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1 Introduction

The first reference to the rigidity of frameworks in the mathematical lit-
erature occurs in a problem posed by Euler in 1776, see [8]. Consider a
polyhedron P in 3-space. We view P as a ‘ panel-and-hinge framework’ in
which the faces are 2-dimensional panels and the edges are 1-dimensional
hinges. The panels are free to move continuously in 3-space, subject to the
constraints that the shapes of the panels and the adjacencies between pairs
of panels are preserved, and that the relative motion between pairs of adja-
cent panels is a rotation about their common hinge. The polyhedron P is
rigid if every such motion results in a polyhedron which is congruent to P.
Euler’s conjecture was that every polyhedron is rigid.

The conjecture was verified for the case when P is convex by Cauchy [3] in
1813. Indeed Cauchy proved an even stronger result. Suppose P; and P; are
two convex polyhedra. If there is a bijection between the faces of P; and P,
which preserves both the shapes of faces and the adjacencies between pairs
of faces, then P; and P, are congruent. Cauchy’s strengthening of Euler’s
conjecture is not true for all polyhedra, however. Consider the icosahedron,
P;. We can reflect one of the vertices of P; in the plane containing it’s
five neighbouring vertices to obtain a non-convex polyhedron P, with the
same faces and adjacencies between faces as P;. Clearly P, and P, are
not congruent. This example is not a counterexample to Euler’s original
conjecture since the reflection is not a continous motion from P; to Ps.

Gluck [9] showed in 1975 that Euler’s conjecture is true when P is a
‘generic’ polyhedron i.e. there are no algebraic dependencies between the
coordinates of the vertices of P. It follows that ‘almost all’ polyhedra are
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Figure 1: A 2-dimensional example. The framework (G, p1) can be obtained
from (G, po) by a continuous motion which preserves all edge lengths, but
changes the distance between v; and vs. Thus (G, pg) is not rigid.

rigid. Connelly [4] finally showed that Euler’s conjecture was false in 1982
by constructing a polyhedron which is not rigid.

We will consider a different kind of framework called a bar-and-joint
framework. This is a graph G together with a map p of the vertices of
G into d-space. We view the edges of (G,p) as ‘bars’ and the vertices as
‘universal joints’. The vertices are free to move continuously, subject to the
constraint that the distances between pairs of adjacent vertices are preserved
i.e. the lengths of the bars does not change. The framework is rigid if every
such motion preserves the distances between all pairs of vertices, see Figure
1. Gluck [9] showed that the rigidity of a generic bar-and-joint framework
depends only on the structure of the graph G i.e. it is the same for all
generic realizations of G in d-space. One of the two main problems we will
consider is that of characterizing the graphs G with the property that every
generic realization of G in d-space is rigid. We will see that this problem
can be solved for d = 1, 2.

Our second main problem concerns ‘global rigidity’. A d-dimensional
framework (G,p) is globally rigid if every d-dimensional framework (G, q)
with the same distances between pairs of adjacent vertices as (G, p), has the
same distances between all pairs of vertices as (G, p), see Figure 2.

We will see that we can also characterize the graphs G with the property
that every generic realization of G in d-space is globally rigid, when d = 1, 2.
The problems of characterizing when a d-dimensional generic framework is
rigid or globally rigid are unsolved for d > 3.
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Figure 2: A rigid 2-dimensional framework which is not globally rigid. All
edges in both frameworks have the same length, but the distance from vy to
v3 is different.

2 Bar-and-joint frameworks

A d-dimensional bar-and-joint framework is a pair (G, p), where G = (V, E)
is a graph and p is a map from V to R? such that p(u) # p(v) for all
uwv € E. We consider the framework to be a straight line realization of G in
R? in which the length of an edge uv € E is given by the Euclidean distance
between the points p(u) and p(v). Given frameworks (G, po) and (G, p1), we
say that:

e (G,po) and (G,p1) are equivalent if ||po(u) — po(v)|| = [|p1(u) — p1(v)]|
for all uwv € E.

e (G,po) and (G, p1) are congruent if ||po(u) — po(v)|| = ||p1(uw) — p1(v)]]
for all u,v € V.

e (G,po) is globally rigid if every framework which is equivalent to (G, pg)
is congruent to (G, po).

e (G,po) is rigid if there exists an € > 0 such that every framework
(G, p1) which is equivalent to (G, po) and satisfies ||po(v) — p1(v)|| < €
for all v € V, is congruent to (G,pp). (This is equivalent to saying
that every continuous motion of the vertices of (G, pg) which preserves
the lengths of all edges of (G, pp), also preserves the distances between
all pairs of vertices of (G, pg), see Asimow and Roth [1].)



It is a difficult problem to determine whether a given d-dimensional
framework (G, p) is rigid or globally rigid. We will characterize when a 1-
dimensional framework is rigid in Section 3. The general feeling seems to
be that it is NP-hard to determine if a d-dimensional framework is rigid for
d > 2, although no proof of this is known. Saxe [21] has shown that it is NP-
hard to determine if a d-dimensional framework is globally rigid for all d > 1.
Both problems become easier, however, if we restrict our attention to generic
frameworks, where a framework (G, p) is generic if the (multi)set containing
the coordinates of all the points p(v), v € V, is algebraically independent
over Q. The main reason for this is that, for generic frameworks, rigidity is
equivalent to the stronger property of ‘infinitesimal rigidity’, which we will
describe below.

2.1 The rigidity matrix and infinitesimal rigidity

Let (G,po) and (G,p1) be two d-dimensional frameworks. A motion from
(G, po) to (G,py) is a function P : [0,1] x V — R? such that:

(M1) P(0,v) = po(v) and P(1,v) = py(v) for all v € V;
(M2) ||P(t,u) — P(t,v)|| = ||po(u) — po(v)|| for all t € [0,1] and all uv € E;
(M3) P(t,v) is a continuous function of ¢ for all v € V.

Thus (G, po) is rigid if and only if every motion of (G, pg) results in a
framework which is congruent to (G, pg). It can be shown using ‘elementary’
differential geometry, see [1], that the existence of a motion from (G, py) to
(G, p1) implies the existence of a smooth motion from (G, pg) to (G, p1) i.e.
a motion P such that P(¢,v) is a differentiable function of ¢ for all v € V.
This allows us to rewrite the equation given in (M2) as

1P (t,u) = P(t,0)|1* = [[po(u) = po(v)[|?,
and then differentiate with respect to ¢t to obtain
[P(t,u) — P(t,v)] - [P'(t,u) — P'(t,v)] = 0.

Note that P’(t,v) represents the instantaneous velocity of the vertex v at
time ¢. Putting ¢ = 0 and P’(0,v) = q(v) for all v € V we obtain

[Po() — po(v)] - [g(u) — g(v)] = 0 for all uv € E. (1)

Now suppose that we are given the framework (G,pg). We can use the
system of equations (1) involving the unknowns ¢(v), v € V, to determine



all possible ‘instantaneous velocities’ of the vertices of G which are induced
by a smooth motion of (G, pg). The rigidity matriz M (G, po) of (G, po) is the
matrix of coefficients of this system of equations. It is an |E| x d|V| matrix
with rows indexed by E and sequences of d consecutive columns indexed by
V. The entries in the row corresponding to an edge e € F and columns
corresponding to a vertex u € V are given by the vector pg(u) — po(v) if
e = uw is incident to v and is the zero vector if e is not incident to w.

Example Let (G,p) be either of the 2-dimensional frameworks shown in
Figure 2, and let p(v;) = (x;,y;) for 1 <4 < 4. Then the rigidity matrix of
(G,p) is the matrix M (G, p) shown below.

T1— T2 Y1—Y2 T2—T1 Y2 — Y1 0 0 0 0
0 0 T2 — T3 Y2—Y3 T3— T2 Y3 — Y2 0 0
0 0 0 0 T3— T4 Y3 —Ys T4— T3 Yi— Y3
T1— x4 Y1 — Y4 0 0 0 0 Ta—T1 Ya— Y1
0 0 Ty — T4 Y2 — Y4 0 0 Ty— T2 Y4 — Y2

We use Z(G,ppy) to denote the null space of the matrix M(G,py) and
refer to the vectors in Z(G,pg) as instantaneous motions of the framework
(G,po). We will abuse this terminology somewhat and also consider an
instantaneous motion ¢ € Z(G, pg) as a map from V to R?, by indexing the
components of ¢ in the same way as the columns of M (G, py).

For integers n > 2 and d > 1, let

dn— (4N ifn>d+2
(2) ifn<d+1
Theorem 2.1 [1] Let (G,p) be a d-dimensional framework with n > 2 ver-
tices. Then rank M(G,p) < S(n,d). Furthermore, if equality holds, then
(G,p) is rigid.

Sketch Proof We consider the case when (G, p) is properly embedded in
R? i.e. the affine hull of the points p(v), v € V, is equal to R? (This
implies in particular that n > d + 1.) Each translation and rotation of
RY gives rise to a smooth motion of (G,p) and hence to an instantaneous
motion of (G, p). Let Zy(G, p) be the subspace of Z(G, p) generated by these
special instantaneous motions. The subspace Zy(G,p) contains a linearly
independent set of instantaneous motions corresponding to the translations



along each vector in the standard basis, and the rotations about the (d — 2)-
dimensional subspaces containing each set of (d —2) vectors in the standard
basis. Thus

dim Z(G, p) > dim Zo(G, p) > d + (d ¢ 2) _ (d; 1> 2)
and hence rank M(G,p) < dn — (d;rl).

To indicate why the second part of the theorem holds we suppose that
(G,p) is not rigid. One may use the definition of rigidity to show that
this assumption will imply that there exists a smooth motion P(t,v) of
(G, p) such that |[P(t,2)]| - IP(t,y)|2 # [Ip(z) — p(y)]]? for all t > 0 and
some fixed x,y € V. Differentiating with respect to ¢ and putting ¢ = 0
we deduce that there exists an instantaneous motion ¢ of (G, p) such that
[p(x) — p(y)] - [g(z) — q(y)] # 0. Since translations and rotations preserve

distances between all points of R?, ¢ ¢ Zy(G, p). Thus strict inequality must
occur in (2) and rank M(G,p) < dn — (d;rl). .

We say that (G,p) is infinitesimally rigid if rank M(G,p) = S(n,d).
Theorem 2.1 implies that the infinitesimally rigidity of a given framework
(G,p) is a sufficient condition for the rigidity of (G, p). The example shown
in Figure 3 shows that infinitesimal rigidity is not equivalent to rigidity.

On the other hand, Asimow and Roth showed that infinitesimal rigidity
is equivalent to rigidity for generic frameworks.

Theorem 2.2 [1] Let (G,p) be a d-dimensional generic framework. Then
(G, p) is rigid if and only if (G,p) is infinitesimally rigid.

It is easy to see that, for any given graph G, rank M (G, p) will be max-
imized when (G, p) is generic, and hence that rank M (G, p) is the same for
all generic realizations (G, p) of G in R?. We denote this maximum value of
rank M (G, p) by r4(G), or simply r(G) when the dimension is obvious from
the context. Theorem 2.2 implies that a generic d-dimensional framework
(G,p) is rigid if and only if (G) = S(n,d). At first sight, one may think
that this could be used to determine when a given graph G has a generic
rigid realization in R?. This is not the case since it requires us to determine
the ‘generic rank’ of the matrix M (G,p) i.e. compute rank M (G, p) when
the coordinates of the vectors p(v), v € V, are indeterminates. As noted
above, this can be done when d € {1,2}, but is an open problem for d > 3.

Let G = (V,E) be a graph. We say that: G is rigid in R? if 74(G) =
S(n,d); G is independent in R? if r4(G) = |E| i.e. the rows of a generic
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Figure 3: A 2-dimensional framework (G, p) which is rigid but not infinitesi-
mally rigid. Let ¢(vs) be a vector orthogonal to the line through p(vs), p(vs4),
and g(v;) = 0 for 1 < i < 4. Then [p(v;) — p(vy)] - [q(vi) — q(v;)] = 0 for
all edges v;v; of G, and hence ¢ is an instantaneous motion of (G,p). How-
ever [p(vs) — p(vs)] - [q(vs) — q(vs)] # 0 so g & Zy(G,p). It follows that
dim Z(G,p) > (*}') = 3. Thus rank M(G,p) < S(5,2) = 10 —3 = 7, and
(G, p) is not infinitesimally rigid. To see that (G, p) is rigid, suppose that
there is a motion from (G, p) to another framework (G, p) and let H = G—wvs.
It can be seen that H is rigid (since each triangle is rigid). Thus (H,p|q)
is congruent to (H,p|g). Applying a suitable translation and rotation to
(G,p) we may assume that p(v;) = p(v;) for all 1 < ¢ < 4. The position
of p(vs) on the line through p(vy) and p(v4) now implies that we must also
have p(vs) = p(vs).

rigidity matrix of G are linearly independent; G is minimally rigid if it both
rigid and independent ie. 74(G) = S(n,d) = |E|. Note that if we can
characterize when graphs are independent in R?, then we can use this to
determine r4(G) for any given graph G. We greedily construct a maximal
independent subgraph H of G. Then E(H) will correspond to a maximal
set of linearly independent rows of M (G, p) in any generic realization (G, p)
of G. Hence r4(G) = |E(H)|. In particular G will be rigid in R? if and only
if |[E(H)| = S(n,d) i.e. H is minimally rigid.

We can use Theorem 2.1 to obtain a necessary condition on a graph
G = (V,E) for the rigidity matrix of a (generic) realization of G to have
independent rows. For X C FE let Eg(X) denote the set, and ig(X) the
number, of edges in the subgraph of G induced by X. We will suppress the
subscript and refer simply to F(X) and ¢(X) when it is obvious which graph
we are refering to.

Lemma 2.3 Let (G,p) be a d-dimensional framework. Suppose the rows of
M(G,p) are linearly independent. Then i(X) < d|X|— (d;rl) forall X CV
with | X| > d+ 2.



Figure 4: A 3-dimensional example. The above graph G = (V, E) satisfies
the condition that i(X) < 3|X|—6 for all X C V with | X| > 4. Let M(G,p)
be the rigidity matrix of a 3-dimensional generic framework (G,p). If the
rows of M(G,p) were independent, then we would have rank M(G,p) =
|E| = 3|V]| — 6. Thus G would be rigid by Theorem 2.1. Clearly this is not
the case since we may rotate the right hand copy of K5 — e about the line
through p(u), p(v), while keeping the left hand copy fixed.

Proof: Suppose i(X) > d|X| — (d;rl) for some X C V with |X| > d+ 1.
Let H be the subgraph of G induced by X and Mx be the submatrix of
M indexed by E(X) and X. Then Mx = M(H,p|g). By Theorem 2.1,
rank Mx < d|X| — (d'gl). Since My has i(X) > d|X| — (d"QH) rows, the
rows of My are linearly dependent. Since all non-zero entries in the rows of
M (G, p) indexed by E(X) occur in the columns indexed by X, the rows of
M (G, p) indexed by E(X) are linearly dependent. .

Note that Theorem 2.3 actually implies that i(X) < S(|X|,d) forall X CV
with |X| > 2. This condition holds trivially, however, when | X| < d + 1.

We will see that the property that i(X) < d|X| — (d"QH) forall X CV
with | X| > d + 2 is sufficient to imply the linear independence of the rows
of M(G,p) for all 1-dimensional frameworks, and all 2-dimensional generic
frameworks. It is not sufficient even for generic frameworks when d > 3. A
3-dimensional example is given in Figure 4.

3 1-dimensional frameworks

We will characterize when a 1-dimensional framework is rigid and when a
generic 1-dimensional framework is globally rigid.



3.1 Rigidity

We use the following operation. Let G and H be graphs. If H = G — v
for some vertex v of degree one in G, we say that G is a (1-dimensional)
0-extension of H.

Lemma 3.1 Let (G,p) and (H,pg) be two 1-dimensional frameworks. Sup-
pose G is a 0-extension of H and that pg is the restriction of p to V(H).
Then the rows of M(G,p) are linearly independent if and only if the rows of
M(H,pg) are linearly independent.

Proof: Let e = vw be the edge of G incident to v. We may assume that e
indexes the first row, and v the first column, of M(G,p). The lemma now
follows since p(u) — p(v) # 0 and

_( plu) —p(v) *
M@@—( 0 MWM@)

Theorem 3.2 Let (G,p) be a 1-dimensional framework. Then:

(a) the rows of M (G, p) are linearly independent if and only if G is a forest;
(b) (G,p) is infinitesimally rigid if and only if G is connected;

(c) (G,p) is rigid if and only if G is connected.

Proof: (a) Suppose G is a forest. Then we can show that the rows of
M (G, p) are independent by induction on |E(G)| using Lemma 3.1. On the
other hand, if G contains a cycle C' then |E(C)| > |V(C)|—1 and hence the
rows of M(G,p) are linearly dependent by Lemma 2.3.

(b) Let F' C E(G) correspond to a maximal set of linearly independent rows
of M(G,p) and H be the spanning subgraph of G with edge set F. By (a),
H is a spanning forest of G. Thus (G, p) is infinitesimally rigid if and only
if rank M(G,p) = |E(H)| = S(n,1) =n—11ie. H is a spanning tree of G.
(c) If G is connected then (G, p) is infinitesimally rigid by (b) and hence is
rigid by Theorem 2.1. On the other hand, if G is disconnected then it is easy
to define a motion of (G, p) which changes the distance between two vertices
belonging to different components of G (we just translate one component
along the real line and keep the other components fixed). .

Note that a graph G = (V, E) is a forest if and only if ¢(X) < |X| —1
for all X C V with |X| > 3. Thus the necessary condition for the linear



independence of the rows of a rigidty matrix given in Lemma 2.3 is also
sufficient when d = 1.

Exercise Give a direct proof that (G, p) is rigid if G is connected, using the
definition of rigidity given at the beginning of Section 2.

Taking the special case of Theorem 3.2 when (G, p) is generic, we imme-
diately obtain

Corollary 3.3 Let G be a graph. Then:

(a) G is independent in R if and only if G is a forest;
(b) G is minimally rigid in R if and only if G is a tree;
(c) G is rigid in R if and only if G is connected.

3.2 Global rigidity

We shall show that a generic 1-dimensional framework (G, p) is globally rigid
if and only if either G is a complete graph on at most two vertices or G is
2-connected. It is easy to see that 2-connectivity is a necessary condition
for the global rigidity of any framework.

Lemma 3.4 Suppose (G,p) is a globally rigid 1-dimensional framework.
Then either G = Ky or G is 2-connected.

Proof: Since (G, p) is gobally rigid, (G, p) is rigid and hence G is connected.
If G has two vertices then G = K5. Hence we may assume that G has at least
three vertices. Suppose G is not 2-connected. Then there exists a vertex v,
and subgraphs G1, G2 of G such that G = G; U Gy, E(G1) N E(Gy) = 0,
and V(G1) NV (G2) = {v}. Applying a suitable translation along the real
line, we may suppose that p(v) = 0. Let (G, p1) be the framework obtained
by putting pi(u) = p(u) for u € V(G1) and py(u) = —p(u) for u € V(G3).
(Thus (G, p1) is obtained from (G, p) by reflecting G in the point p(v) = 0.)
Then (G,p1) is equivalent, but not congruent, to (G,p). This contradicts
the hypothesis that (G, p) is globally rigid. °

It is not true that the 2-connectivity of G is a sufficient condition for
the global rigidity of a non-generic framework (G, p), see Figure 5. Indeed
Saxe [21] has shown that it is NP-hard to determine whether an arbitrary
framework is globally rigid. It follows that any proof of the above mentioned
characterization of globally rigid generic frameworks must use the fact that
the there are no algebraic dependencies between the numbers p(v), v €

V(G).

10
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Figure 5: Two equivalent but non-congruent realizations of the 4-cycle Cy
on the real line. The frameworks are not congruent since the distance from
vy to vy is different in each framework. The frameworks (Cy,p;) are not
generic since [p;(v1) — pi(v2)]? = [pi(v3) — p;i(v4)]? for each i € {1,2}.

A 1-dimensional framework (G,p) is quasi-generic if p(vg) = 0 for some
vo € V, and the (multi)set {p(v) : v € V — 1} is algebraically inde-
pendent over Q. Note that every generic 1-dimensional framework can be
transformed into a quasi-generic framework by a suitable translation along
the real line. This transformation will not change the global rigidity of the
framework. We will need the following result for equivalent quasi-generic
frameworks. An analogous result for 2-dimensional frameworks was proved,
using ‘elementary’ algebraic number theory, in [17]. The 1-dimensional re-
sult can be proved similarly.

Lemma 3.5 Let (G, p1) be an infinitesimally rigid quasi-generic 1-dimensional
framework with pi(vg) = 0. Suppose that (G,p2) is a 1-dimensional frame-
work which is equivalent to (G, p1) and has pa(vy) = 0. Then (G, p2) is quasi-
generic. Furthermore, if K; is the algebraic closure of QU {p(v) : v € V}
fori=1,2, then Ky = Ks.

We also need another graph operation. Let G and H be graphs. Suppose
H = G — v 4+ uw for some vertex v of degree two in G with non-adjacent
neighbours u,w. Then we say that G is a (1-dimensional) 1-extension of
H, see Figure 6. Our next result shows that 1-extensions preserve global
rigidity. Its proof is similar to that of the analogous 2-dimensional result
given in [17].

Theorem 3.6 Let (G,p) and (H,pp) be two 1-dimensional generic frame-
works. Suppose that H has at least three vertices, G is a 1-extension of H,
pr is the restriction of p to V(H), and (H,pg) is globally rigid. Then (G,p)
1s globally rigid.

11



Figure 6: G is a 1-dimensional 1-extension of H.

Proof: Suppose H = G — v + uw. Let (G,p) be an equivalent framework
to (G,p). We shall show that (G,p) is congruent to (G, p).

Claim 3.7 [[p(u) — p(w)|| = [lp(w) — p(w)]-

Proof: By applying a suitable translation to (G,p) and (G,p), we may
assume that (G, p) is quasi-generic and p(u) = 0 = p(u). Since (G,p) and
(G, p) are equivalent, we have

p(v)? = [Ip(v) = p(W)l* = [5(v) = B(w)|* = p(v)” (3)
and
[p(v) = p(w))* = [lp(v) = p(w)|I* = [[5(v) = Hw)||* = [B(v) = Hw)]*.  (4)
Now (3) and (4) give
25(v)p(w) = p(w)? = p(w)? + 2p(v)p(w).
Since p(v)? = p(v)? by (3), we may deduce that
4p(v)?*p(w)? = [B(w)? — p(w)? + 2p(v)p(w))?
and hence
[4p(v)? + 4p(v)p(w) + p(w)? — p(w)?][p(w)? — p(w)?] = 0. (5)

Since (H,pg) is globally rigid, H is 2-connected by Lemma 3.4. Thus
H — ww is connected and hence (H — uw,py) is infinitesimally rigid by
Theorem 3.2. Furthermore (H — uw, py) is quasi-generic and (H — uw, pr)
is equivalent to (H —uw, pp), since (G, p) is equivalent to (G,p). Let K and
K be the algebraic closures of QU {p(z) : = € V(H)} and QU {p(x) : = €
V(H)}, respectively. By Lemma 3.5, K = K. In particular #(w) € K. Since

12



(G, p) is quasi-generic p(v) € K. Since 4p(v)? + 4p(v)p(w) + p(w)? — p(w)?
is a polynomial in p(v) with coefficients in K, we have 4p(v)? + 4 ( )p(w) +
p(w)? — p(w)? # 0. Equation (5) and the fact that p(u) = 0 = p(u)
imply that

lp(w) = p(w)||* = p(w)® = Hw)* = [[p(u) — H(w)|.

We can now complete the proof of the theorem. Claim 3.7 and the
fact that (H — uw,py) is equivalent to (H — ww,py), imply that (H,pg)
is equivalent to (H,ppg). Since (H,pg) is globally rigid, (H,py) must be
congruent to (H,pg). Thus there is a congruence of the real line, i.e. a
translation or reflection, which maps (H,pg) onto (H,pg). Since p(v) is
uniquely determined by p(u), p(w), [lp(v) — p(u)|, and [|p(v) — p(u)||, and

since [p(v) — p(u)l| = [[p(v) = p(w)[| and [|p(v) = p(u)| = [Ip(v) = p(w)],
this congruence must also map p(v) onto p(v). Thus (G,p) is congruent to
(G, p). .

We can use Theorem 3.6 to deduce our characterization of globally rigid
generic frameworks.

Theorem 3.8 Let (G,p) be a generic 1-dimensional framework. Then (G, p)
is globally rigid if and only if either G = Ko or G is 2-connected.

Proof: Necessity follows from Lemma 3.4. To prove sufficiency it will suf-
fice to show that, if G = (V, E) is 2-connected, then (G, p) is globally rigid.
We use induction on |E|. If |E| = 3 then G = K3 and (G,p) is globally
rigid. Thus we may suppose that |E| > 4, and hence |V| > 4. If G — e is
2-connected for some e € E, then (G — e,p) is globally rigid by induction,
and hence (G, p) is also globally rigid. Thus we may suppose that G — e is
not 2-connected for all e € E i.e. G is minimally 2-connected. It is straight-
forward to show that this implies the existence of a vertex v of degree two
in G. Let u,w be the neighbours of v in G. The minimal 2-connectivity of
G and the fact that G # K3, imply that uw ¢ E(G) and H = G —v 4 uw is
2-connected. By induction (H, py) is globally rigid. Hence (G, p) is globally
rigid by Theorem 3.6. .

Exercise Show that every minimally 2-connected graph G contains a vertex
of degree two. Show further that, if G # K3, v is a vertex of G of degree
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two and and u,w are the neighbours of v, then uww ¢ E(G) and G — v + uw
is 2-connected.

Theorem 3.8 implies that global rigidity of 1-dimensional frameworks is a
generic property, i.e. the global rigidity of a generic 1-dimensional framework
(G,p) is the same for all generic realizations of G, since it depends only on
the structure of the graph G. We shall see in the Section 5 that global rigid-
ity of 2-dimensional frameworks is also a generic property. Gortler, Healy
and Thurston [10] have recently shown that global rigidity of d-dimensional
frameworks is a generic property for all d by solving a conjecture of Con-
nelly. The fact that the rigidity of d-dimensional frameworks is a generic
property for all d follows from Theorem 2.2 and that fact that rank M (G, p)
is the same for all generic d-dimensional frameworks (G, p).

4 Rigidity of generic 2-dimensional frameworks

We characterize when a graph is independent, or rigid, in R2.

4.1 Independence

We will prove a theorem of Laman [18] that a graph G = (V, E) is indepen-
dent in R? if and only if i(X) < 2|X| — 3 for all X C V with |X| > 4. We
will call graphs which satisfy the latter condition Laman graphs. Theorem
2.3 implies that all independent graphs are Laman. To prove the reverse
implication we need 2-dimensional versions of the graph operations used in
Section 3. Let G and H be graphs. If H = G — v for some vertex v of
degree at most two, we say that G is a (2-dimensional) 0-extension of H.
If H =G — v+ uw for some vertex v of degree three and non-adjacent
neighbours u, w of v, then we say that G is a (2-dimensional) 1-extension of
H, see Figure 7. These operations were first used for studying the rigidty of
frameworks by Henneberg [14].

Lemma 4.1 Let (G,p) and (H,pm) be two 2-dimensional frameworks. Sup-
pose G is a 0-extension of H and that p|g is the restriction of p to V(H).
Let H =G — v and let u,w be the neighbours of v in G. Then the rows of
M(G,p) are linearly independent if and only if the rows of M(H,p|y) are
linearly independent and p(v),p(u), p(w) are not collinear.

Proof: The lemma can be proved in a similar way to Lemma 3.1. °

14



v

Figure 7: G is a 2-dimensional 1-extension of H.

 I—

Lemma 4.2 Let (G,p) and (H,pg) be two generic 2-dimensional frame-
works. Suppose G is a 1-extension of H and that p|g is the restriction of p
to V(H). Let H =G — v+ uw where u,w are non-adjacent neighbours of
v in G. If the rows of M(H,p|g) are linearly independent, then the rows of
M(G,p) are linearly independent.

Proof: We first construct a non-generic realization (G + uw,p) of G + uw,
by putting p(z) = p(z) for all vertices z # v, and choosing p(v) to be a
point on the line through p(u),p(v) which is distinct from p(u) and p(v).
Let z be the neighbour of v in G distinct from u,w. Since (G, p) is generic,
p(z) does not lie on the line through p(u), p(v). Hence Lemma 4.1 implies
that the rows of M (G + uw — vw, p) are linearly independent. On the other
hand, the fact that p(v), p(u) and p(w) are collinear implies that the rows of
M (G + vw, p) indexed by vu, vw,uw are a minimally dependent set of rows
of M(G + uw,p). (We can consider the submatrix induced by these rows
as the rigidity matrix of a 1-dimensional realization of K3.) This implies

that we may delete any one of these rows without reducing the rank of
M (G + vw,p). Thus

rank M(G,p) = rank M (G + uw — vw, p) = |E(G)]|.

Hence the rows of M (G, p) are linearly independent.

We can complete the proof by noting that, since (G,p) is generic, we
have rank M (G,p) > rank M (G, p). Hence the rows of M (G, p) are linearly
independent. °

Exercise Extend the statement and proof of Lemmas 4.1 and 4.2 to d-
dimensions
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We next show that every Laman graph on at least three vertices can
be obtained from a smaller Laman graph by a 0-extension or a 1-extension.
Once we have this, we can deduce that all Laman graphs are independent
by using Lemmas 4.1, 4.2 and induction.

Let G = (V,E) be a graph. We shall need the following supermodular
inequalities for the set function i(X), which are easy to check by counting
the contribution of an edge to each of their two sides.

Lemma 4.3 Let G be a graph and X,Y C V(G). Then

W(X)+i(Y) <i(XUY)+i(XNY).
Lemma 4.4 Let G be a graph and X,Y,Z C V(G). Then
W(X)+i(Y)+i(Z) < i(XUYUZ)+i(XNY)+i(XNZ)+i(YNZ)—i(XNYNZ).

Given a Laman graph G = (V, E), we say that a set X C V is critical if
i(X) = 2|X]| — 3 holds.

Lemma 4.5 Let G = (V, E) be Laman and let X,Y C V be critical sets in
G with | XNY|>2. Then XNY and X UY are both critical.

Proof: Lemma 4.3 gives

201X =3+2[Y]-3 = i(X)+i(Y) <i(XNY)+i(XUY)
< 21XNY|-3+2/XUY|-3
= 2|X|-3+2|Y|-3

Thus equality holds everywhere and X NY and X UY are also critical. e

Lemma 4.6 Let G = (V, E) be a Laman graph. Let X,Y,Z C V be critical
sets in G with | X NY|=|XNZ|=YNZ|=1and XNYNZ=0. Then
X UY U Z is critical.

Proof: Lemma 4.4 gives

2| X|-3+2lY|-3+2|Z| -3 i(X)+4i(Y)+i(Z)
(XUYUuZz)<2(XuYuZz|) -
= 2(X]+[Y[+]|2]-3) -3

21X| —3+42|Y|—3+2/Z| - 3.

Hence equality holds everywhere and X UY U Z is critical. °
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Lemma 4.7 Let G = (V, E) be a Laman graph with at least two vertices
and v € V.

(a) If d(v) < 2 then G — v is Laman.

(b) If d(v) = 3 then G — v + uw 1is Laman for some pair of non-adjacent
neighbours u,w of v.

Proof: Part (a) follows easily from the definition of Laman graphs. To
prove (b) we proceed by contradiction. Suppose (b) is false and let w,w, z
be the neighbours of v in G. Since the (multi)graph G —v+wuw is not Laman,
there exists a critical set X C V with u,w € X and v,z ¢ X. Applying
the same argument to uz and vz, we deduce that there exist maximal crit-
ical sets Xyw, Xuz, Xw, C V — v each containing precisely two neighbours
({u,w},{u, z}, {w, 2}, respectively) of v. By Lemma 4.5 and the maximality
of these sets we must have | Xy, N Xy | = [ Xuw N Xzl = [ Xue N X2 = 1.
Thus, by Lemma 4.6 the set Y = X, U X, U X, is also critical. Since
d(v,Y) > 3, this gives ig(Y U {v}) > 2|Y U{v}| — 3, which contradicts the
hypothesis that GG is Laman. °

We can now prove Laman’s theorem.

Theorem 4.8 [18] Let G = (V, E) be a graph. Then G is independent in
2-dimensions if and only if i(X) < 2|X| —3 for all X CV with | X| > 4.

Proof: Necessity follows from Lemma 2.3. To prove sufficiency we suppose
that G is Laman and choose a generic realization M (G,p) of G. Since G is
Laman, |E| < 2|V| — 3. Thus G has a vertex of degree at most three. By
Lemma 4.7, G is either a 0-extension or a l-extension of a smaller Laman
graph H. By induction (H,p|p) is independent. Hence (G, p) is indepen-
dent by Lemmas 4.1 and 4.2. °

This immediately gives the following characterization of graphs which
are minimally rigid in R?.

Corollary 4.9 [18] A graph G = (V, E) is minimally rigid in R?. if and
only if |E| =2|V| -3 and i(X) < 2|X| -3 for all X CV with | X| > 4.

We may also use the results of this subsection to obtain the following
recursive construction for minimally rigid graphs.

Corollary 4.10 [14, 18] A graph G = (V,E) is minimally rigid in 2-
dimensions if and only if it can be constructed from Ko by a sequence of
0-extensions (which add a vertex of degree exactly two) and 1-extensions.
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The sequence of extensions used in Corollary 4.10 is called a Henneberg
sequence for G

Corollaries 4.9 and 4.10 combine to give a good characterization of min-
imally rigid graphs: to convince someone that a graph G = (V| E) is min-
imally rigid we can show them a Henneberg sequence for G; to convince
someone G is not minimally rigid we show that |E| # 2|V| — 3 or we show
a subset X C V with |X| >4 and i(X) > 2|X| — 3.

4.2 Rigidity

We extend the characterization of minimally rigid graphs given in the pre-
vious subsection to a characterization of rigid graphs. This will follow from
the following more general result of Lovasz and Yemini [19], which deter-
mines the rank of the rigidity matrix of a generic 2-dimensional realization
of a graph.

Given a graph G = (V, E), a cover of G is a family X of subsets of V
such that | X[ > 2 for all X € X and Uyy E(X) = E. A cover X is 1-thin
if |XZ ﬂXj| <1 for all XZ',X]‘ e X.

Theorem 4.11 [19] Let G = (V, E) be a graph. Then

r2(G) = min{ 3~ (2] - 3)}

Xex

where the minimum is taken over all 1-thin covers of G.

Proof: Let (G,p) be a generic realization of G in 2-dimensions and F' C E
be the edges corresponding to a maximum set of linearly independent rows
of M(G,p). Since the rows indexed by F' are linearly independent, we have
|FNEqg(X)| <2|X|—3forall X CV with |X| > 2 by Lemma 2.3. Thus
r2(G) = |F| <Y xex(2|X| = 3) for every 1-thin cover & of G.

To see that equality can be attained, let H = (V,F). Consider the
maximal critical sets X1, X, ..., X; in H. By Lemma 4.5 we have | X;NX| <
1 for all 1 < i < j <t. Since every single edge of F' induces a critical set, it
follows that {Epy(X1), Ex(X2),..., En(X¢)} is a partition of F. Thus

t

r2(G) = |F| = Z!EH = (21Xi| - 3).

i=1

To complete the proof we show that { Eq(X1), Eg(X2), ..., Eq(X:)} is a par-
tition of E. Choose uv € E — F. Since F indexes a maximal linearly in-
dependent set of rows of M(G,p), H + uv is not independent. Since H is
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independent, Theorem 4.8 implies that there exists a set X C V such that
u,v € X and ig(X) = 2|X|—3. Hence X is a critical set in H. This implies
that X C X, and hence uv € Eg(X;) for some 1 <i <. °

Lovéasz and Yemini [19] used Theorem 4.11 to show that every 6-connected
graph is rigid in R?, and note that the same proof technique will give the
following slightly stronger result.

Theorem 4.12 [19] Let G be a 6-connected graph. Then G — {ey,ea,e3} is
rigid in R? for all edges eq, es, ez in G.

Lovasz and Yemini also use Theorem 4.11 to construct a family of 5-
connected graphs which are not rigid in R2. They conjecture that every
12-connected graph is rigid in R®. To date no one has been able to show
that there even exists a finite k& such that all k-connected graphs are rigid
in R3.

5 Global rigidity of 2-dimensional generic frame-
works

We will characterize when a 2-dimensional generic framework (G, p) is glob-
ally rigid. The characterization will depend only on the structure of the
graph G and hence will imply that global rigidity is a generic property in
R2.

5.1 Hendrickson’s conditions

Hendrickson [13] obtained two necessary conditions for the global rigidity of
a 2-dimensional generic framework. The first is a direct analogue of Lemma
3.4 and can be proved similarly.

Lemma 5.1 Suppose (G, p) is a globally rigid 2-dimensional generic frame-
work. Then either G is a complete graph on at most three vertices or G s
3-connected.

The second necessary condition uses a new concept. We say that a graph
G = (V, E) is redundantly rigid if G — e is rigid for all e € E.

Theorem 5.2 [13] Suppose (G, p) is a globally rigid 2-dimensional generic
framework. Then either G is a complete graph on at most three vertices or
G is redundantly rigid.
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The following is a sketch of a version of Hendrickson’s proof which came
out of discussions with Tibor Jordan. It contains two unsubstantiated
claims which can be proved in the same way as similar statements in [13].
My purpose is to give the reader some feeling for the techniques involved.
We will need some additional terminology. Let G = (V,E), where V =
{vi,v9,...,un}, E = {e1,€9,...,e,} and e; = vjve. By applying a suit-
able translation and rotation we may suppose that (G,p) is in standard
position i.e. p(vy) = (0,0) and p(va) = (0,ps). We consider (G,p) as a
point (p4,ps, ..., pon) in R¥=3 where p(v;) = (p2i_1,p2) for 3 < i < n.
The rigidity map of (G,p) is the map fg : R?"~3 — R™ given by fa(p) =
(lexll, lle2ll, - - -, lleml]), where, for e; = uv, we have ||e;]| = ||[p(u) — p(v)|?.
We will use the fact that the Jacobian, dfg, of the rigidity map, fq, is given
by dfc = 2M (G, p), where M (G, p) is the rigidity matrix of (G, p).

Sketch Proof of Theorem 5.2

Consider all frameworks (K,,q) in R? with ¢(vi) = (0,0), q(v2) = (0, q4),
q(vi) = (g2i-1, q2i) for 3 < i < n, and not all the points (g2;—1,2i), 3 < i < n,
on the y-axis. Associate each such ¢ with the point p = (q4,qs5,...,q2n) €
R?"73 and let T be the set of all such points. Then T is an open subset of
R?"=3 and hence T is a (2n — 3)-dimensional manifold.

Let f = fk, be the rigidity map of K,,. Consider f as a map from T'
to R™ (where m = |E(K,]|). Since (K,,q) is infinitesimally rigid at each
q € T, rank df|; = 2n — 3 for all ¢ € T. Hence, by the inverse function
theorem, X = f(7T) is a (2n — 3)-dimensional manifold.

Suppose that G — e is not rigid for some edge e = uv of G. Relabelling if
nescessary we may assume that e # v1vy. Let H be an independent spanning
subgraph of G — e with |E(H)| = 2n — 4. Consider all frameworks (H, q)
with ¢ € T and let fz be the rigidity map of H. We can consider fy as a
map from T to R?"~%. Since p is a generic point in T, rank dfgly =2n —4,
so p is a regular point of fr. In fact:

Claim 5.3 fr(p) is a regular value of frr.

Now let 7y be the projection of X into R**~4 obtained by taking the
coordinates of each point x € X indexed by edges of H. Then 7y is smooth
and f = mgo f. Thus Claim 5.3 implies that fg(p) is a regular value of 7
and rank drpy|s@) = 2n —4. By [20, page 11, Lemma 1], C' = 5 (fu(p)) is
a l-dimensional manifold.

Claim 5.4 C is compact.
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Since C' is a compact 1-dimensional manifold, each component of C' is
diffeomorphic to a circle. Let Cy be the component of C' which contains
x = f(p). The function |le|| changes continuously as we traverse C. Since
H + e is rigid and p is generic, z cannot be a critical point of this func-
tion. Thus there exists another point y on C distinct from x such that |e]|
is the same at = and y. Choose ¢ € f~'(y). Then (H + e,q) is equiv-
alent, but not congruent to (H + e,p). Since H is a spanning subgraph
of G — e with the same maximal rigid subgraphs as G — e, the distances
|lp(u) — p(v)|| are preserved by every motion of (H,p), for all uv € E(G) —e.
Since (H,q) can be obtained by a motion of (H,p), and since we also have
llg(u) — q(v)|| = |lp(u) — p(v)||, we may deduce that (G, q) is equivalent, but
not congruent to, (G, p). .

Hendrickson [13] actually proved the d-dimensional generalizations of
Lemma 5.1 and Theorem 5.2: if (G,p) is a globally rigid d-dimensional
generic framework, then G is either a complete graph on at most d 4+ 1 ver-
tices, or G is (d + 1)-connected and redundantly rigid in R?. He conjectured
that these conditions were also sufficient to imply the global rigidity of a
d-dimensional generic framework. Connelly [5] showed that this conjecture
is false for d = 3 by constructing a generic realization of the complete bipar-
tite graph K 5 which is not globally rigid. We shall see that Hendrickson’s
conjecture does hold when d = 2 i.e. a 2-dimensional generic framework
(G, p) is globally rigid if and only if G is a complete graph on at most three
vertices or G is 3-connected and redundantly rigid in R?. The basic idea be-
hind the proof is the same as that for global rigidity in R. The first step is to
show that global rigidity of generic frameworks is preserved by 1-extensions.
The second step is to show that if G is a 3-connected graph on at least five
vertices which is redundantly rigid in R?, then G can be obtained from a
smaller 3-connected redundantly rigid graph by a l-extension or an edge
addition.

5.2 Extending globally rigid frameworks

We need the following result. Its proof is similar, but slightly more compli-
cated than that of Theorem 3.6.

Theorem 5.5 [17] Let (G,p) and (H,pg) be two 2-dimensional generic
frameworks. Suppose that H has at least four vertices, G is a 1-extension of
H, py is the restriction of p to V(H), and (H,py) is globally rigid. Then
(G,p) is globally rigid.
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A slightly weaker result than Theorem 5.5 was previously obtained by
Connelly [6], who showed that a 2-dimensional generic framework (G, p) is
globally rigid if G can be obtained from Ky by l-extensions. His result can
also be used to obtain the above mentioned characterization of the global
rigidity of 2-dimensional generic frameworks, when combined with the re-
sults of the next subsection, see [6]. Connelly’s proof is less elementary
than our proof of Theorem 5.5. On the other hand, his proof extends to d-
dimensions and shows that a generic d-dimensional framework (G, p) is glob-
ally rigid if G' can be obtained from Kjyi1 by (d-dimensional) 1-extensions.
We do not know if our proof of Theorem 5.5 can be extended to d-dimensions.

5.3 Reducing 3-connected redundantly rigid graphs

The results described in this subsection correspond to the step in the charac-
terization of the global rigidity of 1-dimensional generic frameworks which
showed that every minimally 2-connected graph can be obtained from a
smaller 2-connected graph by a (1-dimensional) l-extension. They are a
combination of results from Berg and Jordan [2] and Jackson and Jordén
[15]. The proof is purely graph theoretic but is considerably more com-
plicated than the analogous 1-dimensional proof. It requires several new
concepts.

5.3.1 M-circuits

Given a graph G = (V, E), an M -circuit of G is a minimal subgraph H such
that the rows of M(G,p) indexed by E(H) are linearly dependent in any
generic realization (G, p) of G. Note that

e H is an M-circuit if and only if H is not independent but every proper
subgraph of H is independent, and

e (G is redundantly rigid if and only if G is rigid and every edge of G
belongs to an M-circuit.

The following characterization of M-circuits follows easily from Theorem
4.8.

Lemma 5.6 Let G = (V, E) be a graph. Then G is an M -circuit if and only
if |[E| =2|V]| =2 and i(X) <2|X| -3 for all X CV with 4 < |X| < |V].

It follows easily that Ky is an M-circuit and that every l-extension of
an M-circuit is an M-circuit. This allows us to construct an infinite family
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Gy G2

Figure 8: The M-circuit G; is not a l-extension of a smaller M-circuit.
The 3-connected M-circuit Go cannot be reduced to a smaller M-circuit by
deleting v and adding an edge between two neighbours of v.

of M-circuits. It is not true that every M-circuit can be obtained from a
smaller M-circuit by a l-extension, see Figure 8. Berg and Jordan showed
that the latter statement becomes true, however, if we restrict our attention
to 3-connected M-circuits.

Theorem 5.7 [15, Theorem 3.8] Let G = (V, E) be a 3-connected M -circuit
and x,y,z € V with xy € E. Then there exists a vertex v € V — {x,y, z} of
degree three in G with non-adjacent neighbours u,w, such that G — v + uw
s an M -circuit.

Figure 8 also gives an example of a 3-connected M-circuit with a vertex
v of degree three such that G — v + vw is not an M-circuit for all pairs
of neighbours v and w of v. Thus the conclusion of Theorem 5.7 is not
valid for all vertices of degree three. This indicates that its proof will be
more difficult than that of the corresponding result for independent graphs,
Lemma 4.7(b).

5.3.2 M-connected graphs

We say that a graph G is M -connected if every pair of edges of G belong to an
M-circuit of G. We can use the facts that M-circuits are rigid and that the
union of two rigid subgraphs with at least two vertices in common is rigid,
to deduce that an M-connected graph is rigid. Thus, M-connectedness is a
stronger property than redundant rigidity. An example of a graph which is
redundantly rigid but not M-connected is given in Figure 9.

It turns out that M-connectedness is, at least for our purpose, easier
to work with than redundant rigidity. On the hand, the following lemma
implies that the two concepts are equivalent for 3-connected graphs. In fact
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Figure 9: The above graph has exactly three M-circuits given by the three
copies of Ky. It is redundantly rigid since it is rigid and each edge belongs
to an M-circuit. It is not M-connected since no two edges in different K4’s
belong to the same M-circuit.

we will need a slightly stronger result. A graph G is said to be nearly 3-
connected if G can be made 3-connected by the addition of at most one new
edge.

Lemma 5.8 [15] Let G be a nearly 3-connected graph. Then G is redun-
dantly rigid if and only if G is M -connected.

Proof: We have already noted that every M-connected graph is redun-
dantly rigid. Suppose that G is redundantly rigid but not M-connected.
An M -connected component of G is a maximal M-connected subgraph. Let
Hy,Hs,...H, be the M-connected components of G. We will need the fact
that r(G) = D7, r(H;), see [15, Section 3].

Let X; = V(H;) — UjxV(H;) denote the set of vertices belonging to
no other M-component than H;, and let YV; = V(H;) — X; for 1 < i <
q. Let n; = |V(H))|, =; = |Xi|, vi = |Yi|]. Clearly, n; = z; + y; and
V=31 2+ | UL, Yi|. Moreover, we have >.7 ,y; > 2| U, Y;|. Since
every edge of G is in some M-circuit, and every M-circuit has at least four
vertices, we have that n; > 4 for 1 < ¢ < ¢. Furthermore, since G is nearly
3-connected, y; > 2 for all 1 < ¢ < ¢, and y; > 3 for all but at most two
M-components.

Since each M-connected component of GG is redundantly rigid, and hence
rigid, we have r(H;) = 2n; —3 for all 1 <1 < ¢. Using the above inequalities
we have

q

r(G) = ZT(HZ) Z(?n, -3) = QZW —3q

i=1 i=1 i=1
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1 Y2 Y3 Y4 Ys

Figure 10: If Hy = G — y1, Hy = G — y2 and H3 = G — {y4,ys5}, then
Hy, Hs, Hg is an M-ear decomposition of G.

q q q
> (2in+2yi)+2yi—3q22\V1+3q—2—3Q=2!V\ —2.
i—1 i—1 =1

This contradicts Lemma 2.3. °

5.3.3 Ear decompositions

Let G = (V, E) be a graph and let Hy, Hy, ..., H; be a non-empty sequence
of M-circuits of G. Let G; = HHUH U ...UH; for 1 < j <t. We say
that Hq, Ho, ..., H; is an M-ear decomposition of G if G; = G and, for all
2 <1 <t, we have

o E(H) N E(Gi_1) # 0 # E(H;) — E(G;_1), and
e no M-circuit H of GG; which satisfies
E(H)NE(Gi-1) # 0 # E(H) — E(Gi-1)
has E(H) — E(G;_1) properly contained in E(H;) — E(Gi_1).

An example of an M-ear decomposition is given in Figure 10.

We will need the following result for M-connected graphs which follows
from a more general result for connected matroids due to Coullard and
Hellerstein [7].

Lemma 5.9 Let G be a graph. Then G is M-connected if and only if G
has an M -ear decomposition.
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Figure 11: G is the 2-sum of G; and G

Gy

We can now state the final result which allows us to reduce 3-connected
M-connected graphs to smaller M-connected graphs.

Theorem 5.10 [15, Theorem 5.4] Let G be a 3-connected M -connected
graph and Hq, Hs, ... Hy be an M-ear decomposition of G with t > 2. Sup-
pose that G — e is not M-connected for all e € E(Hy) — Uf;% E(H;) and
for all but at most two edges e € E(H;). Then there exists a vertex v €
V(H;) — Uf;% V(H;) of degree three in G with non-adjacent neighbours u,w
such that G — v + ww is M-connected.

We may use Theorem 5.10 to give a recursive construction for M-connected
graphs. We need another new operation. If G; and G, are graphs with
V(G1) NV (Gy) = {u,v} and E(G1) N E(G3) = {uv}, then we say that the
graph G = (G1 —uwv) U (G2 — uv) is a 2-sum of G1 and Ga, see Figure 11.

Lemma 5.11 [15, Lemmas 3.3,3.4] Suppose G is the 2-sum of G and Gs.
Then G is M-connected if and only if G1 and Go are both M -connected.

Combining Theorems 5.7 and 5.10, and Lemma 5.11, we obtain

Corollary 5.12 [15, Corollary 5.9] Let G be a graph. Then G is M-
connected if and only if G is a connected graph which can be obtained from
disjoint K4’s by recursively applying edge-additions and 1-extensions to the
same connected component, and 2-sums to two different connected compo-
nents.

The following special case of Corollary 5.12 when G is an M-circuit was

previously obtained by Berg and Jordan by using Lemma 5.11 and Theorem
5.7.
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Corollary 5.13 [2, Theorem 4.4] Let G be a graph. Then G is an M -circuit
if and only if G is a connected graph which can be obtained from disjoint
Ky '’s by recursively applying 1-extensions to the same connected component,
and 2-sums to two different connected components.

5.3.4 Bricks

We have seen that every 3-connected M-connected graph with at least five
vertices can be obtained from a smaller M-connected graph by an edge
addition or a l-extension. The last piece in our characterization of globally
rigid graphs is to show that every 3-connected M-connected graph with at
least five vertices can be obtained from a smaller 3-connected M-connected
graph by an edge addition or a l-extension.

We say that a graph G is a brick if it is both 3-connected and M-
connected.

Theorem 5.14 [15, Theorem 6.1] Let G = (V, E) be a brick with at least
five vertices. Then either there exists an edge e € E such that G — e is a
brick, or there exists a vertex v € V' of degree three in G with non-adjacent
neighbours u,w such that G — v + uw is a brick.

The special case of Theorem 5.14 when G is a 3-connected M-circuit was
previously obtained by Berg and Jordan [2, Theorem 5.9]. (In this special
case, the minimality of an M-circuit implies that there can never exist an
edge whose deletion preserves M-connectivity, so only the second reduction
step in Theorem 5.14 is needed for M-circuits.)

Our proof of Theorem 5.14 is by contradiction. We suppose the theorem
is false and let G be a smallest counterexample. Then G —e is not a brick for
all e € F, i.e. either G — e is not M-connected or GG — e is not 3-connected.
If G — e is not 3-connected for some edge e then we choose a 2-vertex cut
{u,v} of G — e and a component F, of G — e — {u,v} such that F, is as
small as possible, and let H, be the graph obtained from F. by adding the
vertices u and v, all edges of G between F, and {u,v}, and the new edge uv.

Simialrly, G — w + xy is not a brick for all w € V' of degree three in G
and non-adjacent neighbours x,y of w. If G — w + zy is not 3-connected,
we choose a 2-vertex cut {u,v} of G —w + zy and a component Fy,,, of
(G —w+xy) — {u,v} such that F, ,, is as small as possible, and let Hy, 4,
be the graph obtained from F, ; , by adding the vertices u and v, all edges
of G between Fy, ,, and {u,v}, and the new edge uv.
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We now consider all such graphs H, and H,, ;, and choose one, say H,
with as few vertices as possible. Note that we will have at least one graph
to choose from since, if no graph H, exists then G — e is 3-connected for
all e € E, and G — e is not M-connected for all e € E. Theorems 5.7 and
5.10 now imply that G — w + xy is M-connected for some w € V of degree
three in G and non-adjacent neighbours z,y of w. The fact that G is a
counterexample now implies that G — w 4+ xy is not 3-connected and hence
Hy z,y exists.

We complete the proof by showing that H is a brick and then applying
Theorems 5.7 and 5.10 to H to find either an edge e € E(H) or a vertex
w € V(H) such that G — e or G — w + xy contradicts the minimality of H.
When we do this we seem to need the full strength of Theorems 5.7 and
5.10, i.e. we need to be able to find a vertex v avoiding the specified set
of vertices in Theorem 5.7, and we need to allow H; to contain two edges
whose deletion does not destroy the M-connectedness of G in Theorem 5.10.

Theorem 5.14 and the facts that 1-extensions and edge additions preserve
both M-connectedness and 3-connectedness imply the following recursive
constructions for bricks and 3-connected M-circuits.

Corollary 5.15 [15, Theorem 6.15] A graph G is a brick if and only if G
can be obtained from K4 by 1-extensions and edge additions.

Corollary 5.16 [2, Theorem 4] A graph G is a 3-connected M -circuit if
and only if G can be obtained from K4 by 1-extensions.

We illustrate Corollary 5.15 by constructing the brick K35 from Ky, in
Figure 12.

5.4 The final goal

We can now obtain our promised characterization of global rigidity in R2.

Theorem 5.17 [15, Theorem 7.1] Let (G,p) be a 2-dimensional generic
framework. Then (G,p) is globally rigid if and only if either G is a complete
graph on at most three vertices or G is 3-connected and redundantly rigid.

Proof: Necessity follows from Lemma 5.1 and Theorem 5.2. Sufficiency
follows from Theorem 5.5 and Corollary 5.15. .

The special case of Theorem 5.17 when G is a 3-connected M-circuit was
obtained previously by Berg and Jordén [2, Theorem 6.1].

28



Y5 Y5 Ys
3 Y4 3 Y4 3 Y4
T9 Y3 T2¢ Y3 x2 Y3
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T3 T34 L34 Ya
Y3 T24 Y3 Toe Y3
T Y2 tal Y2
1

Figure 12: A construction of K35 from K, using l-extensions and edge
additions. Since K35 — e is not 3-connected for all edges e, the first and
last operations used in the construction must be 1-extensions. Since K35
is not an M-circuit, at least one operation in the construction must be an
edge addition. This shows that one may need to alternate between the two
operations of Corollary 5.15 while building up a brick from Kjy.

It follows from Theorem 5.17 that the global rigidity of 2-dimensional
frameworks is a generic property. We say that a graph G is globally rigid
in R? if every generic realization of G in R? is globally rigid. We can use
Theorems 4.12 and 5.17 to deduce that sufficiently highly connected graphs
are globally rigid in R?.

Corollary 5.18 [15, Theorem 7.2] Let G be a 6-connected graph. Then
G — {e1, ez} is globally rigid in R? for all edges eq,es of G.

6 Further Reading

More information on the rigidity of graphs and frameworks can be found
in the survey article by Whiteley [22], and the books by Graver [11] and
Graver, Servatius and Servatius [12]. Some partial results, conjectures, and
additional references on the rigidity of graphs in R? can be found in [16].
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