
Notions of Average-Case Complexity for Random 3-SAT

Albert Atserias
�

Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. By viewing random 3-SAT as a distributional problem, we go over
some of the notions of average-case complexity that were considered in the liter-
ature. We note that for dense formulas the problem is polynomial-time on average
in the sense of Levin. For sparse formulas the question remains widely open de-
spite several recent attempts.

1 Introduction

The satisfiability problem for propositional logic is central to computational complexity.
The work of Cook [2] showed that the problem is NP-complete, even when restricted
to 3-CNF formulas, and is thus hard in the worst-case unless P � NP. Later on, the op-
timization versions of 3-SAT were also considered and showed hard. Namely, Hastad
[4] culminated the monumental work of the 1990s on PCPs by showing that the number
of clauses that can be satisfied simultaneously in a 3-CNF formula cannot be approx-
imated within a ratio better than

�����
in polynomial-time, unless P � NP. The current

decade is perhaps time for studying the average-case complexity of 3-SAT. Is it hard on
average as well, unless P � NP, or is it easier?

The program comes also motivated from the fact that a fairly natural probability
distribution on 3-CNF formulas has attracted the attention of many different commu-
nities, from AI to statistical physics, through combinatorics and mathematical logic.
Our aim here is to review the background for a complexity-theoretic approach to the
average-case complexity of random 3-SAT. In this short note we focus on the different
definitions of average-case complexity that were introduced in the literature and their
relationship. In the talk we will overview some of the partial results towards settling the
main open questions.

2 Notions of Average Case Complexity

For every �	��
 , let �������
������ �� ��
������ be a Boolean function. In order to simplify
notation, we will use � instead of � , and we will write �	��� to emphasize the fact
that � is actually a sequence of functions parameterized by � . It will be understood
from context that � denotes the sequence of functions ��� � in some cases, and the
particular function � in others. We adopt the framework of ensemble of distributions
suggested by Impagliazzo [5], where a different probability distribution is considered
�

Supported in part by CICYT TIC2001-1577-C03-02 and the Future and Emerging Technolo-
gies programme of the EU under contract number IST-99-14186 (ALCOM-FT).

for each input size. So let � ��� be a probability distribution on ��
�� ��� . We should
think of � as a sequence of distributions, one for each � �
 . The pair � � ����� is called a
distributional problem. Informally, the problem reads as follows: given a random input��� ��
������ drawn according to distribution � , compute ��	� � � .
Levin’s Average Case. Let � � �
��� be a distributional problem. Consider an algorithm�

computing � , and let � �� � ��
������ ��� � be its running time on inputs of
length � . What should it mean that the running time � of

�
be polynomial on average

with respect to � ? The obvious immediate candidate definition would be this: there
exists a � � � such that ����� ��� ����� ����� where ��� denotes expectation with respect
to � . Unfortunately, this simple definition suffers from a serious problem: the class
of functions that are polynomial on average under this definition is not closed under
polynomial images. Indeed, if we let � be the uniform distribution on ��
�� ��� , and let
� be such that ��� � � � � for all but one string �! in ��
 � ��� for which ��� �" � �$# ,
then � � � ��� �%��� ��� while � � � �'&(� �*)+�,# � . This lack of robustness would spoil any
attempt to build a theory of polynomial reducibilities among distributional problems. A
satisfactory remedy to this was discovered by Levin and reformulated by Impagliazzo
for ensembles of distributions: we say that � is polynomial on average with respect
to � if there exists a � � � such that � � � �.-�/(�0� �1��� ��� . It is now immediate from
this definition that the class of functions that is polynomial on average is closed under
polynomial functions. We say that a distributional problem � � �
��� has a polynomial-
time on average algorithm if there exists an algorithm

�
for � whose running time is

polynomial on average with respect to � .

Impagliazzo’s Benign Algorithms. Let � � � � ��
 � ��� � ��
������ be a Boolean
function. A prudent algorithm for � is one that, for every input �2� ��
������ , outputs
either �3� � � or 4 . We should think of 4 as a “don’t know answer”. Clearly, a prudent
algorithm is useful only if it rarely outputs 4 . We say that a distributional problem � � �����
has a polynomial-time benign algorithm if there exists a prudent algorithm

� � � �
56� for
� that is polynomial-time in 7 � 7 and � � 5 , and such that 8:9 � � � � � �
56� ��4;�=<>5 where
8?9 � denotes probability with respect to � . The last clause of this definition formalizes
the idea that the algorithm “rarely outputs 4 ”.

Impagliazzo [5] showed that the two notions introduced so far coincide, from which
we conclude that the concept is fairly robust. We reproduce the proof since it is infor-
mative.

Theorem 1 (Impagliazzo). Let � � �
��� be a distributional problem. Then, the following
are equivalent:

1. � � ����� has a polynomial-time on average algorithm.
2. � � ����� has a polynomial-time benign algorithm.

Proof : We start by 1. implies 2.: Let �@�!� �.-
/(�A�B<DC � . By Markov’s inequality, we have
8?9 � � ��� � ��EF�HGIC �����J��< � � G . Thus, for building a benign algorithm, it suffices to run the
polynomial-time on average algorithm for �HC � � 56�(� steps, and if it does not terminate,
output 4 . Next we show that 2. implies 1.: Suppose the benign algorithm runs in � � � 56�K�
steps. Run the benign algorithm with parameter 5 � � � # � � �JL � � ��� �NMAMKM until an output

different from 4 is returned. Then, the expectation of the #�� -th root of the running time
of this algorithm is bounded by �,# ��� -�/ & � � � # � L ���
-
/
& � � � L � � ���
-
/
& ������� � ��� � -�/ & �
since at most � � # of the inputs return 4 in the first round, at most � �JL in the second
round, and so on. ��

Certification Algorithms. Let � � ����� be a distributional problem. A sound algorithm
for � is one that, for every input � � ��
������ , if it outputs � , then indeed �3� � � � � .
Clearly, a sound algorithm

�
is useful only if it outputs � on a large fraction of the

“yes” instances, in other words, only if 7I8?9 � � �3� � � ���;��� 8?9 � � � � � � ���K� 7 is small. In
such cases we say that it is almost complete. We say that a distributional problem � � �����
has a polynomial-time certification algorithm if there exists a sound algorithm

� � � � 56�
for � that is polynomial in 7 � 7 and � � 5 , and such that 7I8?9 �	� �3� � � � �;�	� 8:9
�!� � � � � �
�;�I7 < 5 . The last clause of this definition formalizes the idea of almost completeness.
The relationship is now very easy to see:

Lemma 1. Let � � �
��� be a distributional problem. Then, if � � ����� has a polynomial-time
benign algorithm, then � � �
��� has a polynomial-time certification algorithm.

Proof : Let
� � � � 56� be the benign algorithm. Consider the following algorithm
 � � � 56� :

run the benign algorithm
� � � � 56� , and if it outputs 4 , output
 . Clearly,
 � � � 56� is sound.

Moreover, by soundness, we have 7�8?9 ��� �3� � � � �;��� 8?9I�	�
 � � �
56� � �K� 7�� 8?9 �	� �3� � ���

 � � �
56� � which in turn is bounded by 8?9(�	� � � � � 56� �D4K� < 5 . ��

If we put Theorem 1 and Lemma 1 together we see that if � � �
��� has a polynomial-
time on average algorithm, then � � ����� has a polynomial-time certification algorithm.
In the contrapositive form, if � � ����� is hard to certify, then � � ����� is hard on average.
Although we do not know whether the converse relationship holds in general, we note
in the next section that it holds for the particular case of random 3-SAT.

3 Random 3-SAT

Let � - �AMKMAM �
� be � propositional variables. A literal is a variable or its negation. A

3-clause is a tuple of three literals. A 3-CNF formula is a set of 3-clauses. Note that
the number of 3-clauses is exactly � # ����� . Thus, a 3-CNF formula can be encoded by a
binary string of length � #���� � denoting which clauses are present and which are not.

There are several probability distributions that have been considered in the litera-
ture. The one we adopt here is inspired from the theory of random graphs. The dis-
tribution � ��� is parameterized by a real number � ��� in �
����0� and consists in
choosing each clause with independent probability � . This probability model is some-
times referred to as the model A. The model B considers the number of clauses � as
fixed and chooses the formula uniformly within that set. Both these models have several
variants according to whether clauses are ordered tuples or sets, and may, or may not,
have repeated and complementary literals. As in the random graph model, which model
to use is often a matter of convenience, and rarely an important issue as far as the results
are concerned.

We are interested in the distributional problem ������� � � ����� , where ����� � � ������ � � is simply the unsatisfiability problem on 3-CNF formulas with � variables,
and �	� � is the probability distribution that we just described. Notice that here � is
not exactly the length of the input, but it is polynomially related. Notice also that � is
parameterized by � � � , and the complexity of the distributional problem may very
well depend on � . As a matter of fact, when � is large, it can be seen that ������� � � �
���
has a benign polynomial-time algorithm. Before proving that, we first show that for
all values of � that guarantee unsatisfiability of a random formula with overwhelming
probability, the three notions of average-case complexity considered so far coincide.

Theorem 2. Let � � �	��
'# �� � � ��& , with
� E
 . Then, the following are equivalent:

1. ������� � � �
��� has a polynomial-time on average algorithm.
2. ������� � � �
��� has a polynomial-time benign algorithm.
3. ������� � � �
��� has a polynomial-time certification algorithm.

Proof : By Theorem 1 and Lemma 1, it suffices to show that 3. implies 1. Let
� � � �
56� be

the certification algorithm. Assume its running time is � � � 56� � . Consider the following
algorithm. Run the certification algorithm with parameter 5 � � � #�� � �JL � � � � �KMAMKM until
either “unsatisfiable” is returned, in which case we return “unsatisfiable” as well, or
the parameter becomes smaller than #�� , in which case we run through all # truth
assignments to check whether � is satisfiable or not. By soundness of the certification
algorithm, it is clear that this algorithm is correct. Let us estimate the expectation of the� -th root of its running time for a constant � to be determined later.

When � � �	��
'# ��� � � � & , the probability that a random formula is satisfiable is # ���
for some constant � E
 , as it is easy to see. Let us consider the set of “satisfiable”
instances. For those instances, the running time of the algorithm can only be bounded
by � �

� - � #
�
��� � � #��

for some constant C � � , which is time #�� � for some other constant � �DC . Hence, the
“satisfiable” instances contribute to the expectation of the � -th root of the running time
by at most # ��� # � � / � . Let us now turn to the contribution to the expectation of the
“unsatisfiable” instances. The expectation of the � -th root of the running time for those
instances is bounded by

� #���� �;/ � � # � - � L ��� �;/ � � # � & � � ��� �;/ � � ��� � � # � �! - �,# ��� �K/"� � # � � # � � -
/"�
since at most � � # of the “unsatisfiable” instances miss the first round, at most � � L of
those miss the second round, and so on, until at most � � # of the instances miss all
rounds in which case the algorithm goes on to cycle through all # truth assignments in
time # � . It is now straightforward to see that if we take � large enough, say � E#� � � � ,
then the total expectation of the � -root of the running time is ��� ��� . ��

In general, the proof technique of this result applies to any distributional problem for
which the “no” instances represent a fraction that is inversely polynomial with respect

to the worst-case running time that it is required to solve the problem. Let us conclude
this paper with the promised benign algorithm when � is large. The reader will notice
that the proof below resembles the arguments in [1].

Theorem 3. Let �����'� � � ��� . Then ������� � � ����� has a polynomial-time benign algo-
rithm.

Proof sketch: Consider the following algorithm. Let � be the input 3-CNF formula and
let 5 be the error parameter. Let �FE
 be a small constant to be determined later. If
5�� # ��� , simply run through all # truth assignments to check whether � is satisfiable
or not. If 5 � # ��� , find the most popular variable � in � . Consider the set of 2-clauses
in � 7 � � and � 7 � � - , and run a polynomial-time 2-SAT algorithm on the resulting 2-
CNF formulas. If both are unsatisfiable, report “unsatisfiable”. Otherwise, output 4 .

It should be clear from its definition that the algorithm is prudent. It is also clear that
the running time of the algorithm is polynomial in � and � � 5 . Indeed, when 5�� # ��� ,
the running time is # ���
	 which is polynomial in � � 5 , and in the other case the running
time is polynomial in � . Let us argue that the probability that it outputs 4 is smaller than
5 . When 5�� # ��� , the algorithm never outputs 4 . So let us assume that 5 � # ��� . Each
variable appears in ��� ��& � clauses. Hence, the expected number of occurrences of each
variable is ��� ��& �!� , which is �'� ��� since � ���'� � � ��� . It follows from concentration
bounds that the probability that a particular variable appears less than half this number
of times is ��� � �	 . Thus, by Markov’s inequality, the probability that some variable
appears �'� ��� times is at least � � �� ��� � �	 . The number of 2-clauses in � 7 � � and� 7 � � - is thus �'� ��� with at least that much probability. Moreover, the resulting 2-CNF
formulas are random, so the probability that one of them is satisfiable is bounded by
��� �
	 , as is well-known. All in all, the probability that the algorithm does not report
“unsatisfiable” is bounded by # ��� � �	 . Thus, the probability that the algorithm outputs
4 is bounded by 5 since 5 �># ��� . Here � is chosen to be the hidden constant in the
��� �
	 bound. ��

It follows from this result and Theorem 1 that when �����'� � � ��� , the distributional
problem � ����� � � ����� is solvable in polynomial-time on average in the sense of Levin.
For � � ��� � � � �(/ & ��� � , recent work has focused on certification algorithms [3]. For
� � ��� � � � &0� , the problem is widely open.

References

1. P. Beame, R. Karp, T. Pitassi, and M. Saks. The efficiency of resolution and Davis-Putnam
procedures. SIAM Journal of Computing, pages 1048–1075, 2002.

2. S. Cook. The complexity of theorem proving procedures. In 3rd Annual ACM Symposium on
the Theory of Computing, pages 151–158, 1971.

3. J. Friedman and A. Goerdt. Recognizing more unsatisfiable random 3-SAT instances effi-
ciently. In 28th International Colloquium on Automata, Languages and Programming, vol-
ume 2076 of Lecture Notes in Computer Science, pages 310–321. Springer-Verlag, 2001.

4. J. Hastad. Some optimal inapproximability results. Journal of the ACM, 48:798–859, 2001.
5. R. Impagliazzo. A personal view of average-case complexity. In 10th IEEE Structure in

Complexity Theory, pages 134–147, 1995.

