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Abstract. Starting with the seminal paper of Impagliazzo and
Rudich [17], there has been a large body of work showing that various
cryptographic primitives cannot be reduced to each other via “black-box”
reductions. The common interpretation of these results is that there are
inherent limitations in using a primitive as a black box, and that these
impossibility results can be overcome only by explicitly using the code
of the primitive in the construction.
In this paper we revisit these negative results, give a more careful tax-
onomy of the ways in which “black-box reductions” can be formalized,
strengthen some previous results (in particular giving unconditional im-
possibility results for reductions that were previously only shown to im-
ply P �= NP ), and offer a new interpretation of them: in many cases,
there is no limitation in using a primitive as a black box, but there is
a limitation in treating adversaries as such. In particular, these nega-
tive results may be overcome by using the code of the adversary in the
analysis.

1 Introduction

In most of the current body of work in the foundations of cryptography, crypto-
graphic protocols are not shown to be unconditionally secure, but, rather, their
security is reduced to the security of seemingly weaker or simpler primitives. We
now know that, if one-way functions exist, then there exist private-key encryption
and message authentication schemes, as well as (public-key) digital signatures
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and zero-knowledge proofs [14,12,24,21,13]. On the other hand, if one-way func-
tions do not exist then most interesting cryptographic problems, including all of
the above, have no solution [15,23].

Some cryptographic primitives, however, such as public-key encryption,
key agreement, oblivious transfer, collision-resistant hash functions, and non-
interactive zero knowledge, are not known to be equivalent to the existence of
one-way functions. Furthermore, several of the known constructions based on
one-way functions run in polynomial time but are extremely inefficient (e.g. the
construction of pseudorandom generators from one-way functions [14], which is a
component in several other constructions). Since these are some of the main gaps
in our systematization of the foundations of cryptography, it is natural to ask
whether additional primitives, such as public-key encryption, can be constructed
from one-way functions, and whether known constructions can be made more
efficient. One has to be careful in formalizing such questions. It is commonly
believed that one-way functions exist and that public-key encryption is possible,
which would mean that the existence of one-way functions implies the existence
of public key encryption in a trivial logical sense. The question is whether the
techniques that we typically use to prove implications of one-way functions in
cryptography have some inherent limitation that prevents us from deriving the
existence of public-key encryption from one-way functions.

Impagliazzo and Rudich [17] were the first to give a formal treatment of such
issues. They observed that most implications in cryptography are proved using a
reduction, where the starting primitive is treated as an oracle, or a “black box,”
and the analysis shows that if the primitive is secure in a black-box sense then
the constructed primitive is also secure. Impagliazzo and Rudich consider vari-
ous models of black-box reductions (where there are some additional constraints
beyond the primitive being treated as a black box) and show that, in one such
model, a black-box construction of key agreement based on one-way functions
implies a proof that P �= NP . They also show that in a more constrained model
such a construction is unconditionally impossible. The formal framework of Im-
pagliazzo and Rudich has subsequently been used to address other “implication”
questions, such as one-way functions versus one-way permutations [26,19], one-
way functions versus collision-resistant hash functions [27], and between key
agreement, oblivious transfer, public-key encryption and trapdoor functions and
permutations [9,10]. Variants of the framework have also been used to address
the issue of the number of rounds in KA protocols [25], of the efficiency of con-
structions of universal one-way hash functions based on one-way permutations
[20,8], of pseudorandom generators based on one-way permutations [8] and of
public-key encryption based on trapdoor permutations [7].

The common interpretation of these results is that there are inherent limita-
tions in using a primitive as a black box, and that these impossibility results can
be overcome only by explicitly using the code of the primitive in the construction.

In this paper we revisit these negative results, give a more careful taxonomy
of the ways in which “black-box reductions” can be formalized, strengthen some
previous results (in particular giving unconditional impossibility results for re-
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ductions that were previously only shown to imply P �= NP ), and offer a new
interpretation of them: in many cases, there is no limitation in using a prim-
itive as a black box, but there is a limitation in treating adversaries as such.
In particular, these negative results may be overcome by using the code of the
adversary in the analysis.

1.1 Impossibility Results for Reductions

The starting point of the work of Impagliazzo-Rudich is the observation that
most known cryptographic constructions based on one-way functions treat the
one-way function as a “black box.” (Exceptions are discussed in Section 1.5.)
Roughly speaking, a black-box (BB) reduction of a primitive Q to one-way func-
tions (OWF) is a construction that uses oracle access to a function f , and guar-
antees that if f is one-way then the construction is secure. In particular:

– The construction does not use the code of the function f ;
– The construction is well defined and efficient even if f is not efficiently com-

putable (as long as it is given as an oracle);
– There is a proof of security that shows that an adversary breaking the pro-

tocol yields an adversary that inverts f .

There are various ways to formalize the third condition (which we make
precise in Section 2. One possibility considered in [17], which we call fully-BB, is
that there is an algorithm that converts every adversary that supposedly breaks
the construction (according to the definition of security for Q) into a procedure
that inverts f . This algorithm is efficient and it is given oracle access to the
adversary and to f . In this setting, both the construction and the analysis are
black box. Another way to look at it is that both the primitive and the adversary
are treated as black boxes. Most reductions in the cryptography literature are
fully-BB.

Impagliazzo and Rudich [17] prove that there can be no fully-BB reduction of
key agreement (KA) to OWF. Since public-key encryption, trapdoor permuta-
tions and oblivious transfer all imply KA (by fully-BB reductions), it then follows
that there are no fully-BB transformations of OWF into these other primitives
as well. It is natural to ask whether the impossibility is due to the fact both the
primitive and the adversaries are treated as oracles, or if it is enough that just
the primitive is.

Impagliazzo and Rudich also consider a weaker form a BB reduction of KA
to OWF, a form that we call semi-BB in this paper. In a semi-BB reduction,
we have a BB construction of KA based on a function f given as an oracle. The
analysis proves that for every efficient adversary with oracle to f that breaks
the construction, there is an efficient adversary that inverts f if given oracle
access to f . This seems to formalize the notion of a BB construction with an
arbitrary analysis, but we argue that it does not. If f is a one-way function in
the black-box sense,1 then the construction has to be secure not only against
1 Meaning that no efficient procedure with oracle access to f can invert f on a non-

negligible fraction of inputs.
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efficient adversaries, but also against adversaries that have oracle access to f . A
proof technique that makes use of the code of the adversary is not BB in this
sense.

Impagliazzo and Rudich prove that, if P = NP , there is no semi-BB reduc-
tion of KA to OWF. This means that, in order to come up with a proof that
OWF implies KA, one must either avoid semi-BB reductions or find, along the
way, a proof that P �= NP . Impagliazzo and Rudich prove their result by estab-
lishing the stronger (and independently interesting) statement that if P = NP ,
then there is no secure KA in the random oracle model. (Note that a random
oracle is one-way in the black-box sense even if P=NP.)

1.2 The Limitations of Semi-BB Reductions

In this paper we prove, unconditionally, that there is no semi-BB reduction of
OWF to KA. We prove this unconditional result by embedding a PSPACE oracle
into a small part of the random oracle used in the Impagliazzo–Rudich result,
and use the fact that PPSPACE = NPPSPACE . This embedding technique is
due to Simon [27].

Following the lead of Impagliazzo and Rudich, several other works explored
the limitations of black-box reductions with examples being [25,27,20,8,9,10].
Most results ruled out fully-BB reductions unconditionally, and semi-BB reduc-
tions if P=NP. An exception is the work of Gertner et al [10], which involves a
model that is slightly different from the one of [17], and which only rules out
fully-BB reductions. The embedding technique allows us to prove that semi-BB
reductions are unconditionally impossible in all case where semi-BB reductions
were previously ruled out conditionally.

More generally, we show that, under mild conditions satisfied by most natural
primitives, semi-BB reductions are equivalent to relativizing reductions (proofs
that the implication holds relative to any oracle). Since the above works rule out
relativizing reductions unconditionally, we obtain unconditional impossibility of
semi-BB reductions.

1.3 The Power of Mildly-BB Reductions

Semi-BB reductions have typically been considered to be BB constructions with
arbitrary proofs, and negative results about semi-BB reductions have typically
been interpreted as limitations for constructions that do not use the code of the
primitive. In this paper, we present a different perspective.

We first formalize the notion of a BB construction with an arbitrary proof,
which we call a mildly-BB reduction. In a mildly-BB reduction of, say, KA to
OWF, the construction refers to an oracle function, and it is secure whenever
the oracle function is one-way in a black-box sense, but the analysis of the
construction may be arbitrary. This means that for every oracle f and for every
efficient adversary that breaks the KA protocol constructed from f , there is an
efficient procedure that inverts f when given oracle access to f . The difference
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with semi-BB is that we do not consider KA adversaries that require oracle
access to f to be efficiently realized.

A first observation is that if we had a provably secure KA scheme, then it
would also be a mildly-BB reduction of OWF to KA: just let the parties ignore
the oracle, and then the security of the construction in the real world implies
that it is also secure as a mildly-BB reduction.

This means that it is unrealistic to look for an unconditional proof that
mildly-BB reductions of OWF to KA do not exist; indeed, most likely, such a
mildly-BB reduction exists. However one can still wonder whether the only way
to come up with a mildly-BB reduction is to “cheat” in this manner, and have
the analysis of the construction contain the proof of a strong lower bound (so
that the intractability comes not from the primitive used as an oracle but from
the proof of correctness of the reduction).

A similar situation arises in the random oracle model studied by Impagliazzo
and Rudich [17]: a secure KA protocol in the real world would also be secure in
the random oracle model.

However, Impagliazzo and Rudich show that if P = NP then there can be
no secure construction of KA in the random oracle model. That is, the only way
to construct a secure KA in the random oracle model is to come up with a proof
that P �= NP along the way.

One might expect that, similarly to the Impagliazzo–Rudich result, if P =
NP then there is no mildly-BB reduction of KA to OWF. Perhaps surprisingly,
we prove that the opposite is true: if P = NP then there is a mildly-BB re-
duction of KA to OWF. Indeed, such a reduction exists even under the weaker
assumption that OWFs do not exist.2

In other words, if KA is possible, then there is mildly-BB reduction of OWF
to ioKA, and if OWF do not exist then there is also a mildly-BB reduction of
OWF to KA. That is, if OWF imply KA in the logical sense (i.e., unless OWF
exist but KA is impossible) then the implication can be proved using mildly-
BB reductions.3 The significance of this result is that it shows that there is no
inherent limitation (at least in KA versus OWF) in ignoring the code of the
primitive, although there are limitations in ignoring the code of the adversary
as well.

We similarly show that mildly-BB reductions are as powerful as arbitrary
reductions in transforming OWF to one-way permutations, to collision-resistant
hash functions, to trapdoor permutations, and other primitives.

2 Actually, the reduction only provides “infinitely-often KA” (ioKA) from one-way
functions; see Section 4.

3 To be precise, our result leaves out the case in which ioKA exist but KA do not
exist. Even in such a case, it is possible to argue that for every input length, if OWF
imply KA in the logical sense for that input length, then the implication can be
established with a mildly-BB reduction. See Section 4.3.
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1.4 Efficiency of Reductions

We next turn our attention to another line of research about the limitations of
black-box reductions, namely, the efficiency of reductions. The issue of efficiency
was first raised by Rudich [25], who investigated the round complexity of KA
schemes. Rudich proved that one cannot use a fully-BB reduction to transform
a k-round KA scheme into a (k − 1)-round one. Later, Kim, Simon and Tetali
[20] considered the question of efficiency of constructions of universal one-way
hash functions (UOWHFs) based on one-way permutations (OWPs). The known
reduction (of [22]) is fully black box and invokes the OWP a number of times
that is roughly linear in the compression of the UOWHF. Kim et al. [20] show
that every fully-BB construction must invoke the OWP a number of times that
is at least (roughly) the square root of the compression.

Gennaro and Trevisan [8] considered again the question of reductions of
OWPs to UOWHF, as well as the question of constructions of pseudorandom
generators (PRGs) based on OWPs. The Blum-Micali-Yao construction [3,28,
11] invokes the OWP a number of times that is roughly linear in the expansion
of the generator. Gennaro and Trevisan proved that if OWF do not exist, then
there is no mildly-BB transformation of OWP to PRG and no mildly-BB trans-
formation of OWP to UOWHF where the OWP is invoked a sub-linear number
of times (sub-linear in the expansion and in the compression, respectively). On
the other hand, if OWF do exist, then there are zero-query mildly-BB construc-
tions. This means that the only way of improving current constructions, even
with a mildly-BB reduction, is to come up with an unconditional construction
and disregard the oracle.4 Gennaro, Gertner and Katz [7] gave similar results
for constructions of public-key encryption and signature schemes. 5

These results by Gennaro et al. [8,7] about the efficiency of reductions are
the only ones that rule out even mildly-BB reductions.

Regarding the efficiency of known reductions in cryptography, perhaps the
most glaring open question is whether the construction of PRG based on OWF by
H̊astad et al. [14] can be made more efficient. It was conjectured in [8] that black-
box transformations of OWF into PRG have to invoke the OWF a super-linear
number of times. In this paper, we show that there is a mildly-BB construction
of PRG based on OWF that invokes the one-way function only once. This sounds
like a great improvement over [14] but, unfortunately, we use [14] as part of our
construction. The idea is that if OWFs exist, then we can use [14] to obtain
a PRG that is secure in the real world, and then it will also be a mildly-BB
4 Gennaro and Trevisan also show unconditionally that there can be no fully-BB

sublinear construction and, using our results in Section 3.2, we get an unconditional
result for semi-BB constructions.

5 In the setting of encryption, they show the following: suppose there is a mildly-BB
construction of a semantically secure public key cryptosystem based on trapdoor
permutations, and such that the trapdoor permutation is used a sublinear number
of times in the length of the message; then one-way functions exist uncondition-
ally. Notice that one could imagine a stronger result proving that the unconditional
existence of public-key encryption follows from the same assumption.



Notions of Reducibility between Cryptographic Primitives 7

construction of PRG from OWF (which makes zero oracle queries). On the other
hand, if OWFs do not exist, then we describe a mildly-BB construction.6 How
should we interpret such a result? It seems to say that we should not stop looking
for more efficient constructions than the one in [14] and that, in this search, we
may restrict ourselves to constructions that treat the one-way function as a black
box.

1.5 Perspective

It should be stressed that not all reductions in the cryptographic literature are
black box. Many of the examples are constructions that make use of the gen-
eral construction of zero-knowledge proofs (and variants) for arbitrary NP lan-
guages [13], as the [13] protocol makes use of the code of the algorithm that
verifies witnesses for the NP relation. For example, when using this result to
construct identification schemes from any one-way function [5], the identifica-
tion scheme makes use of the code of the one-way function and thus this is not
a black-box reduction. There are a number of other results in cryptography that
make non-black-box use of the starting primitive in a similar fashion. Only re-
cently, however, have we seen reductions making non-black-box use of adversary
in the proof of security, in the exciting works of Barak [1,2].

Given the fact that non-black-box reductions exist in the literature, one might
wonder how to interpret black-box reductions and impossibility results. For this,
it is useful to consider an analogy with the role of reductions in complexity
theory. The first motivation for introducing polynomial-time reducibilities (e.g.
Karp reductions and Cook reductions) was to relate the existence of polynomial-
time algorithms for various problems: if problem A reduces to problem B, then
B ∈ P ⇒ A ∈ P . Note that here the polynomial-time algorithm for B is used
in a black-box manner. The constructed polynomial-time algorithm for A only
uses the B-algorithm as a subroutine and its correctness doesn’t make use of the
fact that the B-algorithm is efficient.7 One can envision non-black-box ways of
proving implications of the form B ∈ P ⇒ A ∈ P , and there are examples in the
literature (one is mentioned below). Still we find reductions to be an extremely
useful concept:

– Reductions provide a natural way of comparing the “complexity” of problems
(even when we believe neither problem has a polynomial-time algorithm).
For example, SAT trivially reduces to QBF2 (quantified boolean formulae
with two alternating quantifiers) and it is known that QBF2 does not (Cook-
)reduce to SAT unless the polynomial-time hierarchy collapses. Nevertheless,
the implication SAT ∈ P ⇒ QBF2 ∈ P is known to hold, and indeed it
(necessarily) makes non-black-box use of the polynomial-time algorithm for

6 There are again some technical issues about infinitely many versus all input lengths.
7 Note that the black-box use of the B-algorithm is particularly acute when B is a

promise problem, since A must work for all oracles that are correct on inputs that
satisfy the promise, even undecidable ones.
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SAT. Still we interpret the lack of a Cook-reduction from QBF2 to SAT
saying that QBF2 as a more “complex” problem than SAT.

– Results showing that certain reductions are unlikely to exist provide a guide
for attempts to prove the corresponding implication. For example, it is known
that for any NP -complete problem L, there is no nonadaptive reduction
from deciding L in the worst case to deciding L in the average case (with
respect to any samplable distribution) unless the polynomial-time hierarchy
collapses [6,4]. Thus, in future attempts to establish a worst-case/average-
case equivalence for NP , it is natural to start by looking for adaptive reduc-
tions.

Both of these uses of reductions also seem relevant in cryptography. It is
scientifically interesting to have a framework for formalizing the idea that, say,
public-key cryptography is a “more complex” primitive than private-key cryp-
tography (even when we believe both to exist). And results on the non-existence
of black-box reductions help guide attempts to establish new implications. For
example, our results highlight the significance of making non-black-box use of
the adversary, as in [1,2], and suggest that it may enable us to overcome some
previous barriers. We note that when using non-existence of reductions as a
guide for future work, it is important to make the notions of reduction precise
and carefully interpret their meaning. Indeed, these are some of the goals of the
taxonomy and results presented in this paper.

2 Black-Box Constructions and Analyses

2.1 Cryptographic Primitives

In order to define the various notions of reduction between cryptographic prim-
itives we first need to clarify what constitutes a primitive. The definition we use
is quite general. Still, for the sake of readability, we do not state our definitions
and results in the most general setting possible. In particular, our notion of effi-
ciency will be that of probabilistic polynomial-time (PPT) Turing machines and
we assume that all parties involved in the definition of a primitive (including the
adversaries) are efficient. Therefore, our results are stated in a way that does not
apply to non-uniform or information-theoretic notions of security.

Definition 2.1. A primitive P is a pair 〈FP , RP〉, where FP is a set of functions
f : {0, 1}∗ �→ {0, 1}∗, and RP is a relation over pairs 〈f, M〉 of a function f ∈ FP
and a machine M . The set FP is required to contain at least one function which
is computable by a PPT machine.

A function f : {0, 1}∗ �→ {0, 1}∗ implements P or is an implementation
of P if f ∈ FP . An efficient implementation of P is an implementation of
P which is computable by a PPT machine. A machine M P-breaks f ∈ FP
if 〈f, M〉 ∈ RP . A secure implementation of P is an implementation of P
such that no PPT machine P-breaks f . The primitive P exists if there exists
an efficient and secure implementation of P.
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Let us elaborate on the semantics of the above definition. It is natu-
ral that an implementation of a primitive can be represented as a function
f : {0, 1}∗ �→ {0, 1}∗. For example, in the case of one-way function, f is simply
the one-way function itself. In the case of encryption schemes, f represents three
functions: the key generation, the encryption and the decryption functions. In
the case of key-agreement and protocols in general, f represents the message
function (the function that determines the message a party should send given its
inputs, its coin tosses, and the previous messages). The set FP in the definition
of a primitive P captures various structural requirements for an implementa-
tion of P. For example, in the case of one-way permutations we require that an
implementation f will be a length-preserving permutation. The set FP also cap-
tures correctness requirements (when they are separated from the security of the
primitive). For example, for encryption schemes, we require that the decryption
of an encryption of a plaintext m will recover m. For key agreement, we require
that the two honest parties output the same key. The structural and correctness
requirements of a primitive are usually easy to obtain when we do not insist on
security. Therefore, it is not very restrictive to require the set FP to contain at
least one efficiently computable function. Finally, the security requirement of a
primitive is specified through the definition of breaking an implementation of
this primitive. This is captured by the relation RP . For example, for one-way
functions, we would define 〈f, M〉 ∈ RP if there is a polynomial p such that
Pr[M(f(Un)) ∈ f−1(f(Un))] > 1/p(n) for infinitely many n. Sometimes, we will
need to work with “infinitely often” (io) analogues of primitives, where the se-
curity is only required to hold for infinitely many input lengths, i.e. to “break”
the primitive, an adversary must succeed on all but finitely many input lengths.
For example, if P is the primitive ioOWF, then we would define 〈f, M〉 ∈ RP if
there is a polynomial p such that Pr[M(f(Un)) ∈ f−1(f(Un))] > 1/p(n) for all
but finitely many n.

We will also need to define the existence of a primitive relative to an oracle.

Definition 2.2. A primitive P exists relative to an oracle Π if there exists
an implementation f of P which is computable by a PPT oracle machine with
access to Π and such that no PPT oracle machine with access to Π P-breaks f .

2.2 Notions of Reducibility

A reduction from a primitive P to a primitive Q means that the existence of Q
implies the existence of P. In other words, it means that either P exists or Q does
not exist. Reductions in the literature usually entail much more than that. For
example, a reduction from P to Q usually gives a constructive way of obtaining
a secure and efficient implementation of P from one of Q. We now define various
such types of more restricted and structured reductions. For comparison we refer
to an arbitrary reduction as a free reduction.

The most restricted form of reduction considered in this paper is what we call
a fully black-box (BB) reduction, where the construction and analysis (showing
that the construction produces a secure implementation of P given a secure



10 O. Reingold, L. Trevisan, and S. Vadhan

implementation of Q) are both BB. Most, but not all, reductions in the literature
are fully BB.

Definition 2.3. There exists a fully-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, if there exist PPT oracle machines G
and S such that:

Correctness. For every implementation f ∈ FQ we have that Gf ∈ FP .
Security. For every implementation f ∈ FQ and every machine A, if A P-

breaks Gf then SA,f Q-breaks f .

The next, less restricted, notion of reduction is a reduction that works even
if all parties get an oracle access to an arbitrary, possibly inefficient implemen-
tation of Q.

Definition 2.4. There exists a semi-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉 if there exists a PPT oracle machine G
such that:

Correctness. For every implementation f ∈ FQ we have that Gf ∈ FP .
Security. For every implementation f ∈ FQ, if there exists a PPT oracle ma-

chine A such that Af P-breaks Gf , then there exists a PPT oracle machine
S such that Sf Q-breaks f .

It is tempting to view a semi-BB reduction as a BB-construction with an
arbitrary analysis, since only f is treated as a black box. However, as we try to
argue in Section 3, the analysis in semi-BB reduction is still very much black box.
In essence, this is due to the oracle access that A gets to (the computationally
unbounded) f . Since f may be the heart of the adversary Af that breaks P,
the access S has to this adversary is in large part black box. Following is our
attempt to formalize what we view as a BB construction with arbitrary analysis.

Definition 2.5. There exists a mildly-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉 if there exists a PPT oracle machine G
such that:

Correctness. For every implementation f ∈ FQ we have that Gf ∈ FP .
Security. For every implementation f ∈ FQ, if there exists a PPT machine A

that P-breaks Gf , then there exists a PPT oracle machine S such that Sf

Q-breaks f .

Remark 2.6. A definition that might also capture the intuition “a BB construc-
tion with arbitrary analysis” is one where S is also denied access to f . For
the sake of this discussion, let us refer to such reductions as mildly ′-BB. One
problematic aspect of mildly ′-BB reductions is that not only such reductions
are more restricted that mildly-BB they even seem incomparable to fully-BB
reductions. In particular, for many fundamental BB-reductions known in cryp-
tography, it is not clear if the corresponding implications can also be proven via
mildly ′-BB reductions.
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Fully BB

Relativizing

Semi BB

∀∀∃Semi BB

Weakly BB

∀∀∃Weakly BB

Free Reduction (= Arbitrary Reduction)

Fig. 1. Simple relations between notions of reduction. An arrow goes from a more
restricted form of reduction to a less restricted one.

Related to BB-reductions are relativizing reductions, which turn out very
useful in the context of BB separations.

Definition 2.7. There exists a relativizing reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉, if for every oracle Π, if Q exists relative
to Π then so does P.

Finally, we consider two additional notions of reductions that are obtained
from semi and weak BB reductions by a switch of quantifiers. Previously we
asked for a “universal” procedure G that reduces all secure implementations f
of Q to secure implementations Gf of P. But this may not be necessary if we
are only trying to show that P reduces to Q. In the following definitions we are
satisfied with the existence of a (possibly different) G for every f (hence the
name ∀∃).

Definition 2.8. There exists a ∀∃semi-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉 if for every implementation f ∈ FQ,
there exists a PPT oracle machine G such that:

Correctness. Gf ∈ FP .
Security. If there exists a PPT oracle machine A such that Af P-breaks Gf ,

then there exists a PPT oracle machines S such that Sf Q-breaks f .

Definition 2.9. There exists a ∀∃mildly-BB reduction from a primitive P =
〈FP , RP〉 to a primitive Q = 〈FQ, RQ〉 if for every implementation f ∈ FQ, there
exists a PPT oracle machine G such that:

Correctness. Gf ∈ FP .
Security. If there exists a PPT machine A that P-breaks Gf , then there exists

a PPT oracle machine S such that Sf Q-breaks f .

Some simple relations between the various notions of reductions are given by
the following lemma (and are illustrated in Figure 1).
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Lemma 2.10. For any two primitives P and Q, we have the following:

1. If there exists a fully-BB reduction from P to Q then there exists a semi-BB
reduction from P to Q as well.

2. If there exists a semi-BB reduction from P to Q then there exists a mildly-BB
reduction from P to Q as well.

3. If there exists a semi-BB reduction from P to Q then there exists a ∀∃semi-
BB reduction from P to Q as well.

4. If there exists a mildly-BB reduction from P to Q then there exists a
∀∃mildly-BB reduction from P to Q as well.

5. If there exists a ∀∃semi-BB reduction from P to Q then there exists a
∀∃mildly-BB reduction from P to Q as well.

6. If there exists a ∀∃mildly-BB reduction from P to Q then there exists a free
reduction from P to Q as well.

7. If there exists a fully-BB reduction from P to Q then there exists a relativiz-
ing reduction from P to Q as well.

8. If there exists a relativizing reduction from P to Q then there exists a ∀∃semi-
BB reduction from P to Q as well.

All relations follows quite easility from the definitions. We omit a complete
proof in this extended abstract.

3 Semi-BB versus Relativization

The study of BB separations in cryptography started with the seminal work
of Impagliazzo and Rudich [17]. Previously it was known that the existence
of many cryptographic primitives, such as various private-key primitives and
digital signatures, reduces to the existence of one-way functions (OWF), which
in turn are essentially necessary for all computational aspects of security in
Cryptography. Other primitives however such as key-agreement (KA), and thus
also various fundamental primitives that imply KA, resisted attempts to be
reduced to OWF. Noting that almost all reductions in cryptography are black
box, [17] turned to showing that such reductions are simply not sufficiently
powerful to reduce KA to OWF or even to one way permutations (OWP).

Theorem 3.1 ([17]). There is no relativizing reduction from KA to OWP.

An immediate consequence of Theorem 3.1 is that there is no fully-BB reduc-
tion from KA to OWP. At the core of the proof of Theorem 3.1 stands a lemma
which states that, relative to a random (permutation) oracle (which is in some
sense a “perfect OWP”), there are no KA unless P �= NP . In particular, con-
structing KA in the random-oracle model is at least as hard as proving P �= NP .
In addition, [17] pointed that this lemma “rules out” even less restrictive forms
of BB reductions from KA to OWP. Using the taxonomy of this paper, we can
state the results of [17] with respect to BB reductions as follows.
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Theorem 3.2 ([17]). There is no fully-BB reduction from key-agreement to
one-way permutations. Furthermore, there is no ∀∃semi-BB reduction from KA
to OWP unless P �= NP .

In this section we prove an unconditional version of Theorem 3.2. We gen-
eralize this by showing that “usually” ∀∃semi-BB reductions are equivalent to
relativizing reductions. This implies unconditional proofs of various results that
were previously only known to hold conditionally. Finally, based on the new
equivalence between reduction types, we reinterpret the notion of semi-BB re-
ductions.

3.1 Impagliazzo-Rudich Revisited

Based on Theorem 3.1 and using an “embedding technique” due to Simon [27],
we are able to strengthen Theorem 3.2 as follows.

Theorem 3.3. There is no ∀∃semi-BB reduction from KA to OWP.

Proof. Theorem 3.1 implies that there exists an oracle Π : {0, 1}∗ �→ {0, 1} such
that relative to Π, OWP exists and KA does not. Let f ′ be the secure and
efficient OWP which exist relative to Π. We define a permutation f such that
(1) f is computable by a PPT oracle machine with access to Π, (2) f is one-way
relative to Π, and (3) There exists a PPT oracle machine with access to f that
evaluates Π. Let us first assume that such an f exist and see how it implies the
theorem.

Properties (1) and (2) of f imply that f is one-way relative to itself (since
an oracle machine that OWP-breaks f relative to f can be efficiently simulated
relative to Π). Properties (1) and (3) of f imply that there is no KA relative to f .
This is because an efficient implementation of KA relative to f is also an efficient
implementation of KA relative to Π which implies that it can be broken relative
to Π and thus also relative to f . Now assume for the sake of contradiction that
there exist a ∀∃semi-BB reduction from KA to OWP. Let G be the PPT oracle
machine which corresponds to f as guaranteed by the definition of ∀∃semi-BB
reduction. From the definition of G, it follows that Gf is a secure KA relative to
f . Now, if there exists a ∀∃semi-BB reduction from KA to OWP, then we deduce
that there exists a PPT oracle machine S s.t. Sf inverts f . But this contradicts
the fact that f is one-way relative to itself.

It remains to define f with the desired properties. Intuitively Π is “em-
bedded” into a small part of f and on the rest of the inputs, f evaluates f ′.
On a 2n + 1-bit long input (r, x, σ) where r and x are n-bit long each and σ
is a bit, the function f is defined as follows: If r is the all-zero string then
f(r, x, σ) = (r, x, Π(x) ⊕ σ). Otherwise, f(r, x, σ) = (r, f ′(x), σ). (The definition
can be naturally extended to even-length inputs.) That f is a permutation fol-
lows trivially from f ′ being a permutation. Property (2) (the one-wayness of f
relative to Π) is also easy as on all but a negligible fraction of its inputs (those
with r being the all-zero string), inverting f on a random input is equivalent to
inverting f ′ on a random input. Finally, properties (1) and (3) follows immedi-
ately from the definition. ��
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Fully BB

Relativizing

Semi BB

∀∃Semi BB

Weakly BB

∀∃Weakly BB

Free Reduction (= Arbitrary Reduction)

Fig. 2. In addition to the simple relations already shown in Figure 1, the dashed arrow
indicates that “usually” relativizing reduction are equivalent to ∀∃semi-BB reduction.

3.2 The General Condition for Equivalence

The equivalence between the existence of a relativizing reduction and a ∀∃semi-
BB reduction, is not limited to the reduction from KA to OWP. In fact, es-
sentially the same argument was used by Simon [27] regarding reductions of
collision-resistant hash functions to OWP. In general, the two notions of reduc-
tion are equivalent for showing a reduction from a primitive P to a primitive
Q, if it is possible to “embed” an arbitrary oracle into Q as in the proof of
Theorem 3.3.

Definition 3.4. We say that a primitive Q = 〈FQ, RQ〉 allows embedding if for
any oracle Π : {0, 1}∗ �→ {0, 1} and any f ′ ∈ FQ that can be computed by a PPT
oracle machine with access to Π, there exists f ∈ FQ such that the following
hold:

1. f is computable by a PPT oracle machine with access to Π,.
2. If there exists a PPT oracle machine MΠ that Q-breaks f then there exists

a PPT oracle machine NΠ that Q-breaks f ′.
3. There exists a PPT oracle machine with access to f that evaluates Π.

The following equivalence is proven in exactly the same way as Theorem 3.3.

Theorem 3.5. Let P = 〈FP , RP〉 be any primitive and Q = 〈FQ, RQ〉 be any
primitive that allows embedding. Then there exist a relativizing reduction from
P to Q if and only if there exist a ∀∃semi-BB reduction from P to Q.

It seems hard to find a natural primitive that does not allow embedding. In
fact, the case of OWP is relatively difficult compared to other primitives (because
of the need to preserve the permutation property). Therefore, we can informally
say that “usually” the above equivalence holds (see Figure 2 for an updated
picture which takes this “equivalence” into account). The embedding technique
allows us to prove that ∀∃semi-BB reductions are unconditionally impossible in
all case where ∀∃semi-BB reductions were previously only conditionally ruled
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out. Two examples are [25] on reducing the number of rounds in KA and [9]
on the relationships among KA, oblivious transfer, public-key encryptions, and
trapdoor functions and permutations. In fact, this also holds for the results of
[8,7] regarding the efficiency of known constructions. In this setting however,
it is important to take into account the efficiency of the embedding technique
itself. Usually however the embedding is extremely efficient. For example, in the
definition of f above evaluating it requires a single oracle query (either to f ′ or
to Π) and similarly evaluating Π requires a single oracle call to f .

3.3 Discussion

It is typical to view semi-BB reductions and certainly ∀∃semi-BB as a BB-
construction with arbitrary analysis. However, we feel that the equivalence to
relativizing reductions and specifically the embedding technique demonstrate
that the analysis in semi-BB reduction is still very much black box. Recall that
in a semi-BB reduction from P to Q, we only consider polynomial time machines
A such Af P-breaks Gf and the requirement is that if such a machine A exists
then there also exists an efficient S such that Sf Q-breaks f . This looks less
BB than the analysis in fully-BB reductions since S does not get oracle access
to A but rather only to f and since we only consider efficient machines A. The
reason that this analysis is still very much BB is that the adversary for P is Af

(which may be very inefficient) rather than A. In particular, the reduction does
not have access to a small description of this

adversary (let alone a small circuit that evaluates it). What the embedding
technique demonstrates is that often f can be the major part of the adversary
Af , and thus S’s access to the adversary is really black box.

4 Mildly-BB versus Arbitrary Reductions

In this section we show various settings for which mildly-BB reductions exist
iff free (arbitrary) reductions exist (this is illustrated in Figure 3). In other
words, in some settings mildly-BB are as powerful as free reductions. We could
therefore concentrate on finding such reductions which treat the primitive as a
black box. These results also indicate that it is unlikely that we could strengthen
some previous BB separations that previously ruled out semi-BB reductions so
that they also rule out mildly-BB reductions in the same settings.

4.1 Mildly-BB Reductions from KA to OWF

We now show that if the statement “the existence of OWF implies the existence
of ioKA” is true then it can be proved via a mildly-BB construction of KA
based on OWF. We note that this means that it is unlikely that we could rule
out a mildly-BB reduction from ioKA to OWF whereas [17] and Theorem 3.3
rule out such semi-BB reductions. The equivalence between free reductions and
mildly-BB reductions in this context follows from the next two lemmas.
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Fully BB

Relativizing

Semi BB

∀∃Semi BB

Weakly BB

∀∃Weakly BB

Free Reduction (= Arbitrary Reduction)

Fig. 3. In addition to the picture given by Figure 2, the dotted arrow indicates that in
some interesting cases mildly-BB reductions are equivalent to free (arbitrary) reduc-
tions.

Lemma 4.1. Suppose that ioKA exists. Then there is a mildly-BB reduction
from ioKA to OWF.

Proof. The efficient oracle machine G needed by the definition of mildly-BB
reductions simply ignores the oracle f and evaluates from scratch the ioKA
which we assume to exist. The reduction is secure as there is no PPTM A that
ioKA-breaks Gf . ��

Lemma 4.2. Suppose that OWF do not exist. Then there is a mildly-BB reduc-
tion from ioKA to OWF.

Proof (Sketch). Consider the following construction: given security parameter n
and oracle f

– Alice picks at random x, r ∈ {0, 1}n, and sends x, r to Bob.
– Alice and Bob agree on the bit f(x) · r.

The protocol does not make much sense in the “real world,” but the reader
should be reminded that the protocol is only meant to work in case OWFs do
not exist, a case in which no KA protocol can exist in the real world.

To prove the Lemma, we will show that if f is a black-box one-way function,
then the protocol cannot be broken by an efficient adversary. Intuitively, the
reason is that if f is a black-box one-way function, and OWFs do not exist, then
f must be a function that cannot be computed efficiently. Using Goldreich-Levin,
we can then infer that f(x) · r is hard to predict.

To formalize the above sketch, we need to show that if there is an efficient
algorithm that agrees with a function f on an noticeable fraction of inputs, and
if one-way functions do not exist, then there is an efficient algorithm that inverts
f on a noticeable fraction of inputs. This is somewhat more complicated than
it sounds and, in particular, we will need to use a result by Impagliazzo and
Luby [16], who show that if one-way functions do not exist and g is an efficiently
computable function, then, roughly speaking, given g(x) it is possisble to sample
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approximately uniformly from the set {x′ : g(x′) = g(x)}. We refer the reader
to the full version of this paper for the complete proof. ��

From the above two lemmas, we conclude that mildly-BB reductions are as
powerful as free reductions for this problem:

Theorem 4.3. There is mildly-BB reduction from ioKA to OWF if and only if
there is a free reduction from ioKA to OWF.

Next we state a similar result for reducing trapdoor permutations to OWF.
We omit the proof in this extended abstract.

Theorem 4.4. There is a mildly-BB reduction of io-trapdoor permutations to
one-way functions if and only if there is a free reduction of io-trapdoor permu-
tations to one-way functions.

4.2 A Mildly-BB Construction More Efficient than HILL

As mentioned in the introduction, a long-standing open question is to reduce
or explain the inefficiency of the construction of pseudorandom generators from
general one-way functions [14]. The construction of [14] is a fully black-box re-
duction that seems to require polynomially many queries to the one-way function
even to obtain a pseudorandom generator that stretches by one bit (in contrast
to the construction of pseudorandom generators from one-way permutations [3,
28,11], which requires only one query to stretch by one bit).

Theorem 4.5. There is a mildly-BB construction of ioPRGs from OWFs that
makes only one query.

Thus to show that the inefficiency of [14] is inherent, one must consider more
constrained reductions than mildly-BB reductions. In particular, one cannot
directly use the approach of [8], which gives lower bounds on the efficiency of
mildly-BB reductions. Alternatively, this theorem says that, in attempting to
improve the efficiency of [14], there is no loss in treating the OWF as a black
box.

Lemma 4.6. Suppose that OWF exist. Then there is a mildly-BB construction
of ioPRG based on OWF, where the construction makes zero oracle queries.

Lemma 4.7. Suppose that OWF do not exist. Then there is a mildly-BB con-
struction of ioPRG based on OWF, where the construction makes one oracle
query.

Proof (sketch). The construction is Gf (x, r) = (x, r, f(x) · r), for |x| = |r|.
The proof that this is a mildly-BB construction is analogous to the proof of
Lemma 4.2.
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4.3 All Input Lengths versus Infinitely Often

In this section we described various mildly-BB constructions based on OWF, and
in each case we are only able to construct the primitive on infinitely many input
lengths. We briefly discuss why it is the case, focusing on the construction of
KA from OWF for concreteness. We have two cases: if KA is possible in the real
world, then we have a trivial mildly-BB construction that ignores the oracle.
If OWF do not exist, then we give a construction such that, on each input
lenght, the construction is correct provided that every efficient function with
related input lenght can be efficiently inverted. Unfortunately, the non-existence
of OWF only gives us inverters that work infinitely often. From such an inverter
we can only prove that the mildly-BB construction is correct infinitely often.

Note that, however, we are showing something more: roughly speaking, on
any input length for which either KA is possible or OWF do not exist (that is,
on any input length for which there is a free reduction from OWF to KA) we
are able to give a mildly-BB construction of KA based on OWF.

A similar technical problem arises in a paper by Impagliazzo and Levin [18],
where the authors prove that a certain strong form of learning (that they call
“universal extrapolation”) is possible if and only if one-way functions do not
exist. Technically, the authors only prove that, on any input length, if OWF
do not exist then universal extrapolation is possible, and if OWF exist then
universal extrapolation is impossible. As the authors put it, “any given level of
technology is capable of either universal extrapolation or cryptography, but not
both.”

Acknowledgments. We thank Cynthia Dwork, Russell Impagliazzo, Tal
Malkin, Moni Naor, and Steven Rudich for helpful discussions, and the anony-
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