results regard-
ing the locating set and locating number of the generalized hexagonal cellular network
GHCN(m, k, n) for all the possible natural values of the three parameters m, k, n ≥ 2.

Lemma 1. Let GHCN(2, 2, 3) be a graph of the generalized hexagonal cellular network. Then, the
locating number of GHCN(2, 2, 3) is two.

Proof. In order to prove this lemma, we need to follow Definition 2, to be able to choose
an appropriate locating set. Let ls(GHCN(2, 2, 3)) = {a1,1, a1,7},, which is a pertinent
candidate for a locating set of GHCN(2, 2, 3), or for the particular values of a generalized
hexagonal cellular network’s parameters. In order to prove our claim that the chosen
subset is actually a locating set of GHCN(2, 2, 3), we will follow Definition 1 in order to
calculate the shortest paths of all nodes towards {a1,1, a1,7}. Then, we will use these paths
in the actual definition of a location, as presented in Definition 2, which are shown in
Tables 1 and 2.

Table 1. Locations of the nodes of GHCN(2, 2, 3).

l(.ls) a1,1 a1,7 l(.ls) a1,1 a1,7

a1,1 0 6 a1,2 1 5

a1,3 2 4 a1,4 3 3

a1,5 4 2 a1,6 5 1

a1,7 6 0 a2,1 2 8

a2,2 2 7 a2,3 2 6

a2,4 3 5 a2,5 4 4

a2,6 5 4 a2,7 6 2

a2,8 7 1 a2,9 8 2

Table 2. Locations of the nodes of GHCN(2, 2, 3).

l(.ls) a1,1 a1,7 l(.|ls) a1,1 a1,7

b1,1 3 9 b1,2 4 8

b1,3 3 7 b1,4 4 6

b1,5 5 5 b1,6 6 4

b1,7 7 3 b1,8 8 4

b1,9 9 3 b2,1 5 9

b2,2 6 8 b2,3 5 7

b2,4 6 6 b2,5 7 5

b2,6 8 6 b2,7 9 5

By looking at the Tables furnished in the locations of the nodes of GHCN(2, 2, 3), which
are all unique and distinct, we now check Definition 3. |ls(GHCN(2, 2, 3))| = ln(GHCN
(2, 2, 3)) = 2, which concludes the proof.
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Lemma 2. Let GHCN(2, 3, 2) be a graph of the generalized hexagonal cellular network. Then, the
locating number of GHCN(2, 3, 2) is two.

Proof. In order to prove this lemma, we need to follow Definition 2, which will allow
us to choose an appropriate locating set. Let ls(GHCN(2, 2, 3)) = {a1,2, b2,1}, which is a
pertinent candidate for a locating set of GHCN(2, 3, 2), or for the particular values of a
generalized hexagonal cellular network’s parameters. In order to prove our claim that the
chosen subset is actually a locating set of GHCN(2, 3, 2), we will follow Definition 1 in
order to calculate the shortest paths of all nodes toward {a1,2, b2,1}. Then, we will proceed
by using these paths in the actual definition of the location presented in Definition 2, which
are shown in Tables 3 and 4.

Table 3. Locations of the nodes of GHCN(2, 3, 2).

l(.ls) a1,2 b2,1 l(.ls) a1,2 b2,1

a1,1 1 5 a1,2 0 6

a1,3 1 7 a1,4 2 8

a1,5 3 9 a2,1 3 3

a2,2 2 4 a2,3 3 5

a2,4 2 6 a2,5 3 7

a2,6 4 8 a2,7 5 9

Table 4. Locations of the nodes of GHCN(2, 3, 2).

l(.ls) a1,2 b2,1 l(.ls) a1,2 b2,1

b1,1 5 1 b1,2 4 2

b1,3 5 3 b1,4 4 4

b1,5 5 5 b1,6 4 6

b1,7 5 7 b1,8 6 8

b2,1 6 0 b2,2 7 1

b2,3 6 2 b2,4 7 3

b2,5 6 4 b2,6 7 5

b2,7 6 6 b3,1 8 2

b3,2 9 3 b3,3 8 4

b3,4 9 5 b3,5 8 6

By looking at the Tables furnished in the locations of the nodes of GHCN(2, 3, 2), which
are all unique and distinct, we now check Definition 3, |ls(GHCN(2, 3, 2))| = ln(GHCN
(2, 2, 3)) = 2, which concludes the proof.

Lemma 3. Let GHCN(3, 3, 3) be a graph of the generalized hexagonal cellular network. Then, the
locating number of GHCN(3, 3, 3) is two.

Proof. In order to prove this lemma, we need to follow Definition 2, which will allow us
to choose an appropriate locating set. Let ls(GHCN(3, 3, 3)) = {a1,1, b3,7},. Then, this will
be a pertinent candidate for a locating set of GHCN(3, 3, 3) or for the particular values of
generalized hexagonal cellular network’s parameters. In order to prove our claim that the
chosen subset is actually a locating set of GHCN(3, 3, 3), we will follow Definition 1 in
order to calculate the shortest paths of all nodes toward {a1,1, b3,7}. Then, we will proceed
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by using these paths in the actual definition of the location presented in Definition 2, which
are shown in Tables 5 and 6.

Table 5. Locations of the nodes of GHCN(3, 3, 3).

l(.ls) a1,1 b3,7 l(.ls) a1,1 b3,7

a1,1 0 11 a1,2 1 10

a1,3 2 9 a1,4 3 10

a1,5 4 9 a1,6 5 10

a1,7 6 9 a2,1 2 10

a2,2 1 9 a2,3 2 8

a2,4 3 8 a2,5 4 7

a2,6 5 8 a2,7 6 7

a2,8 7 8 a2,9 8 7

a3,1 4 10 a3,2 3 9

a3,3 4 8 a3,4 3 7

a3,5 4 8 a3,6 5 6

a3,7 6 5 a3,8 7 6

a3,9 8 5 a3,10 9 6

a3,11 10 5

Table 6. Locations of the nodes of GHCN(3, 3, 3).

l(.ls) a1,1 b3,7 l(.ls) a1,1 b3,7

b1,1 5 9 b1,2 6 8

b1,3 5 7 b1,4 6 6

b1,5 5 5 b1,6 6 4

b1,7 7 4 b1,8 8 3

b1,9 9 4 b1,10 10 3

b1,11 11 4 b2,1 7 7

b2,2 8 6 b2,3 7 5

b2,4 8 4 b2,5 7 3

b2,6 8 2 b2,7 9 2

b2,8 10 1 b2,9 11 2

b3,1 9 5 b3,2 10 4

b3,3 9 3 b3,4 10 2

b3,5 9 1 b3,6 11 1

b3,7 10 0

By looking at the Tables furnished in the locations of the nodes of GHCN(3, 3, 3), which
are all unique and distinct, we now check Definition 3, |ls(GHCN(3, 3, 3))| = ln(GHCN
(2, 2, 3)) = 2, which concludes the proof.

Theorem 3. Let GHCN(m, k, n) with m < k, be a graph of the generalized hexagonal cellular
network. Then, the locating number of GHCN(m, k, n) is three.
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Proof. In order to prove this theorem with equality, we will check both inequalities. In
order to check ln(GHCN(m, k, n)) ≤ 3, we need to follow Definition 2, such that we are
able to choose an appropriate locating set. Let ls(GHCN(m, k, n)) = {b1,1, b2,1, b1,2(n+m)},
be a pertinent candidate for a locating set of GHCN(m, k, n), or for the particular values
of the generalized hexagonal cellular network’s parameters with the condition m < k. In
order o prove our claim that the chosen subset is actually a locating set of GHCN(m, k, n),
we will follow Definition 1 in order to calculate the shortest paths of all nodes toward
{b1,1, b2,1, b1,2(n+m)}. Then, we will proceed by using these paths in the actual definition of
the location presented in Definition 2, which are shown below.

For j ∈ {1, 2, . . . , 2(n + i) − 1} and i ∈ {1, 2, . . . , m}, the locations l
(
ai,j|ls

)
for the

vertex subset ai,j are elaborated in the following manner:

l
(
ai,j|ls

)
= (2(m− i) + j + 1, 2(m− i+) + j, 2(m + n)− j). (1)

For j ∈ {1, 2, . . . , 2(n + m)}, with a condition on the parameters that are either
k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
b1,j|ls

)
for the vertex

subset b1,j are elaborated in the following manner:

l
(
b1,j|ls

)
= (j− 1, j, 2(m + n)− j). (2)

For j ∈ {1, 2, . . . , 2(n + m− i) + 3}, i ∈ {2, 3 . . . , k},, with a condition on parameters
that are either k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
bi,j|ls

)
for the

vertex subset bi,j are elaborated in the following manner:

l
(
bi,j|ls

)
= (j + 2(i− 2), j + 2i− 5, 2(m + n)− j + 1). (3)

For j ∈ {1, 2, . . . , 2(n + m− i) + 1} and i ∈ {1, 2, 3 . . . , k}, the locations l
(
bi,j|ls

)
for

the vertex subset bi,j are elaborated in the following manner:

l
(
bi,j|ls

)
=

{
(j− 1, j, 2(m + n)− 1− j), if i = 1;

(2i + j− 3, 2i + j− 5, 2(m + n)− 1− j), if i = 2, 3, . . . , k.
(4)

By looking at the furnished location of the nodes of GHCN(m, k, n), which are given in
Equations (1)–(4) and are all unique and distinct, we now check Definition 3,
|ls(GHCN(m, k, n))| ≤ 3.

Now, we will check the reverse inequality, which is |ls(GHCN(m, k, n))| ≥ 3. By
taking negation, we can say |ls(GHCN(m, k, n))| < 3 or |ls(GHCN(m, k, n))| = 2. In order
to prove the assertion given below, some possible cases are required in order to contradict
the negation equality.

Sample 1: If ls′ ⊂ {a1,j : j = 1, 2, . . . , 2(i + n)− 1}, and comprises only two members,
then the chosen sample contradicts our supposition with the same locations of at least two
vertices, which are l

(
a1,j|ls′

)
= l(a2,r|ls′), along with j, r ∈ {1, 2, . . . , 2(i + n)− 1}.

Sample 2: If ls′ ⊂ {a2,j : j = 1, 2, . . . , 2(i + n)− 1}, and comprises only two members,
then the chosen sample contradicts our supposition with the same locations of at least two
vertices, which are l

(
a1,j|ls′

)
= l(a3,r|ls′), along with j, r ∈ {1, 2, . . . , 2(i + n)− 1}.

Sample 3: If ls′ ⊂ {ai,j : j = 1, 2, . . . , 2(i + n) − 1, i = 2, 3, . . . , m}, and com-
prised only two members, then the chosen sample contradicts our supposition with the
same locations of at least two vertices, which are l

(
ai−1,j|ls′

)
= l(ai+1,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(i + n)− 1}.
Sample 4: If ls′ ⊂ {a1,j, a2,j : j = 1, 2, . . . , 2(i + n) − 1}, and comprises only two

members, then the chosen sample contradicts our supposition with the same locations of at
least two vertices, which are l

(
a1,j|ls′

)
= l(a3,r|ls′), along with j, r ∈ {1, 2, . . . , 2(i + n)− 1}.

Sample 5: If ls′ ⊂ {a1,j, a3,j : j = 1, 2, . . . , 2(i + n) − 1}, and comprises only two
members, then the chosen sample contradicts our supposition with the same locations of at
least two vertices, which are l

(
a1,j|ls′

)
= l(a2,r|ls′), along with j, r ∈ {1, 2, . . . , 2(i + n)− 1}.
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Sample 6: If ls′ ⊂ {ai,j, as,j : j = 1, 2, . . . , 2(i + n) − 1, i, s = 2, 3, . . . , m}, and
comprises only two members, then the chosen sample contradicts our supposition with
the same locations of at least two vertices, which are l

(
ai−1,j|ls′

)
= l(as+1,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(i + n)− 1}.
Sample 7: If ls′ ⊂ {b1,j : j = 1, 2, . . . , 2(m + n)}, and comprises only two members,

then the chosen sample contradicts our supposition with the same locations of at least two
vertices, which are l

(
b1,j|ls′

)
= l(b2,r|ls′), along with j, r ∈ {1, 2, . . . , 2(m + n)− 1}.

Sample 8: If ls′ ⊂ {b2,j : j = 1, 2, . . . , 2(m + n)+ 1}, and comprises only two members,
then the chosen sample contradicts our supposition with the same locations of at least two
vertices, which are l

(
b1,j|ls′

)
= l(b3,r|ls′), along with j, r ∈ {1, 2, . . . , 2(m + n) + 1}.

Sample 9: If ls′ ⊂ {bi,j : j = 1, 2, . . . , 2(m + n− i) + 3, i = 2, 3, . . . , k}, and com-
prises only two members, then the chosen sample contradicts our supposition with the
same locations of at least two vertices, which are l

(
bi−1,j|ls′

)
= l(bi+1,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(m + ni) + 3}.
Sample 10: If ls′ ⊂ {b1,j, b2,s : j = 1, 2, . . . , 2(m + n), s = 1, 2, . . . , 2(n + m)− 1}, and

comprises only two members, then the chosen sample contradicts our supposition with
the same locations of at least two vertices, which are l

(
b1,j|ls′

)
= l(b3,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(i + n)− 1}.
Sample 11: If ls′ ⊂ {b1,j, b3,s : j = 1, 2, . . . , 2(m + n), s = 1, 2, . . . , 2(m + n) + 3}, and

comprises only two members, then the chosen sample contradicts our supposition with
the same locations of at least two vertices, which are l

(
b1,j|ls′

)
= l(b2,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(i + n)− 1}.
Sample 12: If ls′ ⊂ {bi,j, as,j : j = 1, 2, . . . , 2(m + n− i) + 1, i, s = 1, 2, 3, . . . , k}, and

comprises only two members, then the chosen sample contradicts our supposition with
the same locations of at least two vertices, which are l

(
bi−1,j|ls′

)
= l(bs+1,r|ls′), along with

j, r ∈ {1, 2, . . . , 2(m− i + n) + 1}.
Sample 13: If ls′ ⊂ {ai,j, bs,r : j = 1, 2, . . . , 2(n + i) − 1, i = 1, 2, 3, . . . , m, s =

1, 2, . . . , 2(n + m− i) + 1, r = 1, 2, 3, . . . , k}, and comprises only two members, then the
chosen sample contradicts our supposition with the same locations of at least two vertices,
which are l

(
ai,j|ls′

)
= l(ai+1,r|ls′), along with j, r ∈ {1, 2, . . . , 2(n + i)− 1}.

Sample 14: If ls′ ⊂ {a1,j, b1,r : j = 1, 2, . . . , 2(n + i)− 1, r = 1, 2, . . . , 2(n + m− i) +
1}, and comprises only two members, then the chosen sample contradicts our supposition
with the same locations of at least two vertices, which are l

(
a1,j|ls′

)
= l(a1,r+1|ls′), along

with j, r ∈ {1, 2, . . . , 2(n + i)− 1}.
Sample 15: If ls′ ⊂ {a1,j, b2,r : j = 1, 2, . . . , 2(n + i)− 1, r = 1, 2, . . . , 2(n + m− i) +

1}, and comprises only two members, then the chosen sample contradicts our supposition
with the same locations of at least two vertices, which are l

(
a1,j|ls′

)
= l(a1,r+1|ls′), along

with j, r ∈ {1, 2, . . . , 2(n + i)− 1}.
All the Samples 1–15 discussed above contradicted with our suppositions. This

discussion concluded that |ls(GHCN(m, k, n))| 6= 2,, as well as further implied that
ln(GHCN(m, k, n)) = 3. This, thus, completes the proof.

Theorem 4. Let GHCN(m, k, n) with m ≥ k, be a graph of the generalized hexagonal cellular
network. Then, the locating number of GHCN(m, k, n) is three.

Proof. In order to prove this theorem with equality, we checked both inequalities. In order
to check ln(GHCN(m, k, n)) ≤ 3, we needed to follow Definition 2, such that we are able
to choose an appropriate locating set. Let ls(GHCN(m, k, n)) = {am,1, b1,1, am,2(n+m)−1}, be
a pertinent candidate for a locating set of GHCN(m, k, n), or for the particular values of
generalized hexagonal cellular network’s parameters with the condition m ≥ k. In order to
prove our claim that the chosen subset is actually a locating set of GHCN(m, k, n), we will
follow Definition 1, such that we are able to calculate the shortest paths of all nodes toward
{am,1, b1,1, am,2(n+m)−1}. Then, we will proceed by using these paths in the actual definition
of the location presented in Definition 2, which are shown below.
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For j ∈ {1, 2, . . . , 2(n + i) − 1} and i ∈ {1, 2, . . . , m}, the locations l
(
ai,j|ls

)
for the

vertex subset ai,j are elaborated in the following manner:

l
(
ai,j|ls

)
= (2(m− i) + j− 1, 2(m− i) + j + 1, 2(m + n)− j− 1). (5)

For j ∈ {1, 2, . . . , 2(n + m)}, with a condition that the parameters are either k = m + 1
with m = n or k = m + 1 with k = n, the locations l

(
b1,j|ls

)
for the vertex subset b1,j are

elaborated in the following manner:

l
(
b1,j|ls

)
= (2(m− i) + j, j− 1, 2(m + n)− j). (6)

For j ∈ {1, 2, . . . , 2(n + m− i) + 3}, i ∈ {2, 3 . . . , k},, with a condition that the parame-
ters are either k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
bi,j|ls

)
for the

vertex subset bi,j are elaborated in the following manner:

l
(
bi,j|ls

)
= (j + 2(i− 2), j + 2(i− 2), 2(m + n)− j). (7)

For j ∈ {1, 2, . . . , 2(n + m− i) + 1} and i ∈ {1, 2, 3 . . . , k}, the locations l
(
bi,j|ls

)
for

the vertex subset bi,j are elaborated in the following manner:

l
(
bi,j|ls

)
= (2i + j− 3, 2i + j− 3, 2(m + n)− j). (8)

By looking at the furnished location of the nodes of GHCN(m, k, n),, which are given
in Equations (5)–(8) and are all unique and distinct, we are now able to check Definition 3,
|ls(GHCN(m, k, n))| ≤ 3.

Then, we will check the reverse inequality, which is |ls(GHCN(m, k, n))| ≥ 3. By tak-
ing negation, we can say |ls(GHCN(m, k, n))| < 3 or |ls(GHCN(m, k, n))| = 2. However,
in order to prove this assertion we will to have already inspected the possible samples
shown in the second part of the proof of Theorem 2. As shown above, all the chosen
samples for |ls(GHCN(m, k, n))| = 2, fall into contradiction and thus it is concluded that
|ls(GHCN(m, k, n))| 6= 2. This further shows that ls(GHCN(m, k, n)) = 3, is the case,
which completes the proof.

Theorem 5. Let GHCN(m, k, n) with m < k, be a graph of the generalized hexagonal cellular
network. Then, the fault-tolerant locating number of GHCN(m, k, n) is four.

Proof. In order to prove this theorem with equality, we will check both inequalities. In
order to check ln f (GHCN(m, k, n)) ≤ 4, we will need to follow Definition 4, such that we
are able to choose an appropriate fault-tolerant locating set. Let ls f (GHCN(m, k, n)) =
{b1,1, b2,1, b1,2(n+m), b2,2(n+m)−1}, be a pertinent candidate for a fault-tolerant locating set of
GHCN(m, k, n), or for the particular values of the generalized hexagonal cellular network’s
parameters with the condition m < k. In order to prove our claim that the chosen subset
is actually a fault-tolerant locating set of GHCN(m, k, n), we will follow the Definition 1
to calculate the shortest paths of all nodes towards {b1,1, b2,1, b1,2(n+m), b2,2(n+m)−1}. Then,
we will proceed by using these paths in the actual definition of the location presented in
Definition 4, which are shown below.

For j ∈ {1, 2, . . . , 2(n + i)− 1} and i ∈ {1, 2, . . . , m}, the locations l
(

ai,j|ls f

)
for the

vertex subset ai,j are elaborated in the following manner:

l
(

ai,j|ls f

)
= (2(m− i) + j + 1, 2(m− i+) + j, 2(m + n)− j, 2(n + m + 1)− j). (9)
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For j ∈ {1, 2, . . . , 2(n + m)} with a condition on the parameters that are either
k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
b1,j|ls f

)
for the ver-

tex subset b1,j are elaborated in the following manner:

l
(

b1,j|ls f

)
= (j− 1, j, 2(m + n)− j, 2(m + n + 1)− j). (10)

For j ∈ {1, 2, . . . , 2(n + m− i)+ 3}, i ∈ {2, 3 . . . , k}, with a condition on the parameters
that are either k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
bi,j|ls f

)
for

the vertex subset bi,j are elaborated in the following manner:

l
(

bi,j|ls f

)
= (j + 2(i− 2), j + 2i− 5, 2(m + n)− j + 1, 1(m + n)− 1− j). (11)

For j ∈ {1, 2, . . . , 2(n + m− i) + 1} and i ∈ {1, 2, 3 . . . , k}, the locations l
(

bi,j|ls f

)
for

the vertex subset bi,j are elaborated in the following manner:

l
(
bi,j|ls f

)
=


(j− 1, j, 2(m + n)− 1− j, 2(n + m + 1)− j), if i = 1;

(2i + j− 3, 2i + j− 5, 2(m + n)− 1− j, 2(n + m)− j− 1), if i = 2;

(2i + j− 3, 2i + j− 5, 2(m + n)− 1− j, 2(n + m)− j− 1), if i = 3, 4, . . . , k.

(12)

By looking at the furnished location of the nodes of GHCN(m, k, n), given in
Equations (9)–(12), which are all unique and distinct, we can then check by eliminating
any node from the subset ls f ,. Indeed, this still provides the unique and distinct posi-
tions of the entire vertex set of GHCN(m, k, n). This then allows us to check Definition 5,∣∣∣ls f (GHCN(m, k, n))

∣∣∣ ≤ 4.

Next, we will check the reverse inequality, which is
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ ≥ 4. By

taking negation, we can say
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ < 4 or
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ = 3.
However, in order to prove this assertion we will follow Theorem 2. This, thus, con-
cludes that

∣∣∣ls f (GHCN(m, k, n))
∣∣∣ = 3 is not possible. As such, it is finally deduced that∣∣∣ls f (GHCN(m, k, n))

∣∣∣ = ln f (GHCN(m, k, n)) = 4.

Theorem 6. Let GHCN(m, k, n) with m ≥ k, be a graph of the generalized hexagonal cellular
network. Then, the fault-tolerant locating number of GHCN(m, k, n) is four.

Proof. In order to prove this theorem with equality, we will check both inequalities. In
order to check ln f (GHCN(m, k, n)) ≤ 4, we need to follow Definition 4, which will al-
low us to choose an appropriate fault-tolerant locating set. Let ls f (GHCN(m, k, n)) =
{am,1, b1,1, am,2(n+m)−1, b1,2(n+m)−1}, be a pertinent candidate for a fault-tolerant locating
set of GHCN(m, k, n), or for the particular values of the generalized hexagonal cellular
network’s parameters with the condition m ≥ k. In order to prove our claim that the
chosen subset is actually a fault-tolerant locating set of GHCN(m, k, n), we will follow
Definition 1, such that we are able to calculate the shortest paths of all nodes toward
{am,1, b1,1, am,2(n+m)−1, b1,2(n+m)−1}. Then, we will proceed by using these paths in the
actual definition of the location presented in Definition 4, which are shown below.

For j ∈ {1, 2, . . . , 2(n + i)− 1} and i ∈ {1, 2, . . . , m}, the locations l
(

ai,j|ls f

)
for the

vertex subset ai,j are elaborated in the following manner:

l
(

ai,j|ls f

)
= (2(m− i) + j− 1, 2(m− i) + j + 1, 2(m + n)− j− 1, 2(n + m)− j). (13)
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For j ∈ {1, 2, . . . , 2(n + m)}, with a condition on the parameters that are either
k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
b1,j|ls f

)
for the ver-

tex subset b1,j are elaborated in the following manner:

l
(

b1,j|ls f

)
= (2(m− i) + j, j− 1, 2(m + n)− j, 2(n + m)− j− 1). (14)

For j ∈ {1, 2, . . . , 2(n + m− i) + 3}, i ∈ {2, 3 . . . , k},, with a condition on the parame-
ters that are either k = m + 1 with m = n or k = m + 1 with k = n, the locations l

(
bi,j|ls f

)
for the vertex subset bi,j are elaborated in the following manner:

l
(

bi,j|ls f

)
= (j + 2(i− 2), j + 2(i− 2), 2(m + n)− j, 2(n + m)− j− 1). (15)

For j ∈ {1, 2, . . . , 2(n + m− i) + 1} and i ∈ {1, 2, 3 . . . , k}, the locations l
(

bi,j|ls f

)
for

the vertex subset bi,j are elaborated in the following manner:

l
(

bi,j|ls f

)
= (2i + j− 3, 2i + j− 3, 2(m + n)− j, 2(n + m)− j− 1). (16)

By looking at the furnished location of the nodes of GHCN(m, k, n), which are given in
the Equations (13)–(16) and are all unique and distinct, we can thus check by eliminating any
node from the subset ls f ,. By performing this, the unique and distinct positions of the entire
vertex set of GHCN(m, k, n). are still provided. This, thus, allows us to check the Definition 5,∣∣∣ls f (GHCN(m, k, n))

∣∣∣ ≤ 4.

Next, we will check the reverse inequality, which is
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ ≥ 4. By

taking negation, we can say
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ < 4 or
∣∣∣ls f (GHCN(m, k, n))

∣∣∣ = 3. In
order to prove this assertion we will then follow the Theorem 2. By so doing this, we
can conclude that

∣∣∣ls f (GHCN(m, k, n))
∣∣∣ = 3 is not possible. Finally, it is deduced that∣∣∣ls f (GHCN(m, k, n))

∣∣∣ = ln f (GHCN(m, k, n)) = 4.

4. Conclusions and Comparison with the Existing Research Work

We discussed the localization of generalized hexagonal cellular networks in this
research work. We determined the exact locating number of the generalized hexagonal
cellular network and proved that the locating number of such a network is independent of
the order and size of the network. Although the locating number of the entire structure
does not depend on the order and size network, it does change with the variation of all
three parameters (m, k, n). Moreover, we also discussed the generalized concept of the
locating set for a generalized hexagonal cellular network. Furthermore, the summary of
the results were elaborated upon in Tables 7 and 8.

In [53], a particular type of hexagonal networks were discussed. In that study, the
researches determined the minimum metric bases for hexagonal networks. The hexagonal
network they discussed was with only a single parameter and also increased with only
one parameter. In our work, we tried to develop the structure GHCN(m, k, n) with three
parameters (m, k, n), which, in turn, is the generalization of work by [53]. In our obtained
results, the chosen structures have only two metric dimensions, but our generalized struc-
ture possesses two and three metric dimensions. As such, this must be an advantage with
respect to generalizing the structure, as well as in regard to then studying the hexagonal
network in terms of metric dimension. Moreover, we also studied the fault-tolerant pa-
rameter of the metric dimension with a generalized structure. In addition, in [54], another
study found the hexagonal structure, which is similar to our chosen network but with the
same limitations found in [53]. With respect to the aforementioned, they conducted the
research work for single parameter only.
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Table 7. Locating sets of GHCN(m, k, n).

ls(GHCN(2, 2, 3)), {a1,1, a1,2n+1}

ls(GHCN(2, 3, 2)), {a1,2, b2,1}

ls(GHCN(3, 3, 3)), {a1,1, b3,7}

ls(GHCN(m, k, n)), {b1,1, b2,1, b1,2(n+m)}, m < k

ls(GHCN(m, k, n)), {am,1, b1,1, am,2(n+m)−1}, m ≥ k

ls(GHCN(m, k, n)), {b1,1, b2,1, b1,2(n+m), b2,2(n+m)−1}, m < k

ls f (GHCN(m, k, n)), {am,1, b1,1, am,2(n+m)−1, b1,2(n+m)−1}, m ≥ k

Table 8. Locating numbers of GHCN(m, k, n).

ln(GHCN(2, 2, 3)) = 2

ln(GHCN(2, 3, 2)) = 2

ln(GHCN(3, 3, 3)) = 2

ln(GHCN(m, k, n)) = 3

ln f (GHCN(m, k, n)) = 4

The representation of v with respect to the above is defined as the k-vector r(v|Rp) =
(d(v, Rp1), d(v, Rp2), . . . d(v, Rpk ) for an ordered k-partition Rp = {Rp1 , Rp2 , . . . Rpk} of
V(G) and a vertex v of G. If the distinct vertices of G have distinct representations with
respect to Rp, then the partition is known as a resolving partition for G. Furthermore, the
partition dimension pd(G) of G is the lowest k for which there is a resolving k-partition of
V(G). Lastly, a minimal resolving partition is a resolving partition of V(G) that contains
pd(G) elements [55].

Problem 1. The open problem, or future research direction for this particular chosen network, can
be found in the Table 9.

Table 9. Partition dimension of GHCN(m, k, n).

pd(GHCN(2, 2, 3)) = 3

pd(GHCN(2, 3, 2)) = 3

pd(GHCN(3, 3, 3)) = 3

pd(GHCN(m, k, n)) ≤ 4

Author Contributions: Investigation, M.A., M.K.J. and Y.S.; writing—original draft preparation,
M.A.; writing—review and editing, M.A., M.K.J. and Y.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2023, 11, 844 14 of 15

References
1. Nadeem, M.F.; Azeem, M.; Khalil, A. The locating number of hexagonal Möbius ladder network. J. Appl. Math. Comput. 2020, 66,

149–165. [CrossRef]
2. Hauptmann, M.; Schmied, R.; Viehmann, C. Approximation complexity of metric dimension problem. J. Discret. Algorithms 2012,

14, 214–222. [CrossRef]
3. Lewis, H.; Garey, M.; Johnson, D. Computers and intractability. A guide to the theory of NP-completeness. J. Symb. Log. 1983,

48, 498–500. [CrossRef]
4. Johnson, M.A. Browsable Structure-Activity Datasets, Advances in Molecular Similarity; JAI Press: Greenwich, CT, USA, 1998;

pp. 153–170.
5. Johnson, M.A. Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 1993,

3, 203–236. [CrossRef] [PubMed]
6. Slater, P. Leaves of trees. In Proceeding of the 6th Southeastern Conference on Combinatorics, Graph Theory, and Computing,

Congressus Numerantium, Boca Raton, FL, USA, 17–20 February 1975; Volume 14, pp. 549–559.
7. Harary, F.; Melter, R.A. On the metric dimension of a graph. Ars Comb. 1976, 2, 191–195.
8. Chartrand, G.; Salehi, E.; Zhang, P. The partition dimension of graph. Aequationes Math. 2000, 59, 45–54. [CrossRef]
9. Chartrand, G.; Eroh, L.; Johnson, M.A.O.; Ortrud, R. Resolvability in graphs and the metric dimension of a graph. Discret. Appl.

Math. 2000, 105, 99–113. [CrossRef]
10. Hernando, C.; Mora, M.; Slater, P.; Wood, D. Fault-tolerant metric dimension of graphs. Convexity Discret. Struct. 2008, 5, 81–85.
11. Shang, Y. Local natural connectivity in complex networks. Chin. Phys. Lett. 2011, 28, 068903. [CrossRef]
12. Shang, Y. Localized recovery of complex networks against failure. Sci. Rep. 2016, 6, 30521.
13. Nadeem, M.F.; Hassan, M.; Azeem, M.; Khan, S.U.D.; Shaik, M.R.; Sharaf, M.A.F.; Abdelgawad, A.; Awwad, E.M. Application of

Resolvability Technique to Investigate the Different Polyphenyl Structures for Polymer Industry. J. Chem. 2021, 2021, 6633227.
[CrossRef]

14. Ahmad, A.; Koam, A.N.; Siddiqui, M.; Azeem, M. Resolvability of the starphene structure and applications in electronics. Ain
Shams Eng. J. 2021, 13, 101587. [CrossRef]

15. Khuller, S.; Raghavachari, B.; Rosenfeld, A. Landmarks in graphs. Discret. Appl. Math. 1996, 70, 217–229. [CrossRef]
16. Sebö, A.; Tannier, E. On metric generators of graphs. Math. Oper. Res. 2004, 29, 383–393. [CrossRef]
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