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Abstract. The main purpose of this notes is to supplement the paper by Reid: De-
composition of toric morphisms, which treated Minimal Model Program (also called Mori’s
Program) on toric varieties. We compute lengths of negative extremal rays of toric varieties.
As an application, a generalization of Fujita’s conjecture for singular toric varieties is obtained.
We also prove that every toric variety has a small projective toric Q-factorialization.

0. Introduction. The main purpose of this notes is to supplement the paper by Reid
[Re]: Decomposition of toric morphisms, which treated Minimal Model Program (also called
Mori’s Program) on toric varieties. We compute lengths of negative extremal rays of toric
varieties. This is an answer to [Ma, Remark-Question 10-3-6] for toric varieties, which is an
easy exercise once we understand [Re]. As a corollary, we obtain a strong version of Fujita’s
conjecture for singular toric varieties. Related topics are [Ft], [Ka], [La] and [Mu, Section
4]. We will work, throughout this paper, over an algebraically closed field k of arbitrary
characteristic.

The following is the main theorem of this paper, which is a sharp version of [Re, (1.7)
Corollary] (see also [Ma, Theorem 14-1-4]). Note that [La, (2.1) Proposition] is a special case
of our theorem.

THEOREM 0.1 (Cone Theorem). Let X = X(∆) be an n-dimensional (not necessarily

Q-factorial) projective toric variety over k. Let N1(X) denote the R-vector space formed by

1-cycles with real coefficients modulo numerical equivalence. The class of a 1-cycle C is

denoted by [C]. Write the cone of curves as

NE(X) :=
∑

R≥0[C] ⊂ N1(X) ,

where the summation above runs through all the effective 1-cycles, which is spanned as a

convex cone by a finite number of extremal rays (see [Re, (1.7) Corollary]). Let D =
∑

j djDj

be a Q-divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every

j . Assume that KX + D is Q-Cartier. Then, for each extremal ray R≥0[C], there exists an

(n − 1)-dimensional cone τ ∈ ∆ such that [V (τ)] ∈ R>0[C] and

−(KX + D) · V (τ) ≤ n + 1 .

Moreover, we can choose τ such that −(KX +D) ·V (τ) ≤ n unless X ≃ Pn and
∑

j dj < 1.
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Section 1 is a preliminary section. We recall some basic results about toric varieties and
fix our notation. Section 2 deals with Q-factorial toric Fano varieties with Picard number one;
a generalization of weighted projective spaces. The computations of intersection numbers in
this section are crucial for the proof of Theorem 0.1. In Section 3, we quickly review the main
results of [Re] and prove our main theorem: Theorem 0.1. We will discuss an application of
this theorem in Section 4. Professor Kajiwara informed the present author of [Mu] in Kinosaki
after he finished the preliminary version of this paper. The following formulation of Fujita’s
conjecture for toric varieties is due to Mustaţǎ, who proved it on the assumption that X is
non-singular and D is reduced as an application of his vanishing theorem (see [Mu, Theorem
0.3]). Our proof does not rely on vanishing theorems. The following corollary contains [La,
(0.3) Theorem].

COROLLARY 0.2 (Strong version of Fujita’s conjecture). Let X = X(∆) be an n-

dimensional (not necessarily Q-factorial) projective toric variety over k and D =
∑

j djDj

be a Q-divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every

j . Assume that KX + D is Q-Cartier. Let L be a line bundle on X.

(1) Suppose that (L · C) ≥ n for every torus invariant integral curve C ⊂ X. Then

KX + D + L is nef unless X ≃ Pn,
∑

j dj < 1 and L ≃ OP n(n).

(2) Suppose that (L · C) ≥ n+ 1 for every torus invariant integral curve C ⊂ X. Then

KX + D + L is ample unless X ≃ Pn, D = 0 and L ≃ OP n(n + 1).

Of course, we can recover [Mu, Theorem 0.3] easily if we assume that X is non-singular
and D is reduced. See also Remark 3.3.

In Section 5, we collect several results obtained by Minimal Model Program on toric
varieties. We need Lemma 5.8 for the proof of Theorem 0.1. We prove that every toric variety
has a small projective toric Q-factorialization. For related topics, see [OP, Section 3]. After
the present author wrote this paper, the book [Ma] was published. Chapter 14 of [Ma] explains
Mori’s Program on toric varieties very nicely and corrects some errors in [Re]. The readers
interested in Mori’s Program on toric varieties are recommended to see [Ma].

Part of this paper was obtained in 1999, when the author was a Research Fellow of the
Japan Society for the Promotion of Science. The essential parts were done during his visit to
Alfréd Rényi Institute of Mathematics. He would like to express his gratitude to Professors
Masanori Ishida, Shigefumi Mori, Tadao Oda, Takeshi Kajiwara and Hiromichi Takagi, who
gave him various advice and useful comments. He would like to thank Doctor Hiroshi Sato,
who gave him various advice and answered his questions. He would also like to thank Doctor
Takeshi Abe, who led him to this problem. Finally, the author thanks the referee, whose
comments made this paper more readable.

1. Preliminaries. In this section, we recall basic notions of toric varieties and fix our
notation. For the proofs, see [Od], [Fl], [Re] or [Ma, Chapter 14].

1.1. Let N ≃ Zn be a lattice of rank n. A toric variety X(∆) is associated to a fan, a
correction of convex cones σ ⊂ NR = N ⊗Z R satisfying the following:
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(i) Each convex cone σ is a rational polyhedral in the sense that there are finitely
many v1, . . . , vs ∈ N ⊂ NR such that

σ = {r1v1 + · · · + rsvs; ri ≥ 0} =: 〈v1, . . . , vs〉 ,

and it is strongly convex in the sense that

σ ∩ −σ = {0} .

(ii) Each face τ of a convex cone σ ∈ ∆ is again an element in ∆.
(iii) The intersection of two cones in ∆ is a face of each cone.

DEFINITION 1.2. The dimension dim σ of σ is the dimension of the linear space
R · σ = σ + (−σ) spanned by σ .

We define the sublattice Nσ of N generated (as a subgroup) by σ ∩ N as follows:

Nσ := σ ∩ N + (−σ ∩ N) .

If σ is a k-dimensional simplicial cone, and v1, . . . , vk are the first lattice points along
the edges of σ , the multiplicity of σ is defined to be the index of the lattice generated by the
{vi} in the lattice Nσ ;

mult(σ ) := [Nσ : Zv1 + · · · + Zvk] .

We note that X(σ) is non-singular if and only if mult(σ ) = 1.

The following is a well-known fact. See, for example, [Ma, Lemma 14-1-1].

LEMMA 1.3. A toric variety X(∆) is Q-factorial if and only if each cone σ ∈ ∆ is

simplicial.

1.4. The star of a cone τ can be defined abstractly as the set of cones σ in ∆ that
contain τ as a face. Such cones σ are determined by their images in N(τ) := N/Nτ , that is,
by

σ̄ = σ + (Nτ )R/(Nτ )R ⊂ N(τ)R .

These cones {σ̄ ; τ ≺ σ } form a fan in N(τ), which we denote by Star(τ ). We set V (τ) =

X(Star(τ )). It is well-known that V (τ) is an (n − k)-dimensional closed toric subvariety of
X(∆), where dim τ = k. If dim V (τ) = 1 (resp. n − 1), then we call V (τ) a torus invariant

curve (resp. torus invariant divisor). For the details about the correspondence between τ and
V (τ), see [Fl, 3.1 Orbits].

1.5 (Intersection Theory). Assume that ∆ is simplicial. If σ, τ ∈ ∆ span γ with
dim γ = dim σ + dim τ , then

V (σ) · V (τ) =
mult(σ ) · mult(τ )

mult(γ )
V (γ )

in the Chow group A∗(X)Q. For the details, see [Fl, 5.1 Chow groups]. If σ and τ are
contained in no cone of ∆, then V (σ) · V (τ) = 0.
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2. Toric Fano variety. In this section, we investigate Q-factorial toric Fano varieties
with Picard number one. The computations in this section are crucial for the proof of the main
theorem: Theorem 0.1. Proposition 2.9 is the main result of this section.

2.1. First, let us recall weighted projective spaces. We adopt toric geometric descrip-
tions. This helps the readers to understand Theorem 0.1, although it is not necessary for the
proof of Theorem 0.1.

2.2 (cf. [Fl, p. 35]). Let P(d1, . . . , dn+1) be a weighted projective space. To construct
this as a toric variety, we start with the fan whose cones are generated by proper subsets of
{v1, . . . , vn+1}, where any n of these vectors are linearly independent, and their sum is zero.
The lattice N is taken to be generated by the vectors ei = (1/di) · vi for 1 ≤ i ≤ n + 1. The
resulting toric variety is in fact P = P(d1, . . . , dn+1). We note that Pic P ≃ Z.

Let fi be a unique primitive lattice point in the cone 〈ei〉 with ei = uifi for ui ∈ Z>0.
We put d = gcd(u1d1, . . . , un+1dn+1) and define ci = (1/d)uidi for every i. Then we
obtain that P(d1, . . . , dn+1) ≃ P(c1, . . . , cn+1) and

∑

cifi = 0. By changing the order,
we can assume that c1 ≤ c2 ≤ · · · ≤ cn+1. We note that −KP =

∑

V (fi). Let τ be the
(n − 1)-dimensional cone 〈f1, . . . , fn−1〉. Then we have

−KP · V (τ) =

n+1
∑

i=1

V (fi) · V (τ) =
c

cncn+1

( n+1
∑

i=1

ci

)

≤ n + 1 ,

where c = gcd(cn, cn+1). We note that

V (fi) · V (τ) =
cci

cncn+1
.

For calculations of intersection numbers, we recommend the readers to see 1.5, [Fl, p.100]
and [Re, (2.7)]. We note that gcd(c1, . . . , ci−1, ci+1, . . . , cn+1) = 1 for every i, which will
be proved in Proposition 2.3 below. If the equality holds in the above equation, then ci = 1
for every i. Thus, we obtain P ≃ Pn.

PROPOSITION 2.3. Let P(d1, . . . , dn+1) be a weighted projective space. We suppose

that gcd(d1, . . . , dn+1) = 1. Then, gcd(d1, . . . , di−1, di+1, . . . , dn+1) = 1 if and only if ei

is primitive in 〈ei〉 ∩ N .

In particular, in 2.2, gcd(c1, . . . , cn+1) = 1 and gcd(c1, . . . , ci−1, ci+1, . . . , cn+1) =

1 for every i by the construction.

PROOF. We can assume that i = 1 without loss of generality.
First, we put gcd(d2, . . . , dn+1) = d and assume that e1 is primitive. Then we can write

−(1/d)(d2e2 + · · · + dn+1en+1) = ae1 for a non-zero integer a. Thus d1 = da. By the
assumption gcd(d1, . . . , dn+1) = 1, we have that d = 1.

Next, we assume that e1 is not primitive. Then we can write e1 = af1, where f1 is
a primitive lattice point in 〈ei〉 ∩ N and a is an integer with a ≥ 2. We can write f1 =

l1e1 + · · · + ln+1en+1, where li ∈ Z. Thus (al1 − 1)e1 + al2e2 + · · · + aln+1en+1 = 0. Since
d1e1 +· · ·+dn+1en+1 = 0 and gcd(d1, . . . , dn+1) = 1, there exists a non-zero integer b such
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that
{

bd1 = al1 − 1

bdi = ali for i ≥ 2 ,

from which we can easily check that gcd(d2, . . . , dn+1) �= 1. ✷

Let us give some examples, which are easy exercises of the formula in 2.2.
2.4. If n = 2, then c = 1, since f1 is primitive and

∑

cifi = 0. Therefore, we have

−KP · V (τ) =
1

c2c3

( 3
∑

i=1

ci

)

≤
1

2
+

1

2
+ 1 ≤ 2 = n

when P �≃ P2. So, we have that −KP · V (τ) ≤ n if n = 2 and P �≃ P2. If −KP · V (τ) = 2,
then P ≃ P(1, 1, 2).

2.5 (cf. Proposition 2.9 below). When n ≥ 3, the above inequality in 2.4 is not true.
Assume that n ≥ 3. Let P be an n-dimensional weighted projective space P(l − 1, l − 1,

l, . . . , l), where l ≥ 2. Then we obtain

−KP · V (τ) = n + 1 −
2

l
.

So, we have −KP · V (τ) > n when l ≥ 3. If we make l large, then −KP · V (τ) becomes
close to n + 1.

2.6. Let P = P(1, . . . , 1, l − 1, l) be an n-dimensional weighted projective space with
l ≥ 2 and n ≥ 2. Then we have

−KP · V (τ) =
n + 2l − 2

l(l − 1)
.

Thus, if we make l large, then −KP · V (τ) becomes close to zero.
2.7. Next, we treat Q-factorial toric Fano varieties with Picard number one. This type

of varieties plays an important role for the analysis of extremal contractions. Here, we adopt
the following description 2.8 for the definition of Q-factorial toric Fano varieties with Picard
number one. By this, it is easy to see that every extremal contraction contains them in the
fibers (see Proof of the theorem below). Of course, weighted projective spaces are in this
class.

2.8 (Q-factorial toric Fano varieties with Picard number one). Now we fix N ≃ Zn.
Let {v1, . . . , vn+1} be a set of primitive vectors such that NR =

∑

i R≥0vi . We define n-
dimensional cones

σi := 〈v1, . . . , vi−1, vi+1, . . . , vn+1〉

for 1 ≤ i ≤ n + 1. Let ∆ be the complete fan generated by n-dimensional cones σi and their
faces for every i. Then we obtain a complete toric variety X = X(∆) with Picard number
ρ(X) = 1. We call it a Q-factorial toric Fano variety with Picard number one. We define
(n − 1)-dimensional cones µi,j = σi ∩ σj for i �= j . We can write

∑

i aivi = 0, where
ai ∈ Z>0, gcd(a1, . . . , an+1) = 1, and a1 ≤ a2 ≤ · · · ≤ an+1 by changing the order. Then



556 O. FUJINO

we obtain

0 < V (vn+1) · V (µn,n+1) =
mult(µn,n+1)

mult(σn)
≤ 1 ,

V (vi) · V (µn,n+1) =
ai

an+1
·

mult(µn,n+1)

mult(σn)
,

and

−KX · V (µn,n+1) =

n+1
∑

i=1

V (vi) · V (µn,n+1)

=
1

an+1

( n+1
∑

i=1

ai

)

mult(µn,n+1)

mult(σn)
≤ n + 1 .

For the procedure to compute intersection numbers, see 1.5 or [Fl, p. 100]. If −KX·

V (µn,n+1) = n + 1, then ai = 1 for every i and mult(µn,n+1) = mult(σn).

PROPOSITION 2.9. If X �≃ Pn, then there exists some pair (l,m) such that −KX ·

V (µl,m) ≤ n.

PROOF. Assume the contrary. Then we obtain

−KX · V (µk,n+1) =
1

an+1

( n+1
∑

i=1

ai

)

mult(µk,n+1)

mult(σk)
> n

for 1 ≤ k ≤ n. Thus

(n + 1)an+1 ≥

n+1
∑

i=1

ai >
mult(σk)

mult(µk,n+1)
nan+1

for every k. Since
mult(σk)

mult(µk,n+1)
∈ Z>0 ,

we have that mult(σk) = mult(µk,n+1) for every k. This implies that ak divides an+1 for all
k.

CLAIM. a1 = · · · = an+1 = 1.

PROOF OF CLAIM. If a1 = an+1, then we obtain the required results. So, we assume
that a1 �= an+1. It follows from this assumption that a2 �= an+1, since v1 is primitive and
∑

i aivi = 0. In this case, we have

−KX · V (µk,n+1) =
1

an+1

( n+1
∑

i=1

ai

)

≤ n .

We note that
ai

an+1
≤

1

2

for i = 1, 2, which is a contradiction. So we obtain that a1 = · · · = an+1 = 1. ✷
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In this case, −KX ·V (µi,j ) > n implies that −KX ·V (µi,j ) = n+1 for every pair (i, j).
Then mult(µi,j ) = mult(σi) for i �= j . So, we have that mult(σi) = 1 for every i (cf. [Fl,
p. 48 Exercise]). Therefore, we obtain X ≃ Pn. This is a contradiction. ✷

REMARK 2.10. The usual definition of Fano varieties is the following: X is Fano if
−KX is an ample Q-Cartier divisor. It is easy to check that the notion of Q-factorial toric
Fano varieties with Picard number one by the usual definition coincides with ours.

3. Proof of the main theorem. In this section, we prove our main theorem: Theorem
0.1.

3.1. Let us recall the main results of [Re] without proofs. For the proofs, see the origi-
nal article [Re] or [Ma, Chapter 14].

Let X = X(∆) be a Q-factorial projective toric variety. Then the cone of curves NE(X)

is spanned by a finite number of extremal rays (see [Ma, Proposition 14-1-2]). Let R be an
extremal ray of NE(X). Then there exists an (n − 1)-dimensional cone w = 〈e1, . . . , en−1〉

in ∆ such that R = R≥0[V (w)]. Since ∆ is simplicial, w separates two n-dimensional cones
∆n and ∆n+1 in ∆. We write ∆n = 〈e1, . . . , en−1, en+1〉 and ∆n+1 = 〈e1, . . . , en〉. We
assume that ei is a primitive lattice point in 〈ei〉 ∩ N . We can write

n+1
∑

i=1

aiei = 0

with an+1 = 1; since en and en+1 lie on opposite sides of w, it follows that an > 0. By
reordering the ei , we can assume that











ai < 0 for 1 ≤ i ≤ α

ai = 0 for α + 1 ≤ i ≤ β

ai > 0 for β + 1 ≤ i ≤ n + 1 ;

here 0 ≤ α ≤ β ≤ n − 1. By [Re], there is a toric morphism ϕR : X → Y : ϕR∗OX ≃ OY

and for a curve C ⊂ X, ϕR(C) = pt ∈ Y if and only if [C] ∈ R. Furthermore, let

A −→ B

∩ ∩

ϕR : X −→ Y

be the loci on which ϕR is not an isomorphism; A and B are the irreducible toric strata corre-
sponding to the cones 〈e1, . . . , eα〉 and 〈e1, . . . , eα, eβ+1, . . . , en+1〉 respectively; dim A =

n − α, dim B = β − α and ϕR|A : A → B has equi-dimensional fibers, all of whose fibers
are Q-factorial toric Fano varieties of dimension n − β. See Remark 3.2 below.

We note that the contraction ϕR corresponds to the operation “removing” all the walls w

with [V (w)] ∈ R. For the details, see [Re, §2] and [Ma, 14.1, 14.2]. We put σ = 〈e1, . . . , eβ〉.
We can check that P := V (σ) ⊂ X is a Q-factorial toric Fano variety with Picard number
ρ(P ) = 1. This is an easy consequence of the fact that ∆j := 〈e1, . . . , ej−1, ej+1, . . . , en+1〉
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is an n-dimensional cone in ∆ for β + 1 ≤ j ≤ n + 1 and
∑

ajej = 0. We define (n − 1)-
dimensional cones wkl := ∆k ∩∆l for k �= l. Then [V (wkl)] ∈ R for β + 1 ≤ k < l ≤ n+ 1.
So, we can see that ϕR contracts P to a point. This is sufficient for our purpose. For more
detailed discussions about ϕR|A : A → B, see [Ma, Corollary 14-2-2].

REMARK 3.2. In [Re, (0.1)], it is stated that any fiber of an extremal contraction is a
weighted projective space. That is, P is a weighted projective space as in the above notation
3.1. However, this is not true, since there exists a Q-factorial toric Fano variety with Picard
number one that is not a weighted projective space. Matsuki explains this error nicely in [Ma,
Remark 14-2-3].

PROOF OF THE THEOREM. Step 1. We assume that X is Q-factorial. Let R =

R≥0[C] be an extremal ray. Then there exists an elementary contraction ϕR : X → Y ,
which corresponds to the extremal ray R. The Q-factorial toric Fano variety P = V (σ) ⊂ X

with Picard number ρ(P ) = 1, which corresponds to the cone σ = 〈e1, . . . , eβ〉, is a fiber of
ϕR|A : A → B (see 3.1). We note that

KP = −

n+1
∑

i=β+1

V (ρ̃i) ,

where ρ̃i = 〈e1, . . . , eβ , ei〉 for β+1 ≤ i ≤ n+1. On the other hand, V (ρ̃i) = biV (ei)·V (σ)

for some bi ∈ Z>0, since the cones are simplicial (see 1.5 or [Fl, p. 100]).
Let τ̃ be an (n − 1)-dimensional cone containing σ . Then we have that

KP · V (τ̃ ) = −

n+1
∑

i=β+1

V (ρ̃i) · V (τ̃ )

= −V (τ̃) ·

( n+1
∑

i=β+1

biV (ei) · V (σ)

)

= V (τ̃ ) ·

(

KX +
∑

every ray

V (ei) −

n+1
∑

i=β+1

biV (ei)

)

= V (τ̃ ) ·

(

KX +

n+1
∑

i=β+1

(1 − bi)V (ei) +
∑

others

V (ei)

)

≤ (KX + D) · V (τ̃ ) .

We now note that

KX +
∑

every ray

V (ei) ∼ 0 ,

and D can be written as
∑

j djV (ej ) with 0 ≤ dj ≤ 1 by the assumption. Also, note that
V (τ̃) · V (ei) > 0 if and only if β + 1 ≤ i ≤ n + 1 by [Re, (2.2)] (see also [Re, (2.4), (2.7),
(2.10)]). Choose τ̃ as in the above argument 2.8, that is, −KP · V (τ̃ ) ≤ n − β + 1, where
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dim P = n − β. Then, by the above argument and the choice of τ̃ ,

−(KX + D) · V (τ̃ ) ≤ −KP · V (τ̃ ) ≤ n − β + 1 .

Therefore, if the minimal length of a (KX + D)-negative extremal ray is greater than n, then
β = α = 0. Thus we have X ≃ Pn and

∑

j dj < 1 by Proposition 2.9. Hence, we obtain the
required result when X is Q-factorial.

Step 2 (cf. [La, (2.4) Lemma]). We assume that X is not Q-factorial. Let f : (X̃, D̃) →

(X,D) be a projective modification constructed in Lemma 5.8 below. We note that X �≃ Pn.
Let R = R≥0[C] be a (KX + D)-negative extremal ray. Take V (τ) ∈ R>0[C] such that
−(KX + D) · V (τ) is minimal. Also, take V (τ̃ ) on X̃ such that f∗V (τ̃ ) = V (τ). We
can write V (τ̃ ) =

∑

aiV (τ̃i) in NE(X̃) for ai ∈ R>0 such that V (τ̃i) is extremal and
−(KX̃ + D̃) · V (τ̃i) ≤ n for every i by Step 1, since X̃ is not a projective space. Since
∑

i aif∗V (τ̃i) = V (τ) ∈ R, we have that f∗V (τ̃i) ∈ R for every i. So, there exists some
i such that 0 �= f∗V (τ̃i) = bV (τ) in R for b ≥ 1, since −(KX + D) · V (τ) is minimal.
Therefore,

−(KX + D) · V (τ) = −
1

b
(KX̃ + D̃) · V (τ̃i) ≤ n .

Thus we complete the proof. ✷

REMARK 3.3. In Step 1 of the proof of the theorem, we assume that X is non-singular.
Then we obtain that bi = 1 and V (τ̃) · V (ei) ∈ Z. We note that V (τ̃ ) · V (ei) > 0 if and only
if β + 1 ≤ i ≤ n + 1. It is easy to check that P is an (n − β)-dimensional projective space
Pn−β and KP · V (τ̃ ) = −(n − β + 1). Thus, Proposition 4.3, Lemma 4.4 and Propositions
4.5, 4.6 in [Mu] can be checked easily by the above computation (see also [Re, (2.10) (i)]).
Therefore, we can recover [Mu, Section 4] without using vanishing theorems.

4. Applications to Fujita’s conjecture on toric varieties. In this section, we discuss
some applications of Theorem 0.1. Corollary 0.2 follows from Theorem 0.1 directly.

First, we recall some results used in this section. The following lemma is more or less
well-known to specialists. For the proof, see [Mu, Theorems 3.1, 3.2].

LEMMA 4.1. Let X be a projective toric variety and D a Q-Cartier divisor on X. Then

the following are equivalent:
(i) D is ample (resp. nef ).

(ii) D is positive (resp. non-negative) on NE(X) \ {0}.

Moreover, if D is Cartier, then D is nef if and only if OX(D) is generated by its global

sections.

PROOF OF COROLLARY 0.2. It is obvious by Theorem 0.1 and Lemma 4.1. ✷

COROLLARY 4.2. In Corollary 0.2 (1), assume further that KX + D is Cartier. Then

KX + D + L is generated by global sections unless X ≃ Pn, D = 0 and L ≃ OPn(n).

PROOF. It is obvious by Corollary 0.2 (1) and Lemma 4.1. ✷
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By combining Corollary 0.2 with Demazur’s theorem: Every ample divisor on a smooth
complete toric variety is very ample ([Od, §2.3 Corollary 2.15]), we obtain the following
result, which is the original version of Fujita’s conjecture on toric varieties.

COROLLARY 4.3 (Fujita’s conjecture for toric varieties). Let X be a non-singular pro-

jective toric variety over k and L an ample line bundle on X. Then KX + (n + 1)L is

generated by global sections and KX + (n+ 2)L is very ample, where n = dim X. Moreover,

if (X,L) �≃ (Pn,OPn(1)), then KX + nL is generated by global sections and KX + (n + 1)L

is very ample.

REMARK 4.4. For very ampleness on singular toric varieties, see [La, 3. Very ample-
ness]. In [La], Q-very ample divisors are defined.

5. Remarks on Minimal Model Program for toric varieties. In this section, we use
the basic notation in [KM] and [Ut]. For the details about Minimal Model Program (MMP,
for short), see [KM] and [Ut]. Let us first recall the definition of singularities.

DEFINITION 5.1 (cf. [KM, Definition 2.34]). Let X be a normal variety and D a Q-
divisor on X such that KX + D is Q-Cartier. Let g : Y → X be a resolution of singularities
such that g

−1
∗ D ∪ Exc(g ) is a simple normal crossing divisor, where g

−1
∗ D is the strict trans-

form of D and Exc(g ) is the exceptional locus of g . Write

KY = g
∗(KX + D) +

∑

aiEi ,

where Ei is a divisor contained in Supp(g −1
∗ D ∪ Exc(g )). If ai ≥ −1 for every i, we say that

the pair (X,D) is log-canonical. If D = 0 and ai > −1 for every i, we say that (X, 0) is
log-terminal.

The following lemma, which may help the readers to understand this section, is well-
known to specialists.

LEMMA 5.2. Let X be a complete toric variety over k and D the complement of the

big torus in X as a reduced divisor. Then the pair (X,D) is log-canonical. Furthermore, if

KX is Q-Cartier, then the pair (X, 0) is log-terminal.

PROOF. Let g : Y → X be a toric resolution of singularities. Then we have

KY + E = g
∗(KX + D) ,

where D (resp. E) is the complement of the big torus in X (resp. Y ) as a reduced divisor.
Thus, the pair (X,D) is log-canonical by Definition 5.1. If KX is Q-Cartier, then D is Q-
Cartier, since KX + D ∼ 0. Note that Suppg ∗D = SuppE and g

∗D is an effective Q-divisor.
Therefore, the pair (X, 0) is log-terminal by Definition 5.1. ✷

We now briefly review Minimal Model Program for toric varieties. We recommend the
readers interested in MMP to see [KM, §3.7]. In the proof of Theorem 5.5, we explain how
to use this process.
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5.3 (Minimal Model Program for toric varieties). We start with X0 := X a Q-factorial
projective toric variety and a Q-divisor G0 := G on X. The aim is to set up a recursive
procedure which creates intermediate Xi and Gi . After finitely many steps, we obtain a
final objects X∗ and G∗. Assume that we already constructed Xi and Gi with the following
properties:

1. Xi is Q-factorial and projective.
2. Gi is a Q-divisor on Xi .
If Gi is nef, then we set X∗ := Xi and G∗ = Gi . Assume now that Gi is not nef. Then

we can take an extremal ray R of NE(Xi) such that R · Gi < 0. Thus we have a contraction
morphism ϕR : Xi → Yi . If dim Yi < dim Xi (in this case, we call ϕR a Fano contraction),
then we set X∗ := Xi and G∗ := Gi and stop the process. If ϕR is birational and contracts a
divisor (we call this a divisorial contraction), then we put Xi+1 := Yi , Gi+1 := ϕR∗Gi and
repeat this process. In the case when ϕR is birational and an isomorphism in codimension
one (we call this a flipping contraction), then there exists the log-flip ψ : Xi ��� X+

i . Here,
a log-flip means an elementary transformation with respect to R (see [Re, (0.1)]). See also
[KMM, §5-2]. Note that ψ is an isomorphism in codimension one. We put Xi+1 := X+

i ,
Gi+1 := ψ∗Gi and repeat this process. By counting the Picard number of Xi , divisorial
contractions can occur finitely many times. By [Ma, Proposition 14-2-11], every sequence
of log-flips terminates after finitely many steps. So, this process always terminates and we
obtain X∗ and G∗. We call this process (G-)Minimal Model Program, where G is a divisor
used in the process.

REMARK 5.4. Let X be a Q-factorial complete toric variety and X → Y be a projective
surjective toric morphism to a complete toric variety Y . Then the above process works over

Y with minor modifications. For example, we use relative contraction theorem instead of
contraction theorem, and so on. We call this process Minimal Model Program over Y or
relative Minimal Model Program. For the details, see [Ma, Chapter 14] or [KMM, §5-2].

The following is a variant of [Ut, 17.10 Theorem] for toric varieties.

THEOREM 5.5. Let X be a complete toric variety over k and g : Y → X a projective

birational toric morphism from a Q-factorial toric variety Y . Let E be a subset of the g -

exceptional divisors. Then there is a factorization

g : Y ��� X̃ −→ X

with the following properties:
(1) h : Y ��� X̃ is a local isomorphism at every generic point of the divisor that is not

in E ;
(2) h contracts every exceptional divisor in E ;
(3) h−1 : X̃ ��� Y contracts no divisor ;
(4) X̃ is projective over X and Q-factorial.
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Of course, the pair (X̃, 0) is log-terminal by Lemma 5.2. In particular, if E is the set of all

the g -exceptional divisors, then f : X̃ → X is small, that is, an isomorphism in codimension

one. We call this a small projective toric Q-factorialization.

PROOF. Let g : Y → X be as above and E =
∑

Ei (resp. D) the complement of the
big torus in Y (resp. X). We note that

KY + E = g
∗(KX + D) ∼ 0 .

Apply (KY +
∑

Ei �∈E
Ei +

∑

Ej ∈E 2Ej )-MMP over X. We repeat the procedure of MMP
briefly for emphasis. Note that divisorial contractions and log-flips always exist over X by
[Re, (0.1)] (see also [KMM, §5-2]). Here, a log-flip means an elementary transformation with
respect to a (KY +

∑

Ei �∈E
Ei +

∑

Ej ∈E 2Ej )-negative extremal ray in the terminology of [Re].
Since the relative Picard number ρ(Y/X) is finite, divisorial contractions can occur finite
times. Note that Fano contractions can not occur, since we apply Minimal Model Program
over X. So it is enough to check the termination of log-flips.

Assume that there exists an infinite sequence of log-flips:

Y0 ��� Y1 ��� · · · ��� Ym ��� · · · .

Let ∆ be the fan corresponding to Y0. Since the log-flips do not change one-dimensional cones
of ∆, there are numbers k < l such that Yk ≃ Yl over X. This is a contradiction because there
is a valuation v such that the discrepancies satisfy

a

(

v, Yk,
∑

Ei �∈E

Ei +
∑

Ej ∈E

2Ej

)

< a

(

v, Yl ,
∑

Ei �∈E

Ei +
∑

Ej ∈E

2Ej

)

(see [KM, Lemma 3.38]), where
∑

Ei �∈E
Ei +

∑

Ej ∈E 2Ej means the proper transform of it
on Yk or Yl . Therefore, we obtain f : X∗ → X. This X∗ has the required properties by [KM,
Lemma 3.39]. So we set X̃ := X∗. ✷

REMARK 5.6. Since we can take a projective toric desingularization as g : Y → X in
Theorem 5.5, there exists at least one small projective toric Q-factorialization for X.

The following is an application of relative Minimal Model Program. The proof is a
standard argument in the higher dimensional birational geometry.

PROPOSITION 5.7. Let X be a complete toric variety and fi : Xi → X be small

projective toric Q-factorialization for i = 1, 2. Then X1 and X2 can be obtained from each

other by a finite succession of elementary transformations1 .

SKETCH OF THE PROOF. Let H be a relatively ample divisor on X2 over X. Let H ′

be the strict transform of H on X1. Apply H ′-MMP over X. Since f1 : X1 → X is small,

1This elementary transformation was called flop in [OP] (see [OP, p. 397 Remark]). However, it might be better
to call it log-canonical flop from the log Minimal Model Theoretic viewpoint (cf. Lemma 5.2). See also [Ut, 6.8
Definition].
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we obtain a sequence of log-flips (elementary transformations with respect to H ′-negative
extremal rays) over X and finally we have X∗:

X1 ��� · · · ��� X∗

such that H ∗, the strict transform of H ′ is nef over X (see 5.3). By applying [KM, Lemma
6.39], we obtain that X∗ ≃ X2 over X. This means that X1 and X2 can be obtained from each
other by a finite succession of elementary transformations. ✷

By Theorem 5.5, we obtain the next lemma, which was already used in the proof of
Theorem 0.1.

LEMMA 5.8. Let X be a projective toric variety over k and D =
∑

j djDj be a Q-

divisor, where Dj is an irreducible torus invariant divisor and 0 ≤ dj ≤ 1 for every j .

Assume that KX + D is Q-Cartier. Then there exists a projective birational toric morphism

f : X̃ → X such that X̃ has only Q-factorial singularities and KX̃ + D̃ = f ∗(KX + D),

where D̃ =
∑

i d̃iD̃i is a Q-divisor such that D̃i is an irreducible torus invariant divisor and

0 ≤ d̃i ≤ 1 for every i.

By Sumihiro’s equivariant embedding theorem, we can remove the assumption that X is
complete.

COROLLARY 5.9 (Small projective toric Q-factorialization). Let X be a toric variety

over k. Then there exists a small projective toric morphism f : X̃ → X such that X̃ is

Q-factorial.

PROOF. We can compactify X by Sumihiro’s theorem [Od, §1.4]. So, this corollary
follows from Theorem 5.5 and Remark 5.6 easily. ✷

The existence of a small projective toric Q-factorialization implies the following.

COROLLARY 5.10. Let ∆ be a fan. Then there exists a projective simplicial subdivi-

sion ∆̃ of ∆, that is, the morphism X(∆̃) → X(∆) is projective and X(∆̃) is Q-factorial,

such that the set of one-dimensional cones of ∆̃ coincides with that of ∆.

REMARK 5.11. The above corollary seems to follow from the theory of Gelfand-
Kapranov-Zelevinskij decompositions. For details about GKZ-decompositions, see [OP, Sec-
tion 3], in particular, [OP, Corollary 3.8]. We note that [OP] generalized and reformulated
results on [Re].
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