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The “law of propagation of error’ is a tool that physical scientists have conveniently and frequently

used in their work for many years, yet an adequate reference is difficult to find.

In this paper an exposi-

tory review of this topic is presented. particularly in the light of current practices and interpretations.

Examples on the accuracy of the approximations are given.

results is discussed.

The reporting of the uncertainties of final
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Introduction

In the December 1939, issue of the American
Physics Teacher, Raymond T. Birge wrote an ex-
pository paper on “The Propagation of Errors.”
In the introductory paragraph of his paper, Birge
remarked:

“The question of what constitutes the most reliable value to
be assigned as the uncertainty of any given measured guantity is
one that has been discussed for many decades and, presumably,
will continue to be discussed. It is a question that involves many
considerations and by its very nature has no unique answer. The

. subject of the propagation of errors, on the contrary, is a purely
mathematical matter, with very definite and easily ascertained
conclusions.  Although the general subject of the present article
is by no means new,' many scientists still fail to avail themselves
of the enlightening conelusions that may often thus be reached,
while others frequently use the theory incorrectly and thus arrive
at quite misleading conclusions.”

Birge's remark 27 years ago still sounds fitting today.
For a number of years, the need for an expository
paper on this topic has been felt by the staff of the
Statistical Engineering Laboratory at the National
Bureau of Standards. Frequent inquiries have to
be answered, yet a diligent search in current litera-
ture and textbooks failed to produce a suitable ref-
erence that treats the subject matter adequately.
The present manuscript was written to fill this need.

In section 1. we consider the two distinet situations
under which the propagation of error formulas can
be used. The mathematical manipulations are the
same, yet the interpretations of the results are en-
tirely different. In section 2 the notations are de-
fined and the general formulas given. Frequently
used special formulas are listed at the end of the
section for convenient reference. In section 3 the
accuracies of the approximations are discussed,
together with suggestions on the use of the errors
propagated. Section 4 contains suggestions on the
reporting of final results.

! See, for instance, M. Merriman, Method of Least Squares, pp. 75-7% (ed. &, 1910).

The “law of propagation of error” is a tool that
physical scientists have conveniently and frequently
used in their work for many years. No claim is
made here that it is the only tool or even a suitable
tool for all occasions. “Data analysis™ is an ever-
expanding field and other methods, existing or new,
are probably available for the analysis and inter-
pretation for each particular set of data. Never-
theless, under certain assumptions given in detail
in the following sections. the approximations resulting
from the use of these formulas are useful in giving
an estimate of the uncertainty of a reported value.
The uncertainty computed from the use of these
formulas, however, is probably somewhat less that
the actual in the sense that no function form is known
exactly and the number of variables considered usually
does not represent fully the contributors of errors
that affect the final result.

1. Statistical Tolerancing Versus Imprecision
of a Derived Quantity

1.1. Propagation of error formulas are frequently
used by engineers in the type of problem called ““Sta-
tistical tolerancing.” In such problems, we are
concerned with the behavior of the characteristic
W of a system as related to the behavior of a charac-
teristic X' of its component. For instance, an engi-
neer may have designed a circuit. A property W
of the circuit may be related to the value X of the
resistance used. As the value of X is changed,
W changes and the relationship can be expressed
by a mathematical function

W =F(X)

within a certain range of the values of X.

Suppose our engineer decides on W =uwy to bhe the
desired property of the circuit, and specifies X=x;
for this purpose. He realizes. however. that there
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will be variations among the large lot of resistors he
ordered, no matter how tight his specifications are.
Let x denote the value of any one of the resistors
in the lot, then some of the time x will be below
xp, while at other times x will be above x,. In other
words, x has a distribution of values somewhat clus-
tered about x,. As x varies with each resistor, so
does w with each circuit manufactured.

If our engineer knows the mean and standard
deviation (or variance) of x, based on data from the
history of their manufacture, then he can calculate
the approximate mean and variance of w by the
propagation of error formulas:

mean (w) = F(mean x), and

variance (w) = [*—]' var (x), (1.1)

dX

where the square brackets signify that the derivatives
within the brackets are to be evaluated at the mean
of x. The approximations computed refer to the mean
and variance of an individual unit in the collection of
circuits that will be manufactured from the lot of
resistors. The distribution of values of w, however,
is still far from being determined since it depends
entirely on the functional form of the relation between
W and X, as mathematical variables, and the distri-
bution of x itself, as a random variable. This type of
approach has been used frequently in preliminary
examinations of the reliability of performance of a
system, where X may be considered as a multidimen-
sional variable.

1.2 Let us consider now the second situation under
which propagation of error formulas are used. This
situation is the one considered in Birge's paper, and
is the one that will be discussed in the main part of
this paper.

A physicist may wish to determine the “true” value
wy of interest, for example, the atomic weight of silver.
He makes n independent measurements on some re-
lated quantity x and calculates

1
Efl=5(11+x2+- .+xn}

as an estimate of the true value x, and

1

n—1

2=

S (xi— )
1

as an index of dispersion of his measured values. The
physicist is mainly concerned in obtaining an estimate
w of wy, and of the standard deviation of # as a measure
of precision of his result. He therefore computes by
the propagation of error formulas:

iv="Fl(xy)

52
n (1.2)

Often he assumes that # is distributed at least approxi-
mately in accordance with the normal law of error and
gives probability limits to the statistical uncertainty of
his estimate i based on the standard deviation calcu-
lated (G) and this assumption.

Crameér [1946] has shown that under very general
conditions, functions of sample moments are asymp-
totically normal, with mean and variance given by
the respective propagation of error formulas.®? Since
Xy is the first sample moment, the estimate @ will be
approximately normally distributed for large n. Hence
our physicist is interested in the variance (or the
standard deviation) of the normal distribution which
the distribution of F(x,) approximates as n increases.
(Note that both estimators @ and %ar (%) are functions
of n.) For n large, the distribution of # can be as-
sumed to be approximately normal and probability
statements can be made about .

1.3 Hence, we have the two cases:

(1) The problem of determining the mean and vari-
ance (or standard deviation) of the actual distribu-
tion of a given function F(x) of a particular random
variable x, and

(2) The problem of estimating the mean and vari-
ance (or standard deviation) of the normal distri-
bution to which the distribution of F(x,) tends asymp-
totically.

As examples of problems studied under the first
case, we can cite Fieller [1932] on the ratio of two
normally distributed random variables, and Craig
[1937] and Goodman [1962] on the product of two
or more random variables. Tukey, in three Princeton
University reports, extended the classical formulas
through the fourth order terms for the mean and
variance, and propagated the skewness and elon-
gation of the distribution of F(x) as well. These
reports present perhaps the most exhaustive treat-
ment of statistical tolerancing to date.

From now on we shall be concerned in this paper
with the second case only, i.e., the problem of esti-
mating the mean and variance, or standard deviation,
of the normal distribution to which the distribution of
F(x,) tends as n increases indefinitely, and hence
also the problem of using approximations to the
mean and variance computed from a finite number of
measurements. Since the mean and standard
deviation are the parameters that specify a particular
normal distribution, our problem is by its very nature
less complicated than that of statistical tolerancing
where the actual distribution of the function may
have to be specified. We shall, however, utilize
formulas given in Tukey’s reports to check on the
adequacy of some of the approximations.

* A brief summary is given in paragraph 2.2,
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2. Propagation of Error Formulas
2.1. Definitions and Notations

(1) X, Y. Z in capitals stand for the mathematical
variables to be measured: x, y, z in lower cases stand
for the measured values of these variables: x;, v, zi
with subseripts stand for the particular values of the
ith measurement on x, the jth on y, and the Ath on z,
respectively.

(2) W=fX, Y, Z) is a continuous function of the
variables X, Y, Z, with derivatives

oW ew
X" axay -

(3) All derivatives appearing in square brackets, for

example [% [%] stand for the values of these de-

rivatives evaluated at the means of x and y, if known,
or at the sample averages of x and y, if the means are
not known.

(4) In order’to emphasize the fact that the mean M,
variance o? and other population parameters are usu-
ally not known, we list here symbols for both the
estimators of population values and the population
values. For a particular set of values of x, the values
computed from these estimators are estimates, or
computed values of these estimators.

Corresponding population
parameters

Estimators of parameters

M, (mean= first moment)

o (variance = second
central moment)

pE= no |

L]
-l — \ . o = -
Sey=Sur=7"7 N =T (i— ) | o= oy (covariance)

1 2 (Zxp) (Zy)
= {.\_.t',}'i ————=

n—1 n
5o : S
i =y pry (eorrelation coefficient)
£y
3 i (standard deviation of x
about M)
1 o 5
SF=——5r o= {standard deviation
WV Voo of the average ¥,
or standard error)
5 o g smml
Vo= —= (eoefficient of variation or
X M, relative standard

deviation)

In addition, we use |Ax| to denote the bound for pos-
sible systematic errors on the measurements of x.
The bound of these errors, unknown in sign, is usually
established or conjectured by the experimenter and
its value is not based on the measurements in hand.

2.2. General Theorem and Remarks

As mentioned briefly in paragraph 1.2, the propaga-
tion of error formulas are special applications of re-
sults obtained in the study of properties of distributions
of functions of sample moments. Doob [1935], Hsu
[1949], and others have investigcated the limiting
distribution of functions of sample means relating to
hypothesis testing. Curtiss [1943] derived the limit-
ing means and variances of the several functions of
variables in connection with transformations used in
the analysis of variance. Cramér, in chapters 27
and 28 of his classical treatise, proved two theorems
and also discussed the asymptotic properties of distri-
butions of functions of sample moments in detail.
For convenient reference we shall phrase his theorems
and remarks in terms of functions of sample averages,
to serve as a basis of justification for the use of propa-
gation of error formulas.

THEOREM (Cramér, pp. 366, 352—356)

If, in some neighborhood of the point X =M,, Y =N,
the function F(X. Y) is continuous and has continuous
derivatives of the first and second order with respect to
the arguments X and Y. the random variable % = F(x, )
is asymptotically normal, the mean and variance of
the limiting normal distribution being given by:

mean w=F(M,, M,)

Vdr“_[a){] 11+[EiY] |1+2[6XJ L'JY] n o 9

(2.1)

REMARK 1. (Cramér, p. 367)

It follows from this theorem that any funection of
sample averages is, for large values of n, approxi-
mately normally distributed about the value of the
function determined by the mean values of the basic
variables, with a variance of the form C/n, provided
only that expressions (2.1) and (2.2) yield finite values
for the mean and the variance of the limiting
distribution.

REMARK 2. (Cramér, pp. 367, 415, also Doob, Hsu)

In general. the constant € in the expression of the
variance will have a positive value. However, in
exceptional cases € may be zero, which implies that
the variance is of a smaller order than n-'. Then
some expression of the form

n{ivt—F(M., M)}, p> 3,
may have a definite limiting distribution, but this is
not necessarily normal.
REMARK 3. (Cramér, pp. 366, 213-214)

The function F(¥, ¥) may be asymptotically normal
even though the mean and variance of F(x. ¥) do not
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exist, or do not tend to the mean and variance of the

limiting normal form. Generally, if the distribution

of a random variable w depends on a parameter n,

and if two quantities M and o can be found such that
Al

the distribution function of the variable tends

to ®(z) (normal distribution function with mean zero
and standard deviation one) as n—20, we shall say that
w is asymptotically normal (M, o). This does not
imply that the mean and the standard deviation of
w tend to M and o, nor even that these moments
exist, but is simply equivalent to saying that for any
interval (a, b) not depending on n,

lim Prob. M+ aoc <w <M+ bo)=D(b)— D(a).
n—oc

ExamMpPLE: If x is from a continuous distribution with
positive mean and a finite variance but with positive
probability that some x can take negative values, then
the function In x is not even defined for all values of x,
and therefore the mean of the function In x does not
exist; yet where the mean of x has a positive value,
(2.1) and (2.2) give the mean and variance of the lim-
iting normal distribution.

2.3. Propagation of Error Formulas

Fortified with the general theorem stated in the
preceding paragraph, we shall proceed to derive the
traditional propagation of error formulas in an ele-
mentary manner, making some comments and as-
sumptions that may be of interest. It will be helpful,
however, to explain first what is meant here by the
term “random error” in a measurement process.

a. Random Errors

In a measurement situation, we consider random
errors typically to be the sum total of all the small
negligible independent errors over which we have no
control —interpolation in reading scales, slight fluctu-
ation in environmental conditions, imperfection and
nonconstancy of our senses, etc. Thus for a stable
measurement process, we find that:

(1) The measured values do follow a distribution,
with small errors occurring more frequently than larger
ones, and with positive and negative errors about
balancing one another, and

(2) there is no obvious trend or pattern in the se-
quence of measurements.

Let us denote the ith measurement of x to be

x;=MJ~ + €j

where M, is the mean of all measurements for the
measurement process, and € the random error of
measurement x;. Then for condition 1, we assume
Ay: The distribution of errors is symmetrical and
bell-shaped, with mean zero and standard deviation
0p, O

mean € =0
mean x; =M,
var x =var €;
=mean € =o?.

And for condition 2, we assume
As: The errors in the measurements of x; (i=1. 2,
n) are statistically independent: in particular
these errors are not correlated or associated in any
way, Le..

mean (€; - €)=, i 7.

= Al o
Thus forx= ” (x;+x2+. . .+ x,). the mean of x is M.

Furthermore,
. € t+e+. . . .1Te
x—M.=
n
By definition. the variance of x is
. . € t+e+. ."I‘EN2
mean (x — W)= mean ( )
n

s (§ ) 5]
=— =14 iE;
nt {!“(’fall (E Er) mean (E L3

i=1 i=j

] 2
2? {r.ﬂ mean (&) + z mean {E;eﬁ}'

i#j

Using assumptions 4, and 4., we obtain
var (x)=—o?
X)=r-0;

or the variance of the average of n independent meas-

urements is — of the variance of an individual meas-
n

urement.?

Here the average x is a linear function of the in-
dividual x’s, and the exact expressions of mean and
variance of an average in terms of that of the individual
values are well known. For functions that are not
linear in the x’s, we expand the function about the
mean of x by the Taylor series, and assume that the
funetion in the neighborhood of the mean can be ap-
proximated by the lower order terms. For example,

let
W=FX,Y),
x=M_r+ Er,
y=M,+e€,

A1, however, the measurements are not independent, then this formula is incorrect since
the means of products (€¢) are not equal 1o zero,  In that case let

== S =3
mean (€€} =pyars , and p="" pylain = 1). then var (x) = {1+ 1n—1)p}.
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where each of €, and €, satisfies assumptions 4, and
As, then we can write

=, ak oF
Flx, y=FM,, ,,J+|:]X] +[6Y:I €

1 ([#F] oy o [2F PF
+2! {[GXZ] €12 [HXHY] €€+ [al”] 63}

-+ terms of higher orders in €, and €,. (2.3)

Or. neglecting terms of higher order than € and €,

1 ({82F] . . . [°F F]
o Ha,\’ﬂ} a4 [aXaY] x5y [HY’] € }

Since the means of €, and €, are 0. if we take the mean
on both sides.

mean {F(x, y)—F(M., M,)}
a2F a2F 2K a1 :
{[ JX2] B+ [anY] eyt [m] } @4

Thus the mean of a function of values always differs
from the value of a function of means by a quantity rep-
resented by (2.4), approximately. If the function of
means F(M,, M,) is the value of interest, then to
approximate F(M,, M,) by the mean of F(x, v) would
introduce an error, or bias, the magnitude of which
depends on the functional form, the variances of and
the covariance between x and y. If, however, we
use the function of averages, F(x, ¥), then

mean W= mean F[I 1"]

F{.'M_,-, MI'J']
1([0*F) o2, [ 8*F Joxy  [°F ;
+2{[5'X3} n +2[r7Xr“JY] n +[3Y ] }’ (2.5)

and the bias is only 1/n times that of the mean of the
function of individual values. When n becomes large.
this bias tends to zero, and (2.1) results.

This bias can be calculated by (2.5) and compared to
the standard deviation of @. In practice, if o, and o
are small, the bias is often of a magnitude that is
negligible.

To propagate the variance, we note that if €, and ¢,
are small in the sense that the second and higher order
terms in (2.3) can be collectively neglected in compari-
son to terms involving €, and €, only, then

o X, A | OF aF
)t' i Ay }') F{J"I_;-. .'1!:;) = [atx.:lf‘;-—i_ I:(:]Y:| GU‘

and the variance of F(x. y) is. approximately,

aF _+[M] }“
oV | T

mean{F(x, y)—F(M.. M,)}*= mean“

gF * [ aF
[g—f] 0"-—}-[%] U§+2[a;][ }:lﬂ',“ (2.6)
And for @= F(x. y)., the variance of @ is
aF ol  [0F o} [af |:6F] On
YR = L}}(} n +[B}’] n e HXJ n 2.7)

the limiting form of which is (2.2).
Finally, || o3, oj, and o,y are not known, we substi-

tute their estimators in formulas (2.5) and (2.7),
resulting in:
mn() = F(M., M)+ L[ ZE
mean () = F(M,. J;J+E e
PF sy o 0°F say ‘
[ Z[M,a},] L es
and
al aF%s aF] sz
vi e Sy 2Ly ¢
IRy = L’\] n +[r’>‘}'] n +z[(ﬂ}[rﬂJ n’ (2.9)

If we assume further that the random errors in meas-
urements of x and v are independent, then o, = 0. and
the terms involving o, in (2.5), (2.6), and (2.7) vanishes.
If this is the case. the terms involving s, in (2.8) and
(2.9) should also be dropped. This reduced version
of the formula for independent x and vy.

. L [BF P ot aF 12 o%
Vdr(ﬂ)]_[ X:l n +[6}} n’

is of the form given in Birge’s
hooka on statistical analysis of data [Mandel,
72-76).
|‘0r W=FX.Y, Z), there will be three variance and
three covariance terms in (2.5) and (2.7). Extension
to more than three variables presents no new problems.

(2.10)

paper and in other text-

1964,

b. Extension to More Than One Function of the Variables

Let

U=uglX, Y, 7).
and
V=nX,Y. 7).
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Then in addition to the above formulas, we have

_[ﬂi] +[£ f'*_i'} :{3_"' f’*_"] ;
Ous=19% oX |%=" | 3¥ a¥ 3z oZ %%
+{ f’_"’.f'*_”'} aU al]]

aX oY | |aY ax |[PevI=%¥
all al all aV
=+ { L— : 5] e [; 'ﬁ”ﬁ)w)‘utr:

all aV a[ r-”

Expression (2.11) may be convenient to use to get

o) where W =F(U. V), and U and V" are known func-
tions of X. Y. and Z.

(2.11)

c. Some Frequently Used Formulas

For convenience, a few special formulas for com-
monly encountered functions are listed in table 1 with
x. y assumed to be independent. These may be
derived from the above formulas.

2.4. Systematic Errors

By a systematic error we mean a fixed deviation that
is inherent in each and every measurement of x in a
particular sequence of measurements. If the magni-
tude and direction of the systematic error are known. a
correction can be made such that M, = x,. or the mean
of the sequence of measurements is equal to the value
sought after. If the sign of the systematic error is not
known and the magnitude of the error can be only
estimated to be within some reasonable bound | Ax|.
perhaps by experience or judgment. then M, is within
the limits xo — Ax and x,+ Ax.

For a function of two variables W' =F(X. Y) then. a
bound | Aw| for the systematic error in I} is given by:

st [ [

assuming, as before, that Ax and Ay are small such that
second and higher order terms in Ax and Ay are collec-
tively negligible in the Taylor series expansion. Since
ordinarily we do not know the signs of Ax and Ay, we
have no choice but to add the absolute values of the
two terms together, even though the signs of the values
of the partial derivatives evaluated are known. (If the
signs of either Ax or Ay is known. this information, of
course. should not be ignored.) If these derivatives
are evaluated at the point x and y. then the random
components of error of x and y are required to be small
so that these derivatives take approximately the same
values as when evaluated at xy and y.

(2.12)

When there are a number of systematic errors to be
propagated, one approach is to take | Aw | as the square
root of the sum of squares of terms on the right-hand
side of (2.12). instead of adding together the absolute
values of all the terms. This procedure presupposes
that some of the systematic errors may be positive and
the others negative, and the two classes cancel each
other to a certain extent.

The treatment of inaccuracy due to systematic errors
of assignable origin but of unknown magnitudes is
discussed in detail in section 4.2 of Eisenhart [1963].
Since there is no generally accepted standard method
for combining several systematic errors. Eisenhart
advised and we quote

“Therefore. anyone who uses one ol these methods for the “com-
bination of errors’ should indicate explicitly which of these (or an
alternative method) he has used.”

Information on the source and magnitude of each con-
tributing elemental systematic error is, of course, also
essential,

3. Practical Accuracies at the Various Stages
of Approximations

1. From the preceding sections we observe that
there are three stages of approximations:

(1) In the Taylor series expansion (2.3), terms higher
than the first partial derivatives are considered to be
negligible.

(2) w is approximately normally distributed for large
n. ls. the normal distribution still a good approxima-
tion for small n?

(3) If o2 and o2 are known,we obtain a2* from (2.7).
and we can use this value to construct a confidence
interval #* about @ with the desired level of confidence
(approximate) based on nnrmdl theory. If o2 and o?
are not known, and 5% and s are calc ulated from a small
numhe of m(*aaur( ments, what can we say about
w using var(w) calculated from (2.9)7

To get some numerical feeling for the closeness of
these approximations, we :}m]l simplify matters by
making the following assumptions which do not seem
to be too restrictive in measurement situations:

B: x and y are normally and independently distrib-
_ulf:d, with the ratio /o not less than 10.!
Bs: The functional forms used are the well-behaved

ones that do not possess derivatives assuming
unreasonably large values when evaluated at the
averages of the individual variables.

Thus for linear functions, such as

W =AX+ BY,

the second and higher derivatives vanish, and (2.6) is
exact.

The adequacy of these approximations is studied in
paragraphs 3.2 and 3.3 below. In paragraph 3.4 sug-

22 See Natrella [1963] sec. | to 7. also chs. 2 and 3.

*For notational convenience, the symbals w. x. v, op, oy, e are used in this and the
subsequent sections.  The corresponding symbaols for the average could be used by straight
substitution.
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TaBLE 1.

Propagation of error formulas for some simple functions

~ . -
Funetion form of w *

Approx. formula for var (i)
{x and v are assumed to bhe
statistically independent)

Term to be added if x and y
are correlated, and a
reliable estimate of s
S5y can be assumm{l

==

e || =

=1
+

=

e
=|

In x
"‘"' i y

to7

&l

b

[+
.“'\-—.—-:I

n

b | =] “‘|

100 52 (= coeflicient

x

of variation
in percent)

A2+ Biss?

sin®=

FEAE

i g ) A
l sin* 3 sint

B =lE

(s and 57 in radians)

ﬁ-’ (not directly derived
An—1) from the formulag)’

2485

Ly .T)
hlllzlllh F)

# It i assumed that the value of i@ is finite and real, e.g., v # 0 for ratios with v as denominator, ¥ =0 for V5 and In 3.

== Weighted mean as a special case of A7+ By, with o and o, considered known,

T Disteibution of & is highly skewed and normal approximation could be seriously in error for small o,

1 See, for example, Statistical Theory with Engineering Applications, p. 301, by A, Hald (John Wiley & Sons, New York, N.Y.. 19521,

227-271 O-66—4
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gestions are made on the use of the standard deviation
calculated for i when the standard deviations of x and
y are not known. Readers may wish to go directly to
paragraph 3.5 for a summary of the conclusions.

3.2. For x. v independently distributed and arbi-
trary F'(x. y). the first correction terms to (2.6) are

aF\[o%F I\ [F].
aX | [ax | == oy | [avE [ 7w

where y is a measure of skewness of the distribution.?
Therefore these terms equal zero for x. y symmetri-
cally distributed, a condition satisfied by assump-
tit_m Bj.

The next or der of correction terms involve o}, o)
and o202 and are usually negligible compared to ferms
in (2.6). = These terms are

g 3
5] 3] v el
3 LaX ][aX? aylaY?
1 [[o*F . F]’ S 4}
+4{[6A]] 1o +[.:,y1 (r'y—hoy
9%l

{5 [xaw] + [aw] [ (57t

(3.2)

(3.1)

For functions involving powers of x and y less than
three, some of the partial derivatives also vanish.
For example, if W =XY, the only nonzero term of
this order is o303, or

Var (w)=M3o3 + M3o%+ oiol.

The contribution of o303 is less than 1 in 200 if M/o
is larger than ten.

For functional forms such as quotients, roots, and
logarithms, the accuracy is usually adequate since
powers of the means of the variables appear in the
denominators of the partial derivatives.

For the exponential function W =e¥, the variance
of w as given by (2.6) is

Var (w) =e*Mg2,

whereas the exact formula® for the variance of w,
when x is normally distributed, is

Var (w)=e""e2M(e"* — 1)
— pTp2M (U”‘ =t g:+ 3':’4_ )

= Mg {e‘” (1 +2if+ e )}

3For definition of yand | see (3.3),

% See, for example, The Lognormal Distribution, p. 8, by J. Aitchison and J. A. C. Brown,
Cambridge University Press, 1957,

Here the variance of w as given by (2.6) underestimates
the true variance by the factor given in the brackets,
and the approximation could be seriously in error.
(Note, however, the “‘exact” formula is correct only
if x is exactly normally distributed. If x is only ap-
proximately normally distributed, then both for-
mulas are approximations.)

For specific functions, formulas (3.1) and (3.2) given
in Tukey’s report can be used to check on the ade-
quacy of the approximation. We quote Tukey’s con-
clusion in this respect:

“The most important conclusion is that the classical propagation
formula is much better than ceems to be usually realized.  Examples
indicate that it is quite likely to suffice for most work.”

3.3 Next we look into the adequacy of the normal
approximation. For this purpose we will define the
first four central moments of the distribution of w as
follows:

mean (w0— M) =0

mean (w— M=o

mean (w— M, P =vyao?

mean (w— M)t = 1o, (3.3)
[f w is normally distributed. y=0, and I'=3. Fol-
lowing Tukey, we shall define

skewness = yo, and
elongation = o' — 307:

then both skewness and elongation are equal to zero
when 10 is normally distributed.

If x and y are normally distributed as assumed under
Bi, then in general w=F(x, y) is not normally dis-
tributed unless the function form is linear. By a
procedure similar to that used in the last section. the
coeflicients of skewness B, and excess B: of w can be
calculated where:

Bi= [skewness w]?
: [var w]?
4l elongation w 43

[var w]?

If B is close to zero and B: is close to 3, the normal
approximation may be considered as adequate.

The terms up to order ¢! in the propagation of
skewness for w=F(x, y), with x, y independent, are

na b FaF 13
skewness w = [%] Y203+ %} Yo
3[aF 2[a2F] .. >
+‘2 [dX] LJXz_ (Iy—=1)a3

3 [aF [92F] ..
+2L9Y] [ﬁ Ty

aF a2F
%9 [BX] [dY} [aXaY] T}

=L}

(3.4)
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For x, y normally distributed, only terms of order

ot remain. If we take w=xy again as an example,
then
skewness w = 6M M o%o}
36MiMEaiai

B = Dot + B + olol®

Neglecting o507} in the brackets in the denominator,
and taking M/o=10, B, is computed to be 0.045.
Hence. for @#=xy. where x and y are averages of four,
the coefficient of skewness is reduced by a factor of
four or equals 0.011 approximately.

Similarly. terms up to order o* for the elongation

of w=f(x, v), with x. vy independent, are

4
@iJ (I —%:a~'+[aF] ([, —3)o

elongation w = [6,\’ Y%
(3.5)

which is zero for x. y normal,
elongation w
Hence Bi=————
(Variance w)*
for elongation is necessary here.
If we look up a table? of percentage points of dis-

3=23. and no correction

tribution of the standardized variate “with given

(ogr
Bi and B.. we note that the changes of values are rather
sensitive to B and much less so to B:. Thus the co-
efficient of elongation is usually not as much a source
of worry in the normal approximation as is the coefh-
cient of skewness.

Formulas (3.4) and (3.5) and the table of percentage
points allow us to check how good the normal approxi-
mation is for a given number of measurements in the
variables x and y. Table 2 gives some examples of
results of such ealculations.

3.4 The third approximation concerns the use of the
sample variance s° as an estimate of the population
variance o®. If we know the precision of the proc-
esses for the measurements of x and v, i.e., we know
o, and oy, o, can be computed from (2.7) and a con-
fidence interval about w can be constructed with the de-
sired confidence coeflicient 1 —a by using the table of
the normal probability integral. If o, and o, are not
known, then even if &7 can be computed from (2.9).
the constants to be used for constructing a confidence
interval with confidence coefficient 1 —a will be dil-
ferent from those for known o.

To offer some guideline to the solution of this prob-
lem, we again assume measurements on x and v to
be independently and normally distributed. If the
number of measurements is large (a rule of thumb
could be n >30), then (2.7) can be used assuming
a3. o;. and g,y are known.

7See Table 42, Biomerrika Tables for Statisticians, Vol 1, edited by E. S, Pearson and
H. O, Hartley, The University Press, 1958 Also, pp. 7984,

Of course one can always compute the half-widths
of the respective 100 (1 —a) percent confidence inter-
vals for M, and for M, by the use of the Student’s ¢
half-width of the

statistic. and use (2.12) to get the
interval for M., i.e.. set
S Sy
Ax=t; a ——=and. Ay=i; , 5=
(-8 V5 29 BT g 3

and use (2.12) to get Aw. Then the interval w= Aw
is a confidence interval for M, for a confidence co-
efficient of at least (1 —a). This procedure. however,
may be criticized on the ground of gross inefficiency
in using the data.

We may write (2.9) as
ol

Var () = Ays2+ Aos

i

[%J and Au =’] [%] are two constants,
(le;,rrees of freedom for s,. n—1. and s,.
)\15‘2
Nis2 + Aas?’
have been tabulated® for umhd(‘mt coef-
of 0.99. 0.98. 095, and 0.90. The interval

where A, =
For given

k—1. and given ratios of values of a *1

statistic
ficients

vV NsE+ hosi (3.6)
is a confidence interval with confidence coeflicient

=@
These tables. however, do not contain values for
v for n and k£ less than 10, 10, 8, and 6 for the re-
spective confidence coeflicients, and hence cannol
be used for smaller samples. In addition, they are
useful only for two independent variables x and y.
Alternatively Welch [1947] has proposed the use
of “effective degrees of freedom™ for the estimated
variance of @ of the form
var (@)

The effective degree of freedom [ is computed from

o sty |
=S (3.7)

where f; is the degrees of freedom for® s?

In general f will be fractional. The ¢ value with f
degrees of freedom can be found or interpolated from
the ¢ table and the confidence interval computed as

Bt . &

s
"See Table |1, Biometrika Tables for Statisticians, Yol, 13 also Further critical values
for the two-means problem, W. H. Tricket. B. L. Welch, and G, 8, James, Biometrika 43,

1956. pp. 2045,
VI s is computed from n measurements, the degrees of freedom is #— 1.
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TABLE 2. Departures from normal approximations

Xy i:ldx-lu-ndrnll._\' distributed, with ¥y = 0. I’ =3, and (Mjor)= 10,
ci— M
Percentage point of = e
- . . i
w Skewness from (3.4) By computed
Lower 2.5% Upper 2.5%
Ax+ By 0 0 —1.96 +1.96 T
= MM f’iﬂ'ﬁ 4.5
22 el T 1008
n=1 0.045 — .84 +2.06
n=4 011 —1.91 +2.01
n=10 L0045 —1.93 + 1.99
- o 9
xt 24M — :
. n* 100n
n=10 0.009 —1.90 +2.00
o ot 36
3 s L il
* Lot 100n
n=4 0.09 —].:86) +2.09
o8 (2 .
7 M, M MEME 100n
n=10 018 —1.89 +2.03
. 3 o 9
e 23 i T S bt
b M 100n
n=10 0,004 —1.90 +2.00
o 30 a' Yo Depends on o and n (both skewness and 8,
It a3 underestimated for o/ \Nn = 0.2).
_" ?_z 1%
ey >,
T Exact when x and y are normally distributed.
The approximate confidence intervals computed by distributed. For particular functions, the approxi-

the use of effective degrees of freedom were found to
check the exact confidence intervals given by (3.6)
very well over the range of the latter.

3.5 In summary. the following may be concluded
for practical purposes:

(1) Terms of order higher than o2 in the propagation
of error formulas for variance, (2.6) and (2.7), can be
neglected if (a) the standard deviations are small in
comparison to their respective means, and (b) the
second and higher order partial derivatives evaluated
at the means do not give rise to abnormally large num-
bers. This is usually true in the field of physical
science, since errors of measurements are usually
of the order of 1 part in 1000, or parts per million:
furthermore, the functional forms used are usually
the well-behaved ones.

(2) The normal approximation will be adequate for
large n, or if, in addition to (a) and (b) above, (c) the
individual variables can be assumed to be normally

mate values of the coefficients of skewness and elon-
gation may be calculated and Pearson’s table can be
used to check the adequacy of the approximation.

(3) For the case where the standard deviations of
the individual variables are unknown, and are esti-
mated from the data, confidence intervals for the
estimate v can be constructed either by the use of
tabulated values of the ““»"" statistic or by the use of
effective degrees of freedom. These confidence
intervals can be considered as a form of “precision
limits” in the sense that if one makes the same sels
of measurements a large number of times under the
same conditions, and constructs the confidence in-
tervals each time by the same procedure, then a large
proportion of the intervals so constructed, 100 (1 — a)
percent, will bracket the mean of all these sets of
measurements. When only one set of measurements
will be made, the probability is 1 —« that this interval
will bracket the mean.
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4. Reporting of Results

4.1. Suppose a set of measurement data is avail-

able, and, by using the appropriate propagation of

error formulas, the following are obtained for the
quantity of interest, wy:

(1) The estimate of wo, w0, based on n values of x,y,
elc.;

(2) the estimated standard error of i, &, and asso-
ciated degress of freedom f;

(3) limits to the systematic error in w, Aw.

The estimated standard error of 1 gives a measure
of precision of the experimental results, or a measure

of scatter of the values of @ from the average value of

M for repeated performance of the particular experi-
ment. But this measure of precision does not indicate
at all how close this average value is to the value w
intended to be measured. The estimation of limits to
the systematic error is an essential part of an experi-
ment and need not be discussed here [ Youden, 1961].
One may remark generally that systematic errors
usually do not pose a serious problem when the
“imprecision” is large, since these systematic errors
are, so to speak, “swallowed up’ by the random errors.
The systematic errors, however, play an important
role when the precision is excellent and is of about the
same order of magnitude as the systematic error. In
that case, it is essential that the systematic error, or
errors, be reported separately from the imprecision
part of the reported value, as measured by the standard
error, or the confidence intervals, computed.

In scientific literature, it is not uncommon to come
across expressions of results in the form of M=*e,
where “M” is an average of some kind and *““¢” repre-
sents the uncertainty of “M” in some vague sense.
This type of reporting proves to be most frustrating
from the reader’s point of view. From the context
alone the reader cannot possibly infer whether “e”
represents probable error, 3-sigma limits, systematic
error, or some combination of random and systematic
errors. As a consequence, the quality of the results,
and the validity of inference drawn from these results,
are to a large extent left to the judgment and guesswork
of the reader. Hence, the writer owes to himself, and
to his reader, to specify clearly the meaning of “e”
as he uses it. In particular, the number of measure-
ments from which the measure of random error was
computed and the manner in which the systematic
error was estimated are both essential elements of the
reported value and need to be included.

Tukey. John W.,

€6 9y
e

A footnote explaining the role of is often very
helpful. Several examples are given below:

“In the expression of the form M=e, M is the average and e is the
standard error of M based on n measurements (or based on v degrees
of freedom).™

“The indicated uncertainty limits for M are overall limits of error
based on 95 percent confidence limits for the mean__and on allow-
ances for effects of known sources of possible systematic error "
“The uncertainty given represents 3-sigma limits based on the
current aceepted value of the standard deviation, known sources of
systematic errors being negligible.”

Chapter 23 of Natrella [1963] “Expressions of the
Uncertainties of Final Results™ gives a thorough dis-
cussion on this topie, and is an excellent reference
for all physical scientists who have occasion to report
numerical results of their experiments.
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