
Notes on the Schreier graphs

of the Grigorchuk group

Yaroslav Vorobets

Abstract

The paper is concerned with the space of the marked Schreier graphs of

the Grigorchuk group and the action of the group on this space. In partic-

ular, we describe the invariant set of the Schreier graphs corresponding to

the action on the boundary of the binary rooted tree and dynamics of the

group action restricted to this invariant set.

1 Introduction

This paper is devoted to the study of two equivalent dynamical systems of the
Grigorchuk group G, the action on the space of the marked Schreier graphs and
the action on the space of subgroups. The main object of study is going to be
the set of the marked Schreier graphs of the standard action of the group on the
boundary of the binary rooted tree and their limit points in the space of all marked
Schreier graphs of G.

Given a finitely generated group G with a fixed generating set S, to each
action of G we associate its Schreier graph, which is a combinatorial object that
encodes some information about orbits of the action. The marked Schreier graphs
of various actions form a topological space Sch(G,S) and there is a natural action
of G on this space. Any action of G corresponds to an invariant set in Sch(G,S)
and any action with an invariant measure gives rise to an invariant measure on
Sch(G,S). The latter allows to define the notion of a random Schreier graph,
which is closely related to the notion of a random subgroup of G.

A principal problem is to determine how much information about the original
action can be learned from the Schreier graphs. The worst case here is a free action,
for which nothing beyond its freeness can be recovered. Vershik [5] introduced the
notion of a totally nonfree action. This is an action such that all points have
distinct stabilizers. In this case the information about the original action can be
recovered almost completely. Further extensive development of these ideas was
done by Grigorchuk [3].
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Figure 1: The marked Schreier graph of 0∞ = 000 . . .

The Grigorchuk group was introduced in [1] as a simple example of a finitely
generated infinite torsion group. Later it was revealed that this group has inter-
mediate growth and a number of other remarkable properties (see the survey [2]).
In this paper we are going to use the branching property of the Grigorchuk group,
which implies that its action on the boundary of the binary rooted tree is totally
nonfree in a very strong sense.

The main results of the paper are summarized in the following two theorems.
The first theorem contains a detailed description of the invariant set of the Schreier
graphs. The second theorem is concerned with the dynamics of the group action
restricted to that invariant set.

Theorem 1.1 Let F : ∂T → Sch(G, {a, b, c, d}) be the mapping that assigns to
any point on the boundary of the binary rooted tree the marked Schreier graph of
its orbit under the action of the Grigorchuk group. Then

(i) F is injective;

(ii) F is measurable; it is continuous everywhere except for a countable set, the
orbit of the point ξ0 = 111 . . . ;

(iii) the Schreier graph F (ξ0) is an isolated point in the closure of F (∂T ); the
other isolated points are graphs obtained by varying the marked vertex of
F (ξ0);

(iv) the closure of the set F (∂T ) differs from F (∂T ) in countably many points;
these are obtained from three graphs ∆0,∆1,∆2 choosing the marked vertex
arbitrarily;

(v) as an unmarked graph, F (ξ0) is a double quotient of each ∆i (i = 0, 1, 2);
also, there exists a graph ∆ such that each ∆i is a double quotient of ∆.

Theorem 1.2 Using notation of the previous theorem, let Ω be the set of non-
isolated points of the closure of F (∂T ). Then

(i) Ω is a minimal invariant set for the action of the Grigorchuk group G on
Sch(G, {a, b, c, d});
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Figure 2: The marked Schreier graph of 1∞ = 111 . . .

(ii) the action of G on Ω is a continuous extension of the action on the boundary
of the binary rooted tree; the extension is one-to-one everywhere except for
a countable set, where it is three-to-one;

(iii) there exists a unique Borel probability measure ν on Sch(G, {a, b, c, d}) in-
variant under the action of G and supported on the set Ω;

(iv) the action of G on Ω with the invariant measure ν is isomorphic to the action
of G on ∂T with the uniform measure.

The paper is organized as follows. Section 2 contains a detailed construction
of the space of marked graphs. The construction is more general than that in [3].
Section 3 contains notation and definitions concerning group actions. In Section
4 we introduce the Schreier graphs of a finitely generated group, the space of
marked Schreier graphs, and the action of the group on that space. In Section
5 we study the space of subgroups of a countable group and establish a relation
of this space with the space of marked Schreier graphs. Section 6 is devoted to
general considerations concerning groups of automorphisms of a regular rooted
tree and their actions on the boundary of the tree. In Section 7 we apply the
results of the previous sections to the study of the Grigorchuk group and prove
Theorems 1.1 and 1.2. The exposition in Sections 2–6 is as general as possible, to
make their results applicable to the actions of groups other than the Grigorchuk
group.

The author is grateful to Rostislav Grigorchuk, Anatoly Vershik, and Oleg
Ageev for useful discussions.

2 Space of marked graphs

A graph Γ is a combinatorial object that consists of vertices and edges related
so that every edge joins two vertices or a vertex to itself (in the latter case the
edge is called a loop). The vertices joined by an edge are its endpoints. Let V
be the vertex set of the graph Γ and E be the set of its edges. Traditionally E
is regarded as a subset of V × V , i.e., any edge is identified with the pair of its
endpoints. In this paper, however, we are going to consider graphs with multiple
edges joining the same vertices. Also, our graphs will carry additional structure.
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To accomodate this, we regard E merely as a reference set whereas the actual
information about the edges is contained in their attributes , which are functions
on E. In a plain graph any edge has only one attribute: its endpoints, which are
an unordered pair of vertices. Other types of graphs involve more attributes.

A directed graph has directed edges. The endpoints of a directed edge e are
ordered, namely, there is a beginning α(e) ∈ V and an end ω(e) ∈ V . Clearly, an
undirected loop is no different from a directed one. An undirected edge joining
two distinct vertices may be regarded as two directed edges e1 and e2 with the
same endpoints and opposite directions, i.e., α(e2) = ω(e1) and ω(e2) = α(e1).
This way we can represent any graph with undirected edges as a directed graph.
Conversely, some directed graphs can be regarded as graphs with undirected edges
(we shall use this in Section 7).

A graph with labeled edges is a graph in which each edge e is assigned a label
l(e). The labels are elements of a prescribed finite set. A marked graph is a graph
with a distinguished vertex called the marked vertex.

The vertices of a graph are pictured as dots or small circles. An undirected
edge is pictured as an arc joining its endpoints. A directed edge is pictured as an
arrow going from its beginning to its end. The label of an edge is written next to
the edge. Alternatively, one might think of labels as colors and picture a graph
with labeled edges as a colored graph.

Let Γ be a graph and V be its vertex set. To any subset V ′ of V we associate a
graph Γ′ called a subgraph of Γ. By definition, the vertex set of the graph Γ′ is V ′

and the edges are those edges of Γ that have both endpoints in V ′ (all attributes
are retained). If Γ is a marked graph and the marked vertex is in V ′, it will also
be the marked vertex of the subgraph Γ′. Otherwise the subgraph is not marked.

Suppose Γ1 and Γ2 are graphs of the same type. For any i ∈ {1, 2} let Vi be
the vertex set of Γi and Ei be the set of its edges. The graph Γ1 is said to be
isomorphic to Γ2 if there exist bijections f : V1 → V2 and φ : E1 → E2 that respect
the structure of the graphs. First of all, this means that f sends the endpoints of
any edge e ∈ E1 to the endpoints of φ(e). If Γ1 and Γ2 are directed graphs, we
additionally require that α(φ(e)) = f(α(e)) and ω(φ(e)) = f(ω(e)) for all e ∈ E1.
If Γ1 and Γ2 have labeled edges, we also require that φ preserve labels. If Γ1 and
Γ2 are marked graphs, we also require that f map the marked vertex of Γ1 to the
marked vertex of Γ2. Assuming the above requirements are met, the mapping f
of the vertex set is called an isomorphism of the graphs Γ1 and Γ2. If Γ1 = Γ2

then f is also called an automorphism of the graph Γ1. We call the mapping φ
a companion mapping of f . If neither of the graphs Γ1 and Γ2 admits multiple
edges with identical attributes, the companion mapping is uniquely determined
by the isomorphism f . Further, we say that the graph Γ2 is a quotient of Γ1

if all of the above requirements are met except the mappings f and φ need not
be injective. Moreover, Γ2 is a k-fold quotient of Γ1 if f is k-to-1. Finally, we
say that the graphs Γ1 and Γ2 coincide up to renaming edges if they have the
same vertices and there is a one-to-one correspondence between their edges that
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preserves all attributes. An equivalent condition is that the identity map on the
common vertex set is an isomorphism of these graphs.

A path in a graph Γ is a sequence of vertices v0, v1, . . . , vn together with a
sequence of edges e1, . . . , en such that for any 1 ≤ i ≤ n the endpoints of the edge
ei are vi−1 and vi. We say that the vertex v0 is the beginning of the path and vn

is the end. The path is closed if vn = v0. The length of the path is the number of
edges in the sequence (counted with repetitions), which is a nonnegative integer.
The path is a directed path if the edges are directed and, moreover, α(ei) = vi−1

and ω(ei) = vi for 1 ≤ i ≤ n. If the graph Γ has labeled edges then the path
is assigned a code word l(e1)l(e2) . . . l(en), which is a string of labels read off the
edges while traversing the path.

We say that a vertex v of a graph Γ is connected to a vertex v′ if there is a path
in Γ such that the beginning of the path is v and the end is v′. The length of the
shortest path with this property is the distance from v to v′. The connectivity is
an equivalence relation on the vertex set of Γ. The subgraphs of Γ corresponding
to the equivalence classes are connected components of the graph Γ. A graph
is connected if all vertices are connected to each other. Clearly, the connected
components of any graph are its maximal connected subgraphs.

Let v be a vertex of a graph Γ. For any integer n ≥ 0, the closed ball of radius
n centered at v, denoted BΓ(v, n), is the subgraph of Γ whose vertex set consists
of all vertices in Γ at distance at most n from the vertex v. A graph is locally
finite if every vertex is the endpoint for only finitely many edges. If the graph Γ is
locally finite then any closed ball of Γ is a finite graph, i.e., it has a finite number
of vertices and a finite number of edges.

Let MG denote the set of isomorphism classes of all marked directed graphs
with labeled edges. For convenience, we regard elements of MG as graphs (i.e.,
we choose representatives of isomorphism classes). It is easy to observe that
connectedness and local finiteness of graphs are preserved under isomorphisms.
Let MG0 denote the subset of MG consisting of connected, locally finite graphs.
We endow the set MG0 with a topology as follows. The topology is generated
by sets U(Γ0, V0) ⊂ MG0, where Γ0 runs over all finite graphs in MG0 and V0

can be any subset of the vertex set of Γ0. By definition, U(Γ0, V0) is the set of all
isomorphism classes in MG0 containing any graph Γ such that Γ0 is a subgraph of
Γ and every edge of Γ with at least one endpoint in the set V0 is actually an edge
of Γ0. In other words, there is no edge in Γ that joins a vertex from V0 to a vertex
outside the vertex set of Γ0. For example, U(Γ0, ∅) is the set of all graphs in MG0

that have a subgraph isomorphic to Γ0. On the other hand, if V0 is the entire
vertex set of Γ0 then U(Γ0, V0) contains only the graph Γ0. As a consequence,
every finite graph in MG0 is an isolated point. The following lemma implies that
sets of the form U(Γ0, V0) constitute a base of the topology.

Lemma 2.1 Any nonempty intersection of two sets of the form U(Γ0, V0) can be
represented as the union of some sets of the same form.
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Proof. Let Γ1,Γ2 ∈ MG0 be finite graphs and V1, V2 be subsets of their vertex
sets. Consider an arbitrary graph Γ ∈ U(Γ1, V1)∩U(Γ2, V2). For any i ∈ {1, 2} let
fi : Wi → W ′

i be an isomorphism of the graph Γi with a subgraph of Γ such that
no edge of Γ joins a vertex from the set fi(Vi) to a vertex outside W ′

i . Denote
by Γ0 the finite subgraph of Γ with the vertex set W0 = W ′

1 ∪ W ′
2. Since the

subgraphs of Γ with vertex sets W ′
1 and W ′

2 are both connected and both contain
the marked vertex of Γ, the subgraph Γ0 is also marked and connected. Besides,
no edge of Γ joins a vertex from the set V0 = f1(V1) ∪ f2(V2) to a vertex outside
W0. Hence Γ ∈ U(Γ0, V0). It is easy to observe that the entire set U(Γ0, V0) is
contained in the intersection U(Γ1, V1) ∩ U(Γ2, V2). The lemma follows.

Next we introduce a distance function on MG0. Consider arbitrary graphs
Γ1,Γ2 ∈ MG0. Let v1 be the marked vertex of Γ1 and v2 be the marked vertex
of Γ2. We let δ(Γ1,Γ2) = 0 if the graphs Γ1 and Γ2 are isomorphic (i.e., they
represent the same element of MG0). Otherwise we let δ(Γ1,Γ2) = 2−n, where
n is the smallest nonnegative integer such that the closed balls BΓ1

(v1, n) and
BΓ2

(v2, n) are not isomorphic.

Lemma 2.2 The graphs Γ1 and Γ2 are isomorphic if and only if the closed balls
BΓ1

(v1, n) and BΓ2
(v2, n) are isomorphic for any integer n ≥ 0.

Proof. For any i ∈ {1, 2} let Vi denote the vertex set of the graph Γi and Ei

denote its set of edges. Further, for any integer n ≥ 0 let Vi(n) and Ei(n) denote
the vertex set and the set of edges of the closed ball BΓi

(vi, n). First assume that
the graph Γ1 is isomorphic to Γ2. Let f : V1 → V2 be an isomorphism of these
graphs and φ : E1 → E2 be its companion mapping. Clearly, f(v1) = v2. It is
easy to see that any isomorphism of graphs preserves distances between vertices.
It follows that f maps V1(n) onto V2(n) for any n ≥ 0. Consequently, φ maps
E1(n) onto E2(n). Hence the restriction of f to the set V1(n) is an isomorphism
of the graphs BΓ1

(v1, n) and BΓ2
(v2, n).

Now assume that for every integer n ≥ 0 the closed balls BΓ1
(v1, n) and

BΓ2
(v2, n) are isomorphic. Let fn : V1(n) → V2(n) be an isomorphism of these

graphs and φn : E1(n) → E2(n) be its companion mapping. Clearly, fn(v1) = v2.
Note that the closed ball BΓi

(vi, n) is also the closed ball with the same center
and radius in any of the graphs BΓi

(vi,m), m > n. It follows that the restriction
of the mapping fm to the set V1(n) is an isomorphism of the graphs BΓ1

(v1, n) and
BΓ2

(v2, n) while the restriction of φm to E1(n) is its companion mapping. Since the
graphs Γ1 and Γ2 are locally finite, the sets V1(n), V2(n), E1(n), E2(n) are finite.
Hence there are only finitely many distinct restrictions fm|V1(n) or φm|E1(n) for any
fixed n. Therefore one can find nested infinite sets of indices I0 ⊃ I1 ⊃ I2 ⊃ . . .
such that the restriction fm|V1(n) is the same for all m ∈ In and the restriction
φm|E1(n) is the same for all m ∈ In. For any integer n ≥ 0 let f ′

n = fm|V1(n) and
φ′

n = φm|E1(n), where m ∈ In. By construction, f ′
n is a restriction of f ′

k and φ′
n

is a restriction of φ′
k whenever n < k. Hence there exist maps f : V1 → V2 and
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φ : E1 → E2 such that all f ′
n are restrictions of f and all φ′

n are restrictions of
φ. Since the graphs Γ1 and Γ2 are connected, any finite collection of vertices and
edges in either graph is contained in a closed ball centered at the marked vertex.
As for any n ≥ 0 the mapping f ′

n is an isomorphism of BΓ1
(v1, n) and BΓ2

(v2, n)
and φ′

n is its companion mapping, it follows that f is an isomorphism of Γ1 and
Γ2 and φ is its companion mapping.

Lemma 2.2 implies that δ is a well-defined function on MG0 ×MG0. This is
a distance function, which makes MG0 into an ultrametric space.

Lemma 2.3 The distance function δ is compatible with the topology on MG0.

Proof. The base of the topology on MG0 consists of the sets U(Γ0, V0). The
base of the topology defined by the distance function δ is formed by open balls
B(Γ1, ǫ) = {Γ ∈ MG0 | δ(Γ,Γ1) < ǫ}, where Γ1 can be any graph in MG0 and
ǫ > 0. We have to show that any element of either base is the union of some
elements of the other base.

First consider an open ball B(Γ1, ǫ). If ǫ > 1 then B(Γ1, ǫ) = MG0, which
is the union of all sets U(Γ0, V0). Otherwise let n be the largest integer such
that ǫ ≤ 2−n. Clearly, B(Γ1, ǫ) = B(Γ1, 2

−n). Let Γ0 = BΓ1
(v1, n), where v1 is

the marked vertex of the graph Γ1, and let V0 be the set of all vertices of Γ1 at
distance at most n− 1 from v1. Consider an arbitrary graph Γ ∈ MG0 such that
Γ0 is a subgraph of Γ. Clearly, Γ0 is also a subgraph of the closed ball BΓ(v1, n).
If v is a vertex of Γ at distance k from the marked vertex v1, then any vertex
joined to v by an edge is at distance at most k + 1 and at least k − 1 from v1.
Moreover, if k > 0 then v is joined to a vertex at distance exactly k − 1 from v1.
It follows that Γ0 = BΓ(v1, n) if and only if no vertex from the set V0 is joined in
Γ to a vertex that is not a vertex of Γ0. Thus B(Γ1, 2

−n) = U(Γ0, V0).
Now consider the set U(Γ0, V0), where Γ0 is a finite graph in MG0 and V0 is

a subset of its vertex set. Denote by v0 the marked vertex of Γ0. Let n be the
smallest integer such that every vertex of Γ0 is at distance at most n from v0

and every vertex from V0 is at distance at most n − 1 from v0. Take any graph
Γ ∈ MG0 such that Γ0 is a subgraph of Γ and there is no edge in Γ joining a
vertex from V0 to a vertex outside the vertex set of Γ0. Let Γ1 = BΓ(v0, n) and
V1 be the set of all vertices of Γ at distance at most n− 1 from v0. By the above,
U(Γ1, V1) = B(Γ, 2−n). At the same time, U(Γ1, V1) ⊂ U(Γ0, V0) since Γ0 is a
subgraph of Γ1 and V0 is a subset of V1. Thus for any graph Γ ∈ U(Γ0, V0) the
entire open ball B(Γ, 2−n) is contained in U(Γ0, V0). In particular, U(Γ0, V0) is the
union of those open balls.

Given a positive integer N and a finite set L, let MG(N,L) denote the subset
of MG consisting of all graphs in which every vertex is the endpoint for at most N
edges and every label belongs to L. Further, let MG0(N,L) = MG(N,L)∩MG0.

Proposition 2.4 MG0(N,L) is a compact subset of the metric space MG0.
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Proof. We have to show that any sequence of graphs Γ1,Γ2, . . . in MG0(N,L)
has a subsequence converging to some graph in MG0(N,L). For any positive
integer n let Vn denote the vertex set of the graph Γn, En denote its sets of edges,
and vn denote the marked vertex of Γn. First consider the special case when each
Γn is a subgraph of Γn+1. Let Γ be the graph with the vertex set V = V1∪V2∪ . . .
and the set of edges E = E1 ∪E2 ∪ . . . . We assume that any edge e ∈ En retains
its attributes (beginning, end, and label) in the graph Γ. The common marked
vertex of the graphs Γn is set as the marked vertex of Γ. Note that any finite
collection of vertices and edges of the graph Γ is already contained in some Γn.
As the graphs Γ1,Γ2, . . . belong to MG0(N,L), it follows that Γ ∈ MG0(N,L)
as well. In particular, for any integer k ≥ 0 the closed ball BΓ(v1, k) is a finite
graph. Then it is a subgraph of some Γn. Clearly, BΓ(v1, k) is also a subgraph
of the graphs Γn+1,Γn+2, . . . . Moreover, it remains the closed ball of radius k
centered at the marked vertex in all these graphs. It follows that δ(Γm,Γ) < 2−k

for m ≥ n. Since k can be arbitrarily large, the sequence Γ1,Γ2, . . . converges to
Γ in the metric space MG0.

Next consider a more general case when each Γn is isomorphic to a subgraph of
Γn+1. This case is reduced to the previous one by repeatedly using the following
observation: if a graph P0 is isomorphic to a subgraph of a graph P then there
exists a graph P ′ isomorphic to P such that P0 is a subgraph of P ′.

Finally consider the general case. For any graph in MG0(N,L), the closed ball
of radius k with any center contains at most 1+N+N2+ · · ·+Nk−1 vertices while
the number of edges is at most N times the number of vertices. Hence for any fixed
k the number of vertices and edges in the balls BΓn

(vn, k) is uniformly bounded,
which implies that there are only finitely many non-isomorphic graphs among
them. Therefore one can find nested infinite sets of indices I0 ⊃ I1 ⊃ I2 ⊃ . . .
such that the closed balls BΓn

(vn, k) are isomorphic for all n ∈ Ik. Choose an
increasing sequence of indices n0, n1, n2, . . . such that nk ∈ Ik for all k, and let Γ′

k

be the closed ball of radius k in the graph Γnk
centered at the marked point vnk

.
Clearly, Γ′

k ∈ MG0(N,L) and δ(Γ′
k,Γnk

) < 2−k. By construction, Γ′
k is isomorphic

to a subgraph of Γ′
m whenever k < m. By the above the sequence Γ′

0,Γ
′
1,Γ

′
2, . . .

converges to a graph Γ ∈ MG0(N,L). Since δ(Γ′
k,Γnk

) < 2−k for all k ≥ 0, the
subsequence Γn0

,Γn1
,Γn2

, . . . converges to the graph Γ as well.

3 Group actions

Let M be an arbitrary nonempty set. Invertible transformations φ : M → M
form a transformation group. An action A of an abstract group G on the set
M is a homomorphism of G into that transformation group. The action can be
regarded as a collection of invertible transformations Ag : M →M , g ∈ G, where
Ag is the image of g under the homomorphism. The transformations are to satisfy
AgAh = Agh for all g, h ∈ G. We say that Ag is the action of an element g within
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the action A. Alternatively, the action of the group G can be given as a mapping
A : G ×M → M such that A(g, x) = Ag(x) for all g ∈ G and x ∈ M . Such a
mapping defines an action of G if and only if the following two conditions hold:

• A(gh, x) = A(g, A(h, x)) for all g, h ∈ G and x ∈M ;

• A(1G, x) = x for all x ∈M , where 1G is the unity of the group G.

A nonempty set S ⊂ G is called a generating set for the group G if any element
g ∈ G can be represented as a product g1g2 . . . gk where each factor gi is an element
of S or the inverse of an element of S. The elements of the generating set are
called generators of the group G. The generating set S is symmetric if it is closed
under taking inverses, i.e., s−1 ∈ S whenever s ∈ S. If S is a generating set for G
then any action A of the group G is uniquely determined by transformations As,
s ∈ S.

Suppose G is a topological group. An action of G on a topological space M is
a continuous action if it is continuous as a mapping of G×M to M . Similarly, an
action of G on a measured space M is a measurable action if it is measurable as a
mapping of G×M to M . A measurable action A of the group G on a measured
space M with a measure µ is measure-preserving if the action of every element of
G is measure-preserving, i.e., µ

(

A−1
g (W )

)

= µ(W ) for all g ∈ G and measurable
sets W ⊂ M . In what follows, the group G will be a discrete countable group.
In that case, an action A of G is continuous if and only if all transformations Ag,
g ∈ G are continuous. Likewise, the action A is measurable if and only if every
Ag is measurable.

Given an action A of a group G on a set M , the orbit OA(x) of a point x ∈M
under the action A is the set of all points Ag(x), g ∈ G. A subset M0 ⊂ M is
invariant under the action A if Ag(M0) ⊂ M0 for all g ∈ G. Clearly, the orbit
OA(x) is invariant under the action. Moreover, this is the smallest invariant set
containing x. The restriction of the action A to a nonempty invariant set M0 is an
action of G obtained by restricting every transformation Ag to M0. Equivalently,
one might restrict the mapping A : G×M → M to the set G×M0. The action
A is transitive if the only invariant subsets of M are the empty set and M itself.
Equivalently, the orbit of any point is the entire set M . Assuming the action A
is continuous, it is topologically transitive if there is an orbit dense in M , and
minimal if every orbit of A is dense. The action is minimal if and only if the
empty set and M are the only closed invariant subsets of M . Assuming the action
A is measure-preserving, it is ergodic if any measurable invariant subset of M
has zero or full measure. A continuous action on a compact space M is uniquely
ergodic if there exists a unique Borel probability measure on M invariant under
the action (the action is going to be ergodic with respect to that measure).

Given an action A of a group G on a set M , the stabilizer StA(x) of a point
x ∈ M under the action A is the set of all elements g ∈ G whose action fixes x,
i.e., Ag(x) = x. The stabilizer StA(x) is a subgroup of G. The action is free if
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all stabilizers are trivial. In the case when the action A is continuous, we define
the neighborhood stabilizer Sto

A(x) of a point x ∈ M to be the set of all g ∈ G
whose action fixes the point x along with its neighborhood (the neighborhood
may depend on g). The neighborhood stabilizer Sto

A(x) is a normal subgroup of
StA(x).

Let A : G × M1 → M1 and B : G × M2 → M2 be actions of a group G
on sets M1 and M2, respectively. The actions A and B are conjugated if there
exists a bijection f : M1 → M2 such that Bg = fAgf

−1 for all g ∈ G. An
equivalent condition is that A(g, x) = B(g, f(x)) for all g ∈ G and x ∈ M1.
The bijection f is called a conjugacy of the action A with B. Two continuous
actions of the same group are continuously conjugated if they are conjugated
and, moreover, the conjugacy can be chosen to be a homeomorphism. Similarly,
two measurable actions are measurably conjugated if they are conjugated and,
moreover, the conjugacy f can be chosen so that both f and the inverse f−1

are measurable. Also, two measure-preserving actions are isomorphic if they are
conjugated and, moreover, the conjugacy can be chosen to be an isomorphism
of spaces with measure. The measure-preserving actions are isomorphic modulo
zero measure if each action admits an invariant set of full measure such that the
corresponding restrictions are isomorphic.

Given two actions A : G×M1 →M1 and B : G×M2 →M2 of a group G, the
action A is an extension of B if there exists a mapping f of M1 onto M2 such that
Bgf = fAg for all g ∈ G. The extension is k-to-1 if f is k-to-1. The extension is
continuous if the actions A and B are continuous and f can be chosen continuous.

4 The Schreier graphs

Let G be a finitely generated group. Let us fix a finite symmetric generating
set S for G. Given an action A of the group G on a set M , the Schreier graph
ΓSch(G,S;A) of the action relative to the generating set S is a directed graph
with labeled edges. The vertex set of the graph ΓSch(G,S;A) is M , the set of
edges is M × S, and the set of labels is S. For any x ∈ M and s ∈ S the edge
(x, s) has beginning x, end As(x), and carries label s. Clearly, the action A can
be uniquely recovered from its Schreier graph. Given another action A′ of G on
some set M ′, the Schreier graph ΓSch(G,S;A′) is isomorphic to ΓSch(G,S;A) if
and only if the actions A and A′ are conjugated. Indeed, a bijection f : M →M ′

is an isomorphism of the Schreier graphs if and only if A′
s = fAsf

−1 for all s ∈ S,
which is equivalent to f being a conjugacy of the action A with A′.

Any graph of the form ΓSch(G,S;A) is called a Schreier graph of the group G
(relative to the generating set S). Notice that any graph isomorphic to a Schreier
graph is also a Schreier graph up to renaming edges. This follows from the next
proposition, which explains how to recognize a Schreier graph of G.
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Proposition 4.1 A directed graph Γ with labeled edges is, up to renaming edges,
a Schreier graph of the group G relative to the generating set S if and only if the
following conditions are satisfied:

(i) all labels are in S;

(ii) for any vertex v and any generator s ∈ S there exists a unique edge with
beginning v and label s;

(iii) given a directed path with code word s1s2 . . . sk, the path is closed whenever
the reversed code word sk . . . s2s1 equals 1G when regarded as a product in
G.

Proof. First suppose Γ is a Schreier graph ΓSch(G,S;A). Consider an arbi-
trary directed path in the graph Γ. Let v be the beginning of the path and
s1s2 . . . sk be its code word. Then the consecutive vertices of the path are v0 =
v, v1, . . . , vk, where vi = Asi

(vi−1) for 1 ≤ i ≤ k. Hence the end of the path is
Ask

. . . As2
As1

(v) = Ag(v), where g denotes sk . . . s2s1 regarded as a product in G.
Clearly, the path is closed whenever g = 1G. Thus any Schreier graph of the group
G satisfies the condition (iii). The conditions (i) and (ii) are trivially satisfied as
well. It is easy to see that the conditions (i), (ii), and (iii) are preserved under
isomorphisms of graphs. In particular, they hold for any graph that coincides
with a Schreier graph up to renaming edges.

Now suppose Γ is a directed graph with labeled edges that satisfies the con-
ditions (i), (ii), and (iii). Let M denote the vertex set of Γ. Given a word
w = s1s2 . . . sk over the alphabet S, we define a transformation Bw : M → M as
follows. The condition (ii) implies that for any vertex v ∈ M there is a unique
directed path in Γ with beginning v and code word sk . . . s2s1 (the word w re-
versed). We set Bw(v) to be the end of that path. For any words w = s1s2 . . . sk

and w′ = s′1s
′
2 . . . s

′
m over the alphabet S let ww′ denote the concatenated word

s1s2 . . . sks
′
1s

′
2 . . . s

′
m. Then Bww′(v) = Bw(Bw′(v)) for all v ∈ M . Any word over

the alphabet S can be regarded as a product in the group G thus representing an
element g ∈ G. Clearly, the concatenation of words corresponds to the multiplica-
tion in the group. The condition (iii) means that Bw is the identity transformation
whenever the word w represents the unity 1G. This implies that transformations
Bw and Bw′ are the same if the words w and w′ represent the same element
g ∈ G. Indeed, let w = s1s2 . . . sk, w

′ = s′1s
′
2 . . . s

′
m and consider the third word

z = s−1
k . . . s−1

2 s−1
1 . The word z represents the inverse g−1. Therefore the words wz

and zw′ both represent the unity. Then Bw = BwBzw′ = Bwzw′ = BwzBw′ = Bw′ .
Now for any g ∈ G we let Ag = Bw, where w is an arbitrary word over the al-
phabet S representing g. By the above Ag is a well-defined transformation of M ,
A1G

is the identity transformation, and Agg′ = AgAg′ for all g, g′ ∈ G. Hence the
transformations Ag, g ∈ G constitute an action A of the group G on the vertex
set M . By construction, for any v ∈ M and s ∈ S the vertex As(v) is the end
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of the edge with beginning v and label s. In view of the conditions (i) and (ii),
this means that the graph Γ coincides with the Schreier graph ΓSch(G,S;A) up
to renaming edges.

For any x ∈M let ΓSch(G,S;A, x) denote the Schreier graph of the restriction
of the action A to the orbit of x. We refer to ΓSch(G,S;A, x) as the Schreier
graph of the orbit of x. It is easy to observe that ΓSch(G,S;A, x) is the connected
component of the graph ΓSch(G,S;A) containing the vertex x. In particular, the
Schreier graph of the action A is connected if and only if the action is transitive,
in which case ΓSch(G,S;A, x) = ΓSch(G,S;A) for all x ∈ M . Let Γ∗

Sch(G,S;A, x)
denote a marked graph obtained from ΓSch(G,S;A, x) by marking the vertex x.
We refer to it as the marked Schreier graph of the point x (under the action A).
Notice that the point x and the restriction of the action A to its orbit are uniquely
recovered from the graph Γ∗

Sch(G,S;A, x). Any graph of the form Γ∗
Sch(G,S;A, x)

is called a marked Schreier graph of the group G (relative to the generating set
S).

Let Sch(G,S) denote the set of isomorphism classes of all marked Schreier
graphs of the groupG relative to the generating set S. A graph Γ ∈ MG belongs to
Sch(G,S) if it is a marked directed graph that is connected and satisfies conditions
(i), (ii), (iii) of Proposition 4.1.

The group G acts naturally on the set of the marked Schreier graphs of G by
changing the marked vertex. The action A is given by Ag

(

Γ∗
Sch(G,S;A, x)

)

=
Γ∗

Sch(G,S;A,Ag(x)), g ∈ G. It turns out that A is well defined as an action on
Sch(G,S). Indeed, let Γ∗

Sch(G,S;B, y) be a marked Schreier graph isomorphic to
Γ∗

Sch(G,S;A, x). Then any isomorphism f of the latter graph with the former one
is simultaneously a conjugacy of the restriction of the action A to the orbit of x
with the restriction of the action B to the orbit of y. Since f(x) = y, it follows
that f(Ag(x)) = Bg(y) for all g ∈ G. Hence for any g ∈ G the map f is also an
isomorphism of the graph Γ∗

Sch(G,S;A,Ag(x)) with Γ∗
Sch(G,S;B,Bg(y)).

Proposition 4.2 Sch(G,S) is a compact subset of the metric space MG0. The
action of the group G (regarded as a discrete group) on Sch(G,S) is continuous.

Proof. Let N be the number of elements in the generating set S. Then every
vertex v of a graph Γ ∈ Sch(G,S) is the beginning of exactly N edges. Further-
more, v is the end of an edge with beginning v′ and label s if and only if v′ is
the end of the edge with beginning v and label s−1. It follows that v is also the
end of exactly N edges. Hence any vertex of Γ is an endpoint for at most 2N
edges. Therefore Sch(G,S) ⊂ MG(2N,S). Since all marked Schreier graphs are
connected, we have Sch(G,S) ⊂ MG0(2N,S) ⊂ MG0.

Now let us show that the set Sch(G,S) is closed in the topological space MG0.
Take any graph Γ ∈ MG0 not in that set. Then Γ does not satisfy at least one
of the conditions (i), (ii), and (iii) in Proposition 4.1. First consider the case
when the condition (i) or (iii) does not hold. Since the graph Γ is locally finite,
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it has a finite subgraph Γ0 for which the same condition does not hold. Since Γ
is connected, we can choose the subgraph Γ0 to be marked and connected so that
Γ0 ∈ MG0. Clearly, the same condition does not hold for any graph Γ′ such that
Γ0 is a subgraph of Γ′. It follows that the neighborhood U(Γ0, ∅) of the graph Γ
is disjoint from Sch(G,S). Next consider the case when Γ does not satisfy the
condition (ii). Let v be the vertex of Γ such that for some generator s ∈ S there
are either several edges with beginning v and label s or no such edges at all.
Since Γ ∈ MG0, there exists a finite connected subgraph Γ0 of Γ that contains
the marked vertex, the vertex v, and all edges for which v is an endpoint. Then
Γ0 ∈ MG0 and the open set U(Γ0, {v}) is a neighborhood of Γ. By construction,
the condition (ii) fails in the entire neighborhood so that U(Γ0, {v}) is disjoint
from Sch(G,S). Thus the set MG0 \ Sch(G,S) is open in MG0. Therefore the
set Sch(G,S) is closed.

Since the closed set Sch(G,S) is contained in MG0(2N,S), which is a compact
set due to Proposition 2.4, the set Sch(G,S) is compact as well.

An action of the group G is continuous whenever the generators act continu-
ously. To prove that the transformations As, s ∈ S are continuous, we are going
to show that δ(As(Γ),As(Γ

′)) ≤ 2δ(Γ,Γ′) for any graphs Γ,Γ′ ∈ Sch(G,S) and
any generator s ∈ S. If the graphs Γ and Γ′ are isomorphic, then the graphs
As(Γ) and As(Γ

′) are also isomorphic so that δ(As(Γ),As(Γ
′)) = δ(Γ,Γ′) = 0.

Otherwise δ(Γ,Γ′) = 2−n for some nonnegative integer n. Since the distance be-
tween any graphs in MG0 never exceeds 1, it is enough to consider the case n ≥ 2.
Let v denote the marked vertex of Γ and v′ denote the marked vertex of Γ′. By
definition of the distance function, the closed balls BΓ(v, n− 1) and BΓ′(v′, n− 1)
are isomorphic. Consider an isomorphism f of these graphs. Clearly, f(v) = v′.
Let v1 denote the marked vertex of the graph As(Γ) and v′1 denote the marked
vertex of As(Γ

′). Then v1 is the end of the edge with beginning v and label s in
the graph Γ. Similarly, v′1 is the end of the edge with beginning v′ and label s in
Γ′. It follows that f(v1) = v′1. Since the vertex v1 is joined to v by an edge, the
closed ball BΓ(v1, n − 2) is a subgraph of BΓ(v, n − 1). Note that BΓ(v1, n − 2)
remains the closed ball with the same center and radius in the graph BΓ(v, n−1).
Similarly, BΓ′(v′1, n−2) is a subgraph of BΓ′(v, n−1) and it is also the closed ball
of radius n−2 centered at v′1 in the graph BΓ′(v, n−1). Since f(v1) = v′1 and any
isomorphism of graphs preserves distance between vertices, the restriction f0 of f
to the vertex set of BΓ(v1, n− 2) is an isomorphisms of the graphs BΓ(v1, n− 2)
and BΓ′(v′1, n−2). It remains to notice that the closed ball BAs(Γ)(v1, n−2) differs
from BΓ(v1, n−2) in that the marked vertex is v1 and, similarly, BAs(Γ′)(v

′
1, n−2)

differs from BΓ′(v′1, n − 2) in that the marked vertex is v′1. Therefore f0 is also
an isomorphism of BAs(Γ)(v1, n − 2) and BAs(Γ′)(v

′
1, n − 2). By definition of the

distance function, δ(As(Γ),As(Γ
′)) ≤ 2−(n−1) = 2δ(Γ,Γ′).

Let A be an action of the group G on a set M . To any point x ∈ M we
associate three subgroups of G: the stabilizer StA(x) of x, the stabilizer StA(Γ∗

x) of
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the marked Schreier graph Γ∗
x = Γ∗

Sch(G,S;A, x), and the neighborhood stabilizer
Sto

A(Γ∗
x) (if the action A is continuous then there is the fourth subgroup, the

neighborhood stabilizer of x). Clearly, the graph Γ∗
Ag(x) coincides with Γ∗

x if and

only if Ag(x) = x. However this does not imply that the stabilizer of the graph
is the same as the stabilizer of x. Since A is an action on isomorphism classes of
graphs, we have g ∈ StA(Γ∗

x) if and only if the graph Γ∗
Ag(x) is isomorphic to Γ∗

x.

Lemma 4.3 (i) StA(x) is a normal subgroup of StA
(

Γ∗
Sch(G,S;A, x)

)

.
(ii) The quotient of StA

(

Γ∗
Sch(G,S;A, x)

)

by StA(x) is isomorphic to the group
of all automorphisms of the unmarked graph ΓSch(G,S;A, x).

(iii) StA(x) is a subgroup of Sto
A

(

Γ∗
Sch(G,S;A, x)

)

.

Proof. Without loss of generality we can assume that the action A is transi-
tive. For brevity, let Γ∗ denote the marked graph Γ∗

Sch(G,S;A, x), Γ denote the
unmarked graph ΓSch(G,S;A, x), and R denote the group of all automorphisms
of Γ. Consider an arbitrary f ∈ R. For any vertex y ∈ OA(x) and any label
s ∈ S the unique edge of Γ with beginning y and label s has end As(y). It follows
that f(As(y)) = As(f(y)). Since the action A is transitive, the automorphism
f commutes with transformations As, s ∈ S. Then f commutes with Ag for all
g ∈ G. Notice that the automorphism f is uniquely determined by the vertex
f(x). Indeed, any vertex y of Γ is represented as Ag(x) for some g ∈ G, then
f(y) = f(Ag(x)) = Ag(f(x)). In particular, f is the identity if f(x) = x.

To prove the statements (i) and (ii), we are going to construct a homomor-
phism Ψ of the stabilizer StA(Γ∗) onto the group R with kernel StA(x). An element
g ∈ G belongs to StA(Γ∗) if the graph Γ∗ is isomorphic to Γ∗

Sch(G,S;A,Ag(x)).
An isomorphism of these marked graphs is an automorphism of the unmarked
graph Γ that sends x to Ag(x). Hence g ∈ StA(Γ∗) if and only if Ag(x) = ψg(x)
for some ψg ∈ R. By the above the automorphism ψg is uniquely determined
by Ag(x). Now we define a mapping Ψ : StA(Γ∗) → R by Ψ(g) = ψg−1 . It
is easy to observe that Ψ maps StA(Γ∗) onto R and the preimage of the iden-
tity under Ψ is StA(x). Further, for any g, h ∈ StA(Γ∗) we have ψ(gh)−1(x) =
A−1

gh (x) = A−1
h (A−1

g (x)) = A−1
h (ψg−1(x)). Recall that the automorphism ψg−1 com-

mutes with the action A, in particular, A−1
h ψg−1 = ψg−1A−1

h . Then ψ(gh)−1(x) =
ψg−1(A−1

h (x)) = ψg−1(ψh−1(x)), which implies that Ψ(gh) = Ψ(g)Ψ(h). Thus Ψ is
a homomorphism.

We proceed to the statement (iii). Take any element g ∈ StA(x). It can be
represented as a product s1s2 . . . sk, where each si is in S. Let γ denote the unique
directed path in Γ∗ with beginning x and code word sk . . . s2s1. By construction,
the end of the path γ is Ag(x) so that the path is closed. Let Γ∗

0 denote the
subgraph of Γ∗ whose vertex set consists of all vertices of the path γ. Clearly,
Γ∗

0 is a marked graph, finite and connected. Hence Γ∗
0 ∈ MG0. Any graph

Γ∗
1 ∈ U(Γ∗

0, ∅) admits a closed directed path with beginning at the marked point
and code word sk . . . s2s1. If Γ∗

1 = Γ∗
Sch(G,S;B, y), this implies that Bg(y) = y.
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Hence g ∈ StB(y) ⊂ StA
(

Γ∗
Sch(G,S;B, y)

)

. Thus the transformation Ag fixes
the set U(Γ∗

0, ∅) ∩ Sch(G,S), which is an open neighborhood of the graph Γ∗ in
Sch(G,S).

Any group G acts naturally on itself by left multiplication. The action adjG :
G × G → G, called adjoint, is given by adjG(g0, g) = g0g. The Schreier graph
of this action relative to any generating set S is the Cayley graph of the group
G relative to S. Given a subgroup H of G, the adjoint action of the group G
descends to an action on G/H. The action adjG,H : G × G/H → G/H is given
by adjG,H(g0, gH) = (g0g)H. The Schreier graph of the latter action relative to a
generating set S is denoted Γcoset(G,S;H). It is called a Schreier coset graph. The
marked Schreier coset graph Γ∗

coset(G,S;H) is the marked Schreier graph of the
coset H under the action adjG,H . It is obtained from Γcoset(G,S;H) by marking
the vertex H.

Proposition 4.4 A marked Schreier graph Γ∗
Sch(G,S;A, x) is isomorphic to a

marked Schreier coset graph Γ∗
coset(G,S;H) if and only if H = StA(x).

Proof. Let H0 denote the stabilizer StA(x). Suppose Ag1
(x) = Ag2

(x) for some
g1, g2 ∈ G. Then Ag−1

2
g1

(x) = A−1
g2

(Ag1
(x)) = x so that g−1

2 g1 ∈ H0. Hence

g−1
2 g1H0 = H0 and g1H0 = g2H0. Conversely, if g1H0 = g2H0 then g1 = g2h for

some h ∈ H0. It follows that Ag1
(x) = Ag2

(Ah(x)) = Ag2
(x).

Let us define a mapping f : G/H0 → OA(x) by f(gH0) = Ag(x). By the
above f is well defined and one-to-one. Clearly, it maps G/H0 onto the entire
orbit OA(x). For any g0, g ∈ G we have f(g0gH0) = Ag0g(x) = Ag0

(Ag(x)) =
Ag0

(f(gH0)). Therefore f is a conjugacy of the action adjG,H0
with the restric-

tion of the action A to the orbit OA(x). It follows that f is also an isomorphism
of the unmarked graphs Γcoset(G,S;H0) and ΓSch(G,S;A, x). As f(H0) = x,
the mapping f is an isomorphism of the marked graphs Γ∗

coset(G,S;H0) and
Γ∗

Sch(G,S;A, x) as well.
Since any isomorphism of Schreier graphs of the group G is also a conjugacy

of the corresponding actions, it preserves stabilizers of vertices. In particular,
marked Schreier graphs cannot be isomorphic if the stabilizers of their marked
vertices do not coincide. For any subgroup H of G the stabilizer of the coset H
under the action adjG,H is H itself. Therefore the graph Γ∗

coset(G,S;H) is not
isomorphic to Γ∗

Sch(G,S;A, x) if H 6= StA(x).

5 Space of subgroups

Let G be a discrete countable group. Denote by Sub(G) the set of all subgroups
of G. We endow the set Sub(G) with a topology as follows. First we consider the
product topology on {0, 1}G. The set {0, 1}G is in a one-to-one correspondence
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with the set of all functions f : G→ {0, 1}. Also, any subsetH ⊂ G (in particular,
any subgroup) is assigned the indicator function χH : G→ {0, 1} defined by

χH(g) =

{

1 if g ∈ H,

0 if g /∈ H.

This gives rise to a mapping j : Sub(G) → {0, 1}G, which is an embedding. Now
the topology on Sub(G) is the smallest topology such that the embedding j is
continuous. By definition, the base of this topology consists of sets of the form

UG(S+, S−) = {H ∈ Sub(G) | S+ ⊂ H and S− ∩H = ∅},

where S+ and S− run independently over all finite subsets of G. Notice that
UG(S+

1 , S
−
1 ) ∩ UG(S+

2 , S
−
2 ) = UG(S+

1 ∪ S+
2 , S

−
1 ∪ S−

2 ).
The topological space Sub(G) is ultrametric and compact (since {0, 1}G is ul-

trametric and compact, and j(Sub(G)) is closed in {0, 1}G). Suppose g1, g2, g3, . . .
is a complete list of elements of the group G. For any subgroups H1, H2 ⊂ G let
d(H1, H2) = 0 if H1 = H2; otherwise let d(H1, H2) = 2−n, where n is the smallest
index such that gn belongs to the symmetric difference of H1 and H2. Then d is
a distance function on Sub(G) compatible with the topology.

Note that the above construction also applies to a finite group G, in which
case Sub(G) is a finite set with the discrete topology.

The following three lemmas explore properties of the topological space Sub(G).

Lemma 5.1 The intersection of subgroups is a continuous operation on the space
Sub(G).

Proof. We have to show that the mapping I : Sub(G) × Sub(G) → Sub(G)
defined by I(H1, H2) = H1 ∩H2 is continuous. Take any finite sets S+, S− ⊂ G.
Given subgroups H1, H2 ⊂ G, the intersection H1 ∩ H2 is an element of the set
UG(S+, S−) if and only if H1 ∈ UG(S+, S1) and H2 ∈ UG(S+, S2) for some sets S1

and S2 such that S1 ∪ S2 = S−. Clearly, the sets S1 and S2 are finite. It follows
that

I−1
(

UG(S+, S−)
)

=
⋃

S1,S2 : S1∪S2=S−

UG(S+, S1) × UG(S+, S2).

It remains to notice that any open subset of Sub(G) is a union of sets of the
form UG(S+, S−) while any set of the form UG(S+, S1) × UG(S+, S2) is open in
Sub(G) × Sub(G).

Lemma 5.2 For any subgroups H1 and H2 of the group G, let H1∨H2 denote the
subgroup generated by all elements of H1 and H2. Then ∨ is a Borel measurable
operation on Sub(G).
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Proof. We have to show that the mapping J : Sub(G) × Sub(G) → Sub(G)
defined by J(H1, H2) = H1∨H2 is Borel measurable. Take any g ∈ G and consider
arbitrary subgroups H1, H2 ∈ Sub(G) such that J(H1, H2) ∈ UG({g}, ∅), i.e.,
H1∨H2 contains g. The element g can be represented as a product g = h1h2 . . . hk,
where each hi belongs to H1 or H2. Let S1 denote the set of all elements of
H1 in the sequence h1, h2, . . . , hk and S2 denote the set of all elements of H2 in
the same sequence. Then the element g belongs to K1 ∨ K2 for any subgroups
K1 ∈ UG(S1, ∅) and K2 ∈ UG(S2, ∅). Hence the pair (H1, H2) is contained in the
preimage of UG({g}, ∅) under the mapping J along with its open neighborhood
UG(S1, ∅) × UG(S2, ∅). Thus the preimage J−1

(

UG({g}, ∅)
)

is an open set. Since
the set UG(∅, {g}) is the complement of UG({g}, ∅), its preimage under J is closed.

Given finite sets S+, S− ⊂ G, the set UG(S+, S−) is the intersection of sets
UG({g}, ∅), g ∈ S+ and UG(∅, {h}), h ∈ S−. By the above J−1

(

UG(S+, S−)
)

is
a Borel set, the intersection of an open set with a closed one. Finally, any open
subset of Sub(G) is the union of some sets UG(S+, S−). Moreover, it is a finite or
countable union since there are only countably many sets of the form UG(S+, S−).
It follows that the preimage under J of any open set is a Borel set.

Lemma 5.3 Suppose H is a subgroup of G. Then Sub(H) is a closed subset of
Sub(G). Moreover, the intrinsic topology on Sub(H) coincides with the topology
induced by Sub(G).

Proof. The intrinsic topology on Sub(H) is generated by all sets of the form
UH(P+, P−), where P+ and P− are finite subsets of H. The topology induced
by Sub(G) is generated by all sets of the form UG(S+, S−) ∩ Sub(H), where S+

and S− are finite subsets of G. Clearly, UG(S+, S−)∩ Sub(H) = UH(S+, S− ∩H)
if S+ ⊂ H and UG(S+, S−) ∩ Sub(H) = ∅ otherwise. It follows that the two
topologies coincide.

For any g ∈ G the open set UG(∅, {g}) is also closed in Sub(G) as it is the
complement of another open set UG({g}, ∅). Then the set Sub(H) is closed in
Sub(G) since it is the intersection of closed sets UG(∅, {g}) over all g ∈ G\H.

Let A be an action of the group G on a set M . Let us consider the stabilizer
StA(x) of a point x ∈M under the action (see Section 3) as the value of a mapping
StA : M → Sub(G).

Lemma 5.4 Suppose A is a continuous action of the group G on a Hausdorff
topological space M . Then

(i) the mapping StA is Borel measurable;

(ii) StA is continuous at a point x ∈ M if and only if the stabilizer of x under
the action coincides with its neighborhood stabilizer: Sto

A(x) = StA(x);
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(iii) if a sequence of points in M converges to the point x and the sequence of
their stabilizers converges to a subgroup H, then Sto

A(x) ⊂ H ⊂ StA(x).

Proof. For any g ∈ G let FixA(g) denote the set of all points in M fixed by
the transformation Ag. Let us show that FixA(g) is a closed set. Take any point
x ∈ M not in FixA(g). Since the points x and Ag(x) are distinct, they have
disjoint open neighborhoods X and Y , respectively. Since Ag is continuous, there
exists an open neighborhood Z of x such that Ag(Z) ⊂ Y . Then X ∩Z is an open
neighborhood of x and Ag(X ∩Z) is disjoint from X ∩Z. In particular, X ∩Z is
disjoint from FixA(g).

For any finite sets S+, S− ⊂ G the preimage of the open set UG(S+, S−) under
the mapping StA is

⋂

g∈S+

FixA(g) \
⋃

h∈S−

FixA(h).

This is a Borel set as FixA(g) is closed for any g ∈ G. Since sets of the form
Ug(S

+, S−) constitute a base of the topology on Sub(G), the mapping StA is
Borel measurable.

The mapping StA is continuous at a point x ∈M if and only if x is an interior
point in the preimage under StA of any set UG(S+, S−) containing StA(x). The
latter holds true if and only if x is an interior point in any set FixA(g) containing
this point. Clearly, x is an interior point of FixA(g) if and only if g belongs to
the neighborhood stabilizer Sto

A(x). Thus StA is continuous at x if and only if any
element of StA(x) belongs to Sto

A(x) as well.
Now suppose that a sequence x1, x2, . . . of points in M converges to the point

x and, moreover, the stabilizers StA(x1), StA(x2), . . . converge to a subgroup H.
Consider an arbitrary g ∈ G. In the case g ∈ H, the subgroup H belongs to the
open set UG({g}, ∅). Since StA(xn) → H as n→ ∞, we have StA(xn) ∈ UG({g}, ∅)
for large n. In other words, xn ∈ FixA(g) for large n. Since the set FixA(g) is
closed, it contains the limit point x as well. That is, g ∈ StA(x). In the case g /∈ H,
the subgroup H belongs to the open set UG(∅, {g}). Then StA(xn) ∈ UG(∅, {g})
for large n. In other words, xn /∈ FixA(g) for large n. Since xn → x as n → ∞,
the action of g fixes no neighborhood of x. That is, g /∈ Sto

A(x).

The group G acts naturally on the set Sub(G) by conjugation. The action
C : G×Sub(G) → Sub(G) is given by C(g,H) = gHg−1. This action is continuous.
Indeed, one easily observes that C−1

g

(

UG(S1, S2)
)

= UG(g−1S1g, g
−1S2g) for all

g ∈ G and finite sets S1, S2 ⊂ G.

Proposition 5.5 The action C of the group G on Sub(G) is continuously conju-
gated to the action A on the space Sch(G,S) of the marked Schreier graphs of G
relative to a generating set S. Moreover, the mapping f : Sub(G) → Sch(G,S)
given by f(H) = Γ∗

coset(G,S;H) is a continuous conjugacy.
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Proof. Proposition 4.4 implies that the mapping f is bijective.
Consider arbitrary element g and subgroup H of the group G. The stabilizer

of the coset gH under the action adjG,H consists of those g0 ∈ G for which g0gH =
gH. The latter condition is equivalent to g−1g0g ∈ H. Therefore the stabilizer is
gHg−1 = Cg(H). As Ag

(

Γ∗
coset(G,S;H)

)

= Γ∗
Sch(G,S; adjG,H , gH), it follows from

Proposition 4.4 that Ag(f(H)) = f(Cg(H)). Thus f conjugates the action C with
A.

Now we are going to show that for any finite sets S+, S− ⊂ G the image
of the open set UG(S+, S−) under the mapping f is open in Sch(G,S). Let
Γ∗

Sch(G,S;A, x) be an arbitrary graph in that image. Any element g ∈ G can
be represented as a product s1s2 . . . sk, where si ∈ S. Let us fix such a representa-
tion and denote by γg the unique directed path in Γ∗

Sch(G,S;A, x) with beginning
x and code word sk . . . s2s1. Then the end of the path γg is Ag(x). In particular,
the path γg is closed if and only if g ∈ StA(x). By Proposition 4.4, the preimage
of the graph Γ∗

Sch(G,S;A, x) under f is StA(x). Since StA(x) ∈ UG(S+, S−), the
path γg is closed for g ∈ S+ and not closed for g ∈ S−. Let Γ0 denote the smallest
subgraph of Γ∗

Sch(G,S;A, x) containing all paths γg, g ∈ S+ ∪ S−. Clearly, Γ0

is a marked graph, finite and connected. Hence Γ0 ∈ MG0. For any marked
Schreier graph Γ∗

Sch(G,S;B, y) in U(Γ0, ∅), the directed path with beginning y
and the same code word as in γg is closed for all g ∈ S+ and not closed for all
g ∈ S−. It follows that StB(y) ∈ UG(S+, S−). Therefore the graph Γ∗

Sch(G,S;A, x)
is contained in f(UG(S+, S−)) along with its neighborhood U(Γ0, ∅) ∩ Sch(G,S).

Any open set in Sub(G) is the union of some sets UG(S+, S−). Hence it follows
from the above that the mapping f maps open sets onto open sets. In other words,
the inverse mapping f−1 is continuous. Since the topological spaces Sub(G) and
Sch(G,S) are compact, f is continuous as well.

Proposition 5.5 allows for a short (although not constructive) proof of the
following statement.

Proposition 5.6 Any subgroup of finite index of a finitely generated group is also
finitely generated.

Proof. Suppose G is a finitely generated group and H is a subgroup of G of
finite index. Let S be a finite symmetric generating set for G. By Proposition 5.5,
the space Sub(G) of subgroups of G is homeomorphic to the space Sch(G,S) of
marked Schreier graphs of G relative to the generating set S. Moreover, there is
a homeomorphism that maps the subgroup H to the marked Schreier coset graph
Γ∗

coset(G,S;H). The vertices of the graph are cosets of H in G. Since H has finite
index in G, the graph Γ∗

coset(G,S;H) is finite. Notice that any finite graph in the
topological space MG0, which contains Sch(G,S), is an isolated point. It follows
that H is an isolated point in Sub(G). Then there exist finite sets S+, S− ⊂ G
such that H is the only element of the open set UG(S+, S−). Let H0 be the
subgroup of G generated by the finite set S+. Since S+ ⊂ H and S−∩H = ∅, the
subgroup H0 is disjoint from S−. Thus H0 ∈ UG(S+, S−) so that H0 = H.
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6 Automorphisms of regular rooted trees

Consider an arbitrary graph Γ. Let γ be a path in this graph, v0, v1, . . . , vm be
consecutive vertices of γ, and e1, . . . , em be consecutive edges. A backtracking in
the path γ occurs if ei+1 = ei for some i (then vi+1 = vi−1). The graph Γ is called
a tree if it is connected and admits no closed path of positive length without
backtracking. In particular, this means no loops and no multiple edges. A rooted
tree is a tree with a distinguished vertex called the root. Clearly, the root is a
synonym for the marked vertex. For any integer n ≥ 0 the level n (or the nth
level) of the tree is defined as the set of vertices at distance n from the root. If
n ≥ 1 then any vertex on the nth level is joined to exactly one vertex on the
level n − 1 and, optionally, to some vertices on the level n + 1. The rooted tree
is called k-regular if every vertex on any level n is joined to exactly k vertices on
level n+ 1. The 2-regular rooted tree is also called binary.

All k-regular rooted trees are isomorphic to each other. A standard model
of such a tree is built as follows. Let X be a set of cardinality k referred to
as the alphabet (usually X = {0, 1, . . . , k − 1}). A word (or finite word) in the
alphabet X is a finite string of elements from X (referred to as letters). The set
of all words in the alphabet X is denoted X∗. X∗ is a monoid with respect to
the concatenation (the unit element is the empty word, denoted ∅). Moreover, it
is the free monoid generated by elements of X. Now we define a plain graph T
with the vertex set X∗ in which two vertices w1 and w2 are joined by an edge if
w1 = w2x or w2 = w1x for some x ∈ X. Then T is a k-regular rooted tree with
the root ∅. The nth level of the tree T consists of all words of length n.

A bijection f : X∗ → X∗ is an automorphism of the rooted tree T if and only
if it preserves the length of any word and the length of the common beginning
of any two words. Given an automorphism f and a word u ∈ X∗, there exists a
unique transformation h : X∗ → X∗ such that f(uw) = f(u)h(w) for all w ∈ X∗.
It is easy to see that h is also an automorphism of the tree T . This automorphism
is called the section of f at the word u and denoted f |u. A set of automorphisms
of the tree T is called self-similar if it is closed under taking sections. For any
automorphisms f and h and any word u ∈ X∗ one has (fh)|u = f |h(u)h|u and

f−1|u =
(

f |f−1(u)

)−1
. It follows that any group of automorphisms generated by a

self-similar set is itself self-similar.
Suppose G is a group of automorphisms of the tree T . Let α denote the

natural action of G on the vertex set X∗. Given a word u ∈ X∗, the section
mapping g 7→ g|u is a homomorphism when restricted to the stabilizer Stα(u). If
G is self-similar then this is a homomorphism to G. The self-similar group G is
called self-replicating if for any u ∈ X∗ the mapping g 7→ g|u maps the subgroup
Stα(u) onto the entire group G.

Suppose that letters of the alphabet X are canonically ordered: x1, x2, . . . , xk.
For any permutation π on X and automorphisms h1, h2, . . . , hk of the tree T we
denote by π(h1, h2, . . . , hk) a transformation f : X∗ → X∗ given by f(xiw) =
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π(xi)hi(w) for all w ∈ X∗ and 1 ≤ i ≤ k. It is easy to observe that f is also an
automorphism of T and hi = f |xi

for 1 ≤ i ≤ k. The expression π(h1, h2, . . . , hk)
is called the wreath recursion for f . Any self-similar set of automorphisms fj,
j ∈ J satisfies a system of “self-similar” wreath recursions

fj = πj(fm(j,x1), fm(j,x2), . . . , fm(j,xk)), j ∈ J,

where πj, j ∈ J are permutations on X and m maps J ×X to J .

Lemma 6.1 Any system of self-similar wreath recursions over the alphabet X is
satisfied by a unique self-similar set of automorphisms of the regular rooted tree
T .

Proof. Consider a system of wreath recursions fj = πj(fm(j,x1), . . . , fm(j,xk)),
j ∈ J , where πj, j ∈ J are permutations on X and m is a mapping of J ×X to
J . We define transformations Fj, j ∈ J of the set X∗ inductively as follows. First
Fj(∅) = ∅ for all j ∈ J . Then, once the transformations are defined on words
of a particular length n ≥ 0, we let Fj(xiw) = πj(xi)Fm(j,xi)(w) for all j ∈ J ,
1 ≤ i ≤ k, and words w of length n. By definition, each Fj preserves the length
of words. Besides, it follows by induction on n that Fj is bijective when restricted
to words of length n and that Fj preserves having a common beginning of length
n for any two words. Therefore each Fj is an automorphism of the tree T . By
construction, the automorphisms Fj, j ∈ J form a self-similar set satisfying the
above system of wreath recursions. Moreover, they provide the only solution to
that system.

An infinite path in the tree T is an infinite sequence of vertices v0, v1, v2, . . .
together with a sequence of edges e1, e2 . . . such that the endpoints of any ei

are vi−1 and vi. The vertex v0 is the beginning of the path. Clearly, the path is
uniquely determined by the sequence of vertices alone. The boundary of the rooted
tree T , denoted ∂T , is the set of all infinite paths without backtracking that begin
at the root. There is a natural one-to-one correspondence between ∂T and the
set XN of infinite words over the alphabet X. Namely, an infinite word x1x2x3 . . .
corresponds to the path going through the vertices ∅, x1, x1x2, x1x2x3, . . . . The
set XN is equipped with the product topology and the uniform Bernoulli measure.
This allows us to regard the tree boundary ∂T as a compact topological space
with a Borel probability measure (called uniform).

Suppose G is a group of automorphisms of the regular rooted tree T . The
natural action of G on the vertex set X∗ gives rise to an action on the boundary
∂T . The latter is continuous and preserves the uniform measure on ∂T .

Proposition 6.2 ([3]) Let G be a countable group of automorphisms of a regular
rooted tree T . Then the following conditions are equivalent:

(i) the group G acts transitively on each level of the tree;
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(ii) the action of G on the boundary ∂T of the tree is topologically transitive;

(iii) the action of G on ∂T is minimal;

(iv) the action of G on ∂T is ergodic with respect to the uniform measure;

(v) the action of G on ∂T is uniquely ergodic.

Let G be a countable group of automorphisms of a regular rooted tree T . Let
α denote the natural action of G on the vertex set of the tree T and β denote the
induced action of G on the boundary ∂T of the tree.

Proposition 6.3 The mapping Stβ is continuous on a residual (dense Gδ) set.

Proof. For any g ∈ G let Fixβ(g) denote the set of all points in ∂T fixed by
the transformation βg. If g ∈ Stβ(ξ) but g /∈ Sto

β(ξ), then ξ is a boundary point
of the set Fixβ(g), and vice versa. Since Fixβ(g) is a closed set, its boundary is
a closed, nowhere dense set. It follows that the set of points ξ ∈ ∂T such that
Sto

β(ξ) = Stβ(ξ) is the intersection of countably many dense open sets (it is dense
since ∂T is a complete metric space). By Lemma 5.4, the latter set consists of
points at which the mapping Stβ is continuous.

The mapping Stβ is Borel due to Lemma 5.4. If Stβ is injective then, according
to the descriptive set theory, it also maps Borel sets onto Borel sets (see, e.g., [4]).
The following two lemmas show the same can hold under a little weaker condition.

Lemma 6.4 Assume that for any points ξ, η ∈ ∂T either Stβ(ξ) = Stβ(η) or
Stβ(ξ) is not contained in Stβ(η). Then the mapping Stβ maps any open set, any
closed set, and any intersection of an open set with a closed one onto Borel sets.

Proof. First let us show that Stβ maps any closed subset C of the boundary ∂T
onto a Borel subset of Sub(G). For any positive integer n let Cn denote the set
of all words of length n in the alphabet X that are beginnings of infinite words
in C. Further, let Wn be the union of sets Sub(Stα(w)) over all words w ∈ Cn.
Finally, let W be the intersection of the sets Wn over all n ≥ 1. By Lemma 5.3,
the set Sub(H) is closed in Sub(G) for any subgroup H ∈ Sub(G). Hence each
Wn is closed as the union of finitely many closed sets. Then the intersection W is
closed as well.

The stabilizer Stβ(ξ) of an infinite word ξ ∈ ∂T is a subgroup of the stabilizer
Stα(w) of a finite word w ∈ X∗ whenever w is a beginning of ξ. It follows that
Stβ(ξ) ∈ W for all ξ ∈ C. By construction of the set W , any subgroup of an
element of W is also an element of W . Hence W contains all subgroups of the
groups Stβ(ξ), ξ ∈ C.

Conversely, for any subgroup H ∈ W there is a sequence of words w1, w2, . . .
such that wn ∈ Cn and H ⊂ Stα(wn) for n = 1, 2, . . . . Since the number of words
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of a fixed length is finite, one can find nested infinite sets of indices I1 ⊃ I2 ⊃ . . .
such that the beginning of length k of the word wn is the same for all n ∈ Ik.
Choose an increasing sequence of indices n1, n2, . . . such that nk ∈ Ik for all k, and
let w′

k be the beginning of length k of the word wnk
. Then w′

k ∈ Ck as wnk
∈ Cnk

.
Besides, Stα(wnk

) ⊂ Stα(w′
k), in particular, the group H is a subgroup of Stα(w′

k).
By construction, the word w′

k is a beginning of w′
m whenever k < m. Therefore

all w′
k are beginnings of the same infinite word ξ′ ∈ ∂T . Since every beginning of

ξ′ coincides with a beginning of some infinite word in C and the set C is closed, it
follows that ξ′ ∈ C. The stabilizer Stβ(ξ′) is the intersection of stabilizers Stα(w′

k)
over all k ≥ 1. Hence H is a subgroup of Stβ(ξ′).

By the above a subgroup H of G belongs to the set W if and only if it is
a subgroup of the stabilizer Stβ(ξ) for some ξ ∈ C. The assumption of the
lemma implies that stabilizers Stβ(ξ), ξ ∈ C can be distinguished as the maximal
subgroups in the set W . That is, such a stabilizer is an element of W which
is not a proper subgroup of another element of W . For any g ∈ G we define a
transformation ψg of Sub(G) by ψg(H) = 〈g〉 ∨H, where 〈g〉 is a cyclic subgroup
of G generated by g. The group ψg(H) is generated by g and all elements of
the group H. Clearly, a subgroup H ∈ W is not maximal in W if and only if
ψg(H) ∈ W for some g /∈ H. An equivalent condition is that H belongs to the set
W ′

g = W ∩ ψ−1
g (W ) ∩ UG(∅, {g}). It follows from Lemma 5.2 that the mapping

ψg is Borel measurable. Therefore W ′
g is a Borel set. Now the image of the set

C under the mapping Stβ is the difference of the closed set W and the union of
Borel sets W ′

g, g ∈ G. Hence this image is a Borel set.
Any open setD ⊂ ∂T is the union of a finite or countable collection of cylinders

Z1, Z2, . . . , which are both open and closed sets. By the above each cylinder
is mapped by Stβ onto a Borel set in Sub(G). Then the union D is mapped
onto the union of images of the cylinders, which is a Borel set as well. Further,
for any closed set C ⊂ ∂T the intersection C ∩ D is the union of closed sets
C ∩ Z1, C ∩ Z2, . . . . Hence it is also mapped by Stβ onto a Borel set.

Lemma 6.5 Under the assumption of Lemma 6.4, if the mapping Stβ is finite-
to-one, i.e., the preimage of any subgroup in Sub(G) is finite, then it maps Borel
sets onto Borel sets.

Proof. Recall that the class B of the Borel sets in ∂T is the smallest collection
of subsets of ∂T that contains all closed sets and is closed under taking countable
intersections, countable unions, and complements. Let U denote the smallest
collection of subsets of ∂T that contains all closed sets and is closed under taking
countable intersections of nested sets and countable unions of any sets. Note that
U is well defined; it is the intersection of all collections satisfying these conditions.
In particular, U ⊂ B. Further, let W denote the collection of all Borel sets in ∂T
mapped onto Borel sets in Sub(G) by the mapping Stβ.
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For any mapping f : ∂T → Sub(G) and any sequence U1, U2, . . . of subsets
of ∂T the image of the union U1 ∪ U2 ∪ . . . under f is the union of images
f(U1), f(U2), . . . . On the other hand, the image of the intersection U1 ∩ U2 ∩ . . .
under f is contained in f(U1) ∩ f(U2) ∩ . . . but need not coincide with the latter
when the mapping f is not one-to-one. The two sets do coincide if f is finite-to-
one and U1 ⊃ U2 ⊃ . . . . Since the mapping Stβ is assumed to be finite-to-one,
it follows that the collection W is closed under taking countable intersections of
nested sets and countable unions of any sets. By Lemma 6.4, W contains all closed
sets. Therefore U ⊂ W.

To complete the proof, we are going to show that U = B, which will imply
that W = B. Given a set Y ∈ U, let UY denote the collection of all sets U ∈ U

such that the intersection U ∩ Y also belongs to U. For any sequence U1, U2, . . .
of elements of UY we have

(

⋃

n≥1
Un

)

∩ Y =
⋃

n≥1
(Un ∩ Y ),

(

⋂

n≥1
Un

)

∩ Y =
⋂

n≥1
(Un ∩ Y ).

Besides, the sets U1 ∩ Y, U2 ∩ Y, . . . are nested whenever the sets U1, U2, . . . are
nested. It follows that the class UY is closed under taking countable intersections
of nested sets and countable unions of any sets. Consequently, UY = U whenever
UY contains all closed sets. The latter condition obviously holds if the set Y is
itself closed. Notice that for any sets Y, Z ∈ U we have Z ∈ UY if and only if
Y ∈ UZ . Since UY = U for any closed set Y , it follows that UZ contains all closed
sets for any Z ∈ U. Then UZ = U for any Z ∈ U. In other words, the class
U is closed under taking finite intersections. Combining finite intersections with
countable intersections of nested sets, we can obtain any countable intersection
of sets from U. Namely, if U1, U2, . . . are arbitrary elements of U, then their
intersection coincides with the intersection of sets Yn = U1 ∩ U2 ∩ · · · ∩ Un, n =
1, 2, . . . , which are nested: Y1 ⊃ Y2 ⊃ . . . . Therefore U is closed under taking any
countable intersections.

Let U′ be the collection of complements in ∂T of all sets from U. For any
subsets U1, U2, . . . of ∂T the complement of their union is the intersection of their
complements ∂T \ U1, ∂T \ U2, . . . while the complement of their intersection is
the union of their complements. Since the class U is closed under taking countable
intersections and countable unions, so is U′. Further, any open subset of ∂T is the
union of at most countably many cylinders, which are closed (as well as open) sets.
Therefore U contains all open sets. Then U′ contains all closed sets. Now it follows
that U ⊂ U′. In other words, the class U is closed under taking complements.

Thus the collection U is closed under taking any countable intersections and
complements. This implies that U = B.

Let A be a continuous action of a countable group G on a compact metric
space M . Let Ω denote the image of M under the mapping StA.
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Lemma 6.6 Assume that for any distinct points x, y ∈ M the neighborhood sta-
bilizer Sto

A(x) is not contained in the stabilizer StA(y). Then the inverse of StA,
defined on the set Ω, can be extended to a continuous mapping of the closure of Ω
onto M .

Proof. Since Sto
A(x) is a subgroup of StA(x) for any x ∈ M , the assumption of

the lemma implies that the mapping StA is one-to-one so that the inverse is well
defined on Ω. To prove that the inverse can be extended to a continuous mapping
of the closure of Ω onto M , it is enough to show that any sequence x1, x2, . . . of
points inM is convergent whenever the sequence of stabilizers StA(x1), StA(x2), . . .
converges in Sub(G). Suppose that StA(xn) → H as n → ∞. Since M is a
compact metric space, the sequence x1, x2, . . . has at least one limit point. By
Lemma 5.4(iii), any limit point x satisfies Sto

A(x) ⊂ H ⊂ StA(x). In particular,
Sto

A(x) ⊂ StA(y) for any limit points x and y. Then x = y due to the assumption
of the lemma. It follows that the sequence x1, x2, . . . is convergent.

7 The Grigorchuk group

Let X = {0, 1} be the binary alphabet, X∗ be the set of finite words over X
regarded as the vertex set of a binary rooted tree T , and XN be the set of infinite
words over X regarded as the boundary ∂T of the tree T .

We define the Grigorchuk group G as a self-similar group of automorphisms
of the tree T (for alternative definitions, see [2]). The group is generated by
four automorphisms a, b, c, d that, together with the trivial automorphism, form
a self-similar set. Consider the following system of wreath recursions:























a = (0 1)(e, e),
b = (a, c),
c = (a, d),
d = (e, b),
e = (e, e).

By Lemma 6.1, this system uniquely defines a self-similar set of automorphisms
of the tree T . The automorphism e is clearly the identity (e.g., by Lemma 6.1).
It is the unity of the group G. We shall denote the unity by 1G to avoid confusion
with a letter of the alphabet X. The set S = {a, b, c, d} shall be considered the
standard set of generators for the group G.

All 4 generators of the Grigorchuk group are involutions. Indeed, the transfor-
mations a2, b2, c2, d2, 1G form a self-similar set satisfying wreath recursions a2 =
(1G, 1G), b2 = (a2, c2), c2 = (a2, d2), d2 = (1G, b

2), and 1G = (1G, 1G). Then Lemma
6.1 implies that a2 = b2 = c2 = d2 = 1G. This fact allows us to regard the Schreier
graphs of the group G relative to the generating set S as graphs with undirected
edges (as explained in Section 2).
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Since a2 = 1G, the automorphisms bcd, cdb, dbc, and 1G form a self-similar set
satisfying wreath recursions bcd = (1G, cdb), cdb = (1G, dbc), dbc = (1G, bcd), and
1G = (1G, 1G). Lemma 6.1 implies that bcd = cdb = dbc = 1G. Then bc = bcd2 =
d = d2bc = bc. It follows that {1G, b, c, d} is a subgroup of G isomorphic to the
Klein 4-group.

We denote by α the generic action of the group G on vertices of the binary
rooted tree T . The induced action on the boundary ∂T of the tree is denoted β.
For brevity, we write g(ξ) instead of βg(ξ). The action of the generator a is very
simple: it changes the first letter in every finite or infinite word while keeping the
other letters intact. In particular, the empty word is the only word fixed by a.
To describe the action of the other generators, we need three observations. First
of all, b, c, and d fix one-letter words. Secondly, any word beginning with 0 is
fixed by d while b and c change only the second letter in such a word. Thirdly,
the section mapping g 7→ g|1 induces a cyclic permutation on the set {b, c, d}. It
follows that a finite or infinite word w is simultaneouly fixed by b, c, and d if it
contains no zeros or the only zero is the last letter. Otherwise two of the three
generators change the letter following the first zero in w (keeping the other letters
intact) while the third generator fixes w. In the latter case, it is the position k of
the first zero in w that determines the generator fixing w. Namely, b(w) = w if
k ≡ 0 mod 3, c(w) = w if k ≡ 2 mod 3, and d(w) = w if k ≡ 1 mod 3.

Lemma 7.1 The group G is self-replicating.

Proof. We have to show that for any word w ∈ X∗ the section mapping g 7→ g|w
maps the stabilizer Stα(w) onto the entire group G. Let W be the set of all
words with this property. Clearly, ∅ ∈ W as Stα(∅) = G and g|∅ = g for all
g ∈ G. Suppose w1, w2 ∈ W . Given an arbitrary g ∈ G, there exists g′ ∈ G
such that g′(w2) = w2 and g′|w2

= g. Further, there exists g′′ ∈ G such that
g′′(w1) = w1 and g′′|w1

= g′. Then g′′(w1w2) = g′′(w1)g
′′|w1

(w2) = w1w2 and
g′′|w1w2

= (g′′|w1
)|w2

= g. Since g is arbitrary, w1w2 ∈ W . That is, the set W is
closed under concatenation.

Any automorphism of the tree T either interchanges the vertices 0 and 1 or fixes
them both. Hence the stabilizer Stα(0) coincides with Stα(1). This stabilizer con-
tains the elements b, c, d, aba, aca, ada. The wreath recursions for these elements
are b = (a, c), c = (a, d), d = (1G, b), aba = (c, a), aca = (d, a), ada = (b, 1G). It
follows that the images of the group Stα(0) under the section mappings g 7→ g|0
and g 7→ g|1 contain the generating set S. As the restrictions of these mappings
to Stα(0) are homomorphisms, both images coincide with G. Therefore the words
0 and 1 are in the set W . By the above W is closed under concatenation and
contains the empty word. This implies W = X∗.

The orbits of the actions α and β are very easy to describe.
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Lemma 7.2 The group G acts transitively on each level of the binary rooted tree
T . Any two infinite words in ∂T are in the same orbit of the action β if and only
if they differ in only finitely many letters.

Proof. For any infinite word ξ ∈ ∂T and any generator h ∈ {a, b, c, d} the infinite
word h(ξ) differs from ξ in at most one letter. Any g ∈ G can be represented as
a product g = h1h2 . . . hk, where each hi is in {a, b, c, d}. It follows that for any
ξ ∈ ∂T the infinite words g(ξ) and ξ differ in at most k letters. Thus any two
infinite words in the same orbit of the action β differ in only finitely many letters.

Now we are going to show that for any finite words w1, w2 ∈ X∗ of the same
length there exists g ∈ G such that g(w1) = w2 and g|w1

= 1G. Equivalently,
g(w1ξ) = w2ξ for all ξ ∈ ∂T . This will complete the proof of the lemma. Indeed,
the claim contains the statement that the group G acts transitively on each level
of the tree T . Moreover, it implies that two infinite words in ∂T are in the same
orbit of the action β whenever they differ in a finite number of letters.

We prove the claim by induction on the length n of the words w1 and w2. The
case n = 0 is trivial. Here w1 and w2 are the empty words so that we take g = 1G.
Now assume that the claim is true for all pairs of words of specific length n ≥ 0
and consider words w1 and w2 of length n + 1. Let x1 be the first letter of w1

and x2 be the first letter of w2. Then w1 = x1u1 and w2 = x2u2, where u1 and u2

are words of length n. By the inductive assumption, there exists h ∈ G such that
h(u1ξ) = u2ξ for all ξ ∈ ∂T . Since the group G is self-replicating, there exists
g0 ∈ G such that g0(x1η) = x1h(η) for all η ∈ ∂T . In particular, g0(x1u1ξ) = x1u2ξ
for all ξ ∈ ∂T . It remains to take g = g0 if x2 = x1 and g = ag0 otherwise. Then
g(x1u1ξ) = x2u2ξ for all ξ ∈ ∂T .

Lemma 7.3 Suppose w1 and w2 are words in the alphabet {0, 1} such that w1

is not a beginning of w2 while w2, even with the last two letters deleted, is not a
beginning of w1. Then there exists g ∈ G that does not fix w2 while fixing all words
with beginning w1.

Proof. First we consider a special case when w2 = 100. To satisfy the assumption
of the lemma, the word w1 has to begin with 0. Then we can take g = d. Indeed,
the transformation d fixes all words that begin with 0, which includes all words
with beginning w1. At the same time, d(100) = 1b(00) = 10a(0) = 101 6= 100.

Next we consider a slightly more general case when w2 is an arbitrary word
of length 3. By Lemma 7.2, the group G acts transitively on the third level of
the tree T . Therefore h(w2) = 100 for some h ∈ G. The words h(w1) and h(w2)
satisfy the assumption of the lemma since the words w1 and w2 do. By the above,
dh(w2) 6= h(w2) while d(h(w1)u) = h(w1)u for all u ∈ X∗. Let g = h−1dh. Then
g(w2) 6= w2 while g(w1w) = w1w for all w ∈ X∗.

Finally, consider the general case. Let w0 be the longest common beginning
of the words w1 and w2. Then w1 = w0u1 and w2 = w0u2, where the words u1
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and u2 also satisfy the assumption of the lemma. In particular, u1 is nonempty
and the length of u2 is at least 3. We have u2 = u′2u

′′
2, where u′2, u

′′
2 ∈ X∗ and the

length of u′2 is 3. Since the first letters of the words u1 and u′2 are distinct, these
words satisfy the assumption of the lemma. By the above there exists g0 ∈ G
such that g0(u

′
2) 6= u′2 and g0(u1u) = u1u for all u ∈ X∗. Since the group G is

self-replicating, there exists g ∈ G such that g(w0w) = w0g0(w) for all w ∈ X∗.
Then g does not fix the word w0u

′
2 while fixing all words with beginning w1. Since

w0u
′
2 is a beginning of w2, the transformation g does not fix w2 as well.

Lemma 7.4 For any distinct points ξ, η ∈ ∂T the neighborhood stabilizer Sto
β(ξ)

is not contained in Stβ(η).

Proof. Let n denote the length of the longest common beginning of the distinct
infinite words ξ and η. Let w1 be the beginning of ξ of length n+1 and w2 be the
beginning of η of length n+ 3. It is easy to see that the words w1 and w2 satisfy
the assumption of Lemma 7.3. Therefore there exists a transformation g ∈ G that
does not fix w2 while fixing all finite words with beginning w1. Clearly, the action
of g on ∂T fixes all infinite words with beginning w1. As such infinite words form
an open neighborhood of the point ξ, we have g ∈ Sto

β(ξ). At the same time,
g does not fix the infinite word η since it does not fix its beginning w2. Hence
g /∈ Stβ(η) so that Sto

β(ξ) 6⊂ Stβ(η).

Lemma 7.5 Sto
β(ξ) = Stβ(ξ) for any infinite word ξ ∈ ∂T containing infinitely

many zeros.

Proof. We are going to show that, given an automorphism g ∈ G and an infinite
word ξ ∈ ∂T with infinitely many zeros, one has g|w = 1G for a sufficiently long
beginning w of ξ. This claim implies the lemma. Indeed, in the case g(ξ) = ξ
the action of g fixes all infinite words with beginning w, which form an open
neighborhood of ξ.

Let R be the set of all g ∈ G such that the claim holds true for g and any
ξ ∈ ∂T with infinitely many zeros. The set R contains the generating set S.
Indeed, a|w = 1G for any nonempty word w ∈ X∗ and b|w = c|w = d|w = 1G for any
word w that contains a zero which is not the last letter of w. Now suppose g, h ∈ R
and consider an arbitrary ξ ∈ ∂T with infinitely many zeros. Then h|w = 1G for a
sufficiently long beginning w of ξ. Lemma 7.2 implies that the infinite word h(ξ)
also has infinitely many zeros. Since h(w) is a beginning of h(ξ) and g ∈ R, we
have g|h(w) = 1G provided w is long enough. Since (gh)|w = g|h(w)h|w, we have
(gh)|w = 1G provided w is long enough. Thus gh ∈ R. That is, the set R is closed
under multiplication. Since S ⊂ R and all generators are involutions, it follows
that R = G.

28



The infinite word ξ0 = 111 . . . (also denoted 1∞) is an exceptional point for
the action β.

Lemma 7.6 The quotient of Stβ(ξ0) by Sto
β(ξ0) is the Klein 4-group. The coset

representatives are 1G, b, c, d.

Proof. Recall that H = {1G, b, c, d} is a subgroup of G isomorphic to the Klein
4-group. Clearly, H ⊂ Stβ(ξ0). We are going to show that H ∩ Sto

β(ξ0) = {1G}
and Stβ(ξ0) = Sto

β(ξ0)H, which implies the lemma.
For any positive integer n let ηn denote the infinite word over the alphabet

X that has a single zero in the position n. The sequence η1, η2, . . . converges to
ξ0. One observes that any of the generators b, c, and d fixes ηn only if n leaves
a specific remainder under division by 3 (0 for b, 2 for c, and 1 for d). It follows
that H ∩ Sto

β(ξ0) = {1G}.
Now let us show that any g ∈ Stβ(ξ0) is contained in the set Sto

β(ξ0)H. The
proof is by strong induction on the length n of g, which is the smallest possible
number of factors in an expansion g = sm . . . s2s1 such that each si ∈ S. The case
n = 0 is trivial as 1G is the only element of length 0. Assume that the claim is true
for all elements of length less than some n > 0 and consider an arbitrary element
g ∈ Stβ(ξ0) of length n. We have g = sn . . . s2s1, where each si is a generator from
S. Let ξk = (sk . . . s2s1)(ξ0), k = 1, 2, . . . , n. If ξk = ξ0 for some 0 < k < n, then
g1 = sn . . . sk+1 and g2 = sk . . . s2s1 both fix ξ0. Since the length of g1 and g2 is
less than n, they belong to Sto

β(ξ0)H by the inductive assumption. As Sto
β(ξ0)H

is a group, so does g = g1g2. If ξk 6= ξ0 for all 0 < k < n, then si+1|wi
= 1G for

any 0 ≤ i < n and sufficiently long beginning wi of the infinite word ξi. It follows
that g|w = 1G for a sufficiently long beginning w of ξ0. Thus g ∈ Sto

β(ξ0).

Recall that we consider the Schreier graphs of the group G relative to the
generating set S = {a, b, c, d} as graphs with undirected edges. The Schreier
graphs of all orbits of the action β except Oβ(ξ0) are similar. Any vertex is joined
to two other vertices. Moreover, it is joined to one of the neighbors by a single
edge labeled a and to the other neighbor by two edges. Also, there is one loop at
each vertex. Hence the Schreier graph has a linear structure (see Figure 1) and all
such graphs are isomorphic as graphs with unlabeled edges. The Schreier graph
of the orbit of ξ0 = 1∞ is different in that there are three loops labeled b, c, and
d at the vertex ξ0 (see Figure 2).

Let F : ∂T → Sch(G, S) be the mapping that assigns to any point on the
boundary of the binary rooted tree T its marked Schreier graph under the action
β. Using notation of Section 4, F (ξ) = Γ∗

Sch(G, S; β, ξ) for all ξ ∈ ∂T .

Lemma 7.7 The graph F (ξ0) is an isolated point in the image F (∂T ).

Proof. Let Γ0 denote the marked graph with a single vertex and three loops
labeled b, c, and d. Recall that U(Γ0, ∅) is an open subset of MG0 consisting of all
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graphs in MG0 that have a subgraph isomorphic to Γ0. Hence U(Γ0, ∅)∩Sch(G, S)
is an open subset of Sch(G, S). Given ξ ∈ ∂T , the graph F (ξ) belongs to that
open subset if and only if a(ξ) 6= ξ and b(ξ) = c(ξ) = d(ξ) = ξ. The latter
conditions are satisfied only for ξ = ξ0. The lemma follows.

It turns out that the image F (∂T ) is not closed in Sch(G, S). The following
construction will help to describe the closure of F (∂T ). Let us take two copies
of the Schreier graph ΓSch(G, S; β, ξ0). We remove two out of three loops at the
vertex ξ0 (loops with the same labels in both copies) and replace them with two
edges joining the two copies. Let c′ and d′ denote labels of the removed loops
and b′ denote the label of the retained loop. Then b′, c′, d′ is a permutation of
b, c, d. To be rigorous, the new graph has the vertex set Oβ(ξ0) × {0, 1}, the set
of edges Oβ(ξ0) × {0, 1} × S, and the set of labels S. An arbitrary edge (ξ, i, s)
has beginning (ξ, i) and label s. The end of this edge is (s(ξ), i) unless ξ = ξ0
and s = c′ or s = d′, in which case the end is (s(ξ), 1 − i) = (ξ0, 1 − i). There
are three ways to perform the above construction depending on the choice of b′.
We denote by ∆0, ∆1, and ∆2 the graphs obtained when b′ = b, b′ = d, and
b′ = c, respectively. Further, for any i ∈ {0, 1, 2} we denote by ∆∗

i a marked
graph obtained from ∆i by marking the vertex (ξ0, 0) (see Figure 3).

Consider an arbitrary sequence of points η1, η2, . . . in ∂T such that ηn → ξ0
as n→ ∞, but ηn 6= ξ0. Let zn denote the position of the first zero in the infinite
word ηn.

Lemma 7.8 The marked Schreier graphs F (ηn) converge to ∆∗
i , 0 ≤ i ≤ 2, as

n→ ∞ if zn ≡ i mod 3 for large n.

Proof. For any n ≥ 1 we define a map fn : Oβ(ξ0)×{0, 1} → Oβ(ηn) as follows.
Given ξ ∈ Oβ(ξ0) and x ∈ {0, 1}, let fn(ξ, x) be an infinite word obtained from
ηn after replacing the first zn − 1 letters by the first zn − 1 letters of ξ and adding
x mod 2 to the (zn + 1)-th letter. Clearly, fn(ξ0, 0) = ηn. Let in be the remainder
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β(ξ0).

of zn under division by 3. One can check that the restriction of fn to the vertex
set of the closed ball B∆∗

in
((ξ0, 0), N) is an isomorphism of this ball with the

closed ball BF (ηn)(ηn, N) whenever N ≤ 2zn−2. Therefore δ(F (ηn),∆∗
in

) → 0 as
n→ ∞.

One consequence of Lemma 7.8 is that the graphs ∆0, ∆1, and ∆2 are Schreier
graphs of the group G. By construction, each of these graphs admits a nontrivial
automorphism, which interchanges vertices corresponding to the same vertex of
ΓSch(G, S; β, ξ0). This property distinguishes ∆0, ∆1, and ∆2 from the Schreier
graphs of orbits of the action β.

Lemma 7.9 The Schreier graphs ΓSch(G, S; β, ξ), ξ ∈ ∂T do not admit nontrivial
automorphisms. The graphs ∆0, ∆1, and ∆2 admit only one nontrivial automor-
phism.

Proof. It follows from Proposition 4.4 and Lemma 7.4 that marked Schreier
graphs F (ξ) and F (η) are isomorphic only if ξ = η. Therefore the Schreier graphs
ΓSch(G, S; β, ξ), ξ ∈ ∂T admit no nontrivial automorphisms.

The graphs ∆0, ∆1, and ∆2 have linear structure. Namely, one can label their
vertices by vj, j ∈ Z so that each vj is adjacent only to vj−1 and vj+1. If f is
an automorphism of such a graph, then either f(vj) = vn−j for some n ∈ Z and
all j ∈ Z or f(vj) = vn+j for some n ∈ Z and all j ∈ Z. Assume that some
∆i has more than one nontrivial automorphism. Then we can choose f above so
that the latter option holds with n 6= 0. Take any path in ∆i that begins at v0

and ends at vn and let w be the code word of that path. Since fm(v0) = vmn

and fm(vn) = v(m+1)n for any integer m, the path in ∆i with beginning vmn and
code word w ends at v(m+1)n. It follows that for any integer m > 0 the path with
beginning v0 and code word wm ends at vmn. In particular, this path is not closed.
However every element of the Grigorchuk group G is of finite order (see [2]) so
that for some m > 0 the reversed word wm equals 1G when regarded as a product
in G. This conradicts with Proposition 4.1. Thus the graph ∆i admits only one
nontrivial automorphism.
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Lemma 7.10 The Schreier graph ΓSch(G, S; β, ξ0) is a double quotient of each of
the graphs ∆0, ∆1, and ∆2. On the other hand, each of the graphs ∆0, ∆1, and
∆2 is a double quotient of the Schreier coset graph Γcoset(G, S; Sto

β(ξ0)).

Proof. The Schreier coset graph of the subgroup Sto
β(ξ0) is shown in Figure

4. In view of Lemmas 7.6 and 7.9, the automorphism group of this graph is the
Klein 4-group. The quotient of the graph by the entire automorphism group is
the Schreier graph of the orbit of ξ0. The quotients by subgroups of order 2 are
the graphs ∆0, ∆1, and ∆2.

Now it remains to collect all parts in Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We are concerned with the mapping F : ∂T →
Sch(G, S) given by F (ξ) = Γ∗

Sch(G, S; β, ξ). Let us also consider a mapping ψ :
∂T → Sub(G) given by ψ(ξ) = Stβ(ξ) and a mapping f : Sub(G) → Sch(G, S)
given by f(H) = Γ∗

coset(G, S;H). By Proposition 4.4, F (ξ) = f(ψ(ξ)) for all
ξ ∈ ∂T . By Proposition 5.5, f is a homeomorphism. Lemma 7.4 implies that
the mapping ψ is injective. It is Borel measurable due to Lemma 5.4. Also, ψ
is continuous at a point ξ ∈ ∂T if and only if Sto

β(ξ) = Stβ(ξ). Lemmas 7.5
and 7.6 imply that the latter condition fails only if the infinite word ξ contains
only finitely many zeros. According to Lemma 7.2, an equivalent condition is
that ξ is in the orbit of ξ0 = 1∞ under the action β. Since the mapping F is f
postcomposed with a homeomorphism, it is also injective, Borel measurable, and
continuous everywhere except the orbit of ξ0.

By Lemma 7.7, the graph F (ξ0) is an isolated point of the image F (∂T ).
Since F (g(ξ)) = Ag(F (ξ)) for any ξ ∈ ∂T and g ∈ G and since the action A is
continuous (see Proposition 4.2), the graph F (g(ξ0)) is an isolated point of F (∂T )
for all g ∈ G. On the other hand, if ξ ∈ ∂T is not in the orbit of ξ0, then the
graph F (ξ) is not an isolated point of F (∂T ) as the mapping F is injective and
continuous at ξ.

It follows from Lemma 7.9 that the image F (∂T ) and the orbits OA(∆∗
i ),

i ∈ {0, 1, 2} are disjoint sets. Note that the orbit OA(∆∗
i ) consists of marked

graphs obtained from the graph ∆i by marking an arbitrary vertex. Lemma 7.8
implies the union of those 4 sets is the closure of F (∂T ).

Finally, the statement (v) of Theorem 1.1 follows from Lemma 7.10.

Proof of Theorem 1.2. Lemma 6.6 combined with Lemma 7.4 implies that
the action of G on the closure of F (∂T ) is a continuous extension of the action
β. The extension is one-to-one everywhere except for the orbit Oβ(ξ0) where it is
four-to-one. Namely, for any g ∈ G the point g(ξ0) is covered by 4 graphs F (g(ξ0)),
Ag(∆

∗
0), Ag(∆

∗
1), and Ag(∆

∗
0). According to Theorem 1.1, the graph F (g(ξ0)) is

an isolated point of the closure of F (∂T ). When we restrict our attention to the
set Ω of non-isolated points of the closure, we still have a continuous extension of
the action β, but it is three-to-one on the orbit Oβ(ξ0).
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By Lemma 7.2, the group G acts transitively on each level of the binary rooted
tree T . Then Proposition 6.2 implies that the action β is minimal and uniquely
ergodic, the only invariant Borel probability measure being the uniform measure
on ∂T . Since the action of G on the set Ω is a continuous extension of the action
β that is one-to-one except for a countable set and since this action has no finite
orbits, it follows that the action is minimal, uniquely ergodic, and isomorphic to
β as the action with an invariant measure.
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