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Aberrant activation of NF-κB is linked with the progression of human malignancies 

including hepatocellular carcinoma (HCC), and blockade of NF-κB signaling could be 

a potential target in the treatment of several cancers. Therefore, designing of novel 

small molecule inhibitors that target NF-κB activation is of prime importance in the 

treatment of several cancers. In the present work, we report the synthesis of series of 

1,3,4-oxadiazoles, investigated their anticancer potential against HCC cells, and identi-

fied 2-(3-chlorobenzo[b]thiophen-2-yl)-5-(3-methoxyphenyl)-1,3,4-oxadiazole (CMO) as 

the lead compound. Further, we examined the effect of CMO on cell cycle distribution 

(flow cytometry), apoptosis (annexin V-propidium iodide-FITC staining), and phosphor-

ylation of NF-κB signaling pathway proteins (IκB and p65) in HCC cells. We found that 

CMO induced antiproliferative effect in dose- and time-dependent manner. Also, CMO 

significantly increased the percentage of sub-G1 cell population and induced apoptosis. 

Furthermore, CMO found to decrease the phosphorylation of IκB (Ser 32) in the cyto-

plasmic extract and p65 (Ser 536) in the nuclear extract of HCC cells. It also abrogated 

the DNA binding ability and transcriptional activity of NF-κB. CMO induced the cleavage 

of PARP and caspase-3 in a time-dependent manner. In addition, transfection with p65 

small interfering RNA blocks CMO-induced caspase-3/7 activation. Molecular docking 

analysis revealed that CMO interacts with the hydrophobic region of p65 protein. Thus, 

we are reporting CMO as an inhibitor of NF-κB signaling pathway.

Keywords: oxadiazoles, NF-κB, hepatocellular carcinoma, apoptosis, anticancer

INTRODUCTION

NF-κB is the one of the most widely studied in�ammatory mediators associated with several disease 
conditions including cancer (1, 2). Initially, NF-κB was identi�ed as transcription factor that is essen-
tial for the expression of B-cell speci�c genes and, later, it was demonstrated to present ubiquitously 
in mammalian cells (3, 4). NF-κB is an inducible transcription factor present in cytoplasm that gets 
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activated in response to in�ammation, DNA damage, stress, and 
viral attack (5). In mammals, RelA, RelB, c-Rel, p50/p105 (NF-
κB1), and p52/p100 (NF-κB2) are NF-κB proteins identi�ed so 
far (6). During the stimuli, these proteins undergo homo/hetero-
dimerization, translocate to nucleus, binds to speci�c DNA ele-
ments, and regulate the expression of more than 500 genes that 
codes for acute phase proteins (Pentraxin-3, Hepcidin, UPA), 
stress response proteins (COX, LOX, HSP90), apoptosis regula-
tors (Bcl-2, Bcl-xL, Bax), cell adhesion molecules (CD44, ICAM-
1, Fibronectin, P-selectin), cytokines (TNF-α, lymphotoxin-a/b, 
RANTES), growth factors (G-CSF, SCF, Activin-A), and cell 
surface receptors (ABCA1, CD23, RAGE) (7, 8). In mammals, 
NF-κB target genes modulate cell proliferation, apoptosis and 
survival (9, 10). Baltimore et al. demonstrated the role of NF-κB 
proteins in cell survival by generating the RelA-de�cient mice 
(11). �eir experimental results suggested that RelA disruption 
leads to embryonic lethality at 15–16 days of gestation, with an 
extensive degeneration of the liver (11). On the other hand, several 
cancer-causing mutations have been identi�ed in the genes that 
signal for the activation of NF-κB pathway. Cancer-causing muta-
tions are most likely to contribute for the persistent activation of 
NF-κB in turn deregulating of expression of NF-κB target genes, 
which drive the cells to oppose apoptosis (12). Evidently, aberrant 
activation of NF-κB is reported in several cancers including solid 
and liquid tumors (13–15). Moreover, constitutive activation of 
NF-κB has been observed in hepatocellular carcinoma (HCC) 
tumor tissues suggesting its critical role in the tumorigenesis 
(16–18). �erefore, targeting activation NF-κB signaling pathway 
remains as an attractive therapeutic strategy in the �ght against 
cancer.

Several 1,3,4-oxadiazoles have been reported to possess good 
anticancer potential against various types of cancer cells (19–21). 
Some of the reports also suggested that oxadiazoles possibly target 
NF-κB signaling pathway to induce their anticancer activity (22). 
Speci�cally, 3-methyl-1-((5-(5-methyl-1,3,4-oxadiazol-2-yl)-2-
(thiophen-2-yl)pyrimidin-4-yl)amino)-1H-pyrrole-2,5-dione 
was reported to possess the IC50 value of 0.3 µM for AP-1 and 
NF-κB mediated transcriptional activation in Jurkat T-cells (22). 
Although anticancer activity of oxadiazoles is well-documented, 
the comprehensive study on their putative targets and mechanisms 
of action has not been reported so far. In continuation of our 
e�orts to explore the anticancer potential of heterocycles (23–26), 
herein, we report the synthesis of series of novel 1,3,4-oxadiazoles 
and comprehensively demonstrated their mechanism of antican-
cer activity in vitro against panel of HCC cell lines.

MATERIALS AND METHODS

All chemicals used were of analytical grade and purchased from 
Sigma Aldrich, and SRL, Mumbai (India). 1H NMR spectra 
were recorded on a Agilent (400 MHz) spectrometer in CDCl3 
solvent, using TMS as an internal standard, 13C NMR spectra 
were recorded on a Agilent (100  MHz) spectrometer. Mass 
spectra were determined on PE Sciex API3000 ESI-MS, elemental 
analyses were carried out using an Elemental Vario Cube CHNS 
rapid analyzer. Progress of the reaction was monitored by TLC 
pre-coated silica gel plates.

HepG2 cell line was initially purchased from ATCC. �e cells 
were cultured in DMEM medium containing 10% fetal bovine 
serum, 1  mM l-glutamine, 1  mM sodium pyruvate, antibiotic, 
and antimycotic agent. GAPDH, lamin B, and p65 antibodies were 
obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
Antibodies against phospho-IκBα (Ser 32), IκBα, phospho-p65 
(Ser 536) was purchased from Cell Signaling Technology (Beverly, 
MA, USA). Nuclear extraction and NF-κB DNA binding kits were 
purchased from Active motif (USA). Blocking bu�er was pur-
chased from Nacalai Tesque (Kyoto, Japan). Chemiluminescence 
kit was purchased from Advansta (CA, USA). �e small interfering 
RNA (siRNA) for NF-κB and scrambled control was obtained from 
Santa Cruz Biotechnology. Caspase-Glo 3/7 assay kit and luciferase 
substrate was purchased from promega (WI, USA).

Chemistry
General Procedure for the Preparation of Acid 

Hydrazide (3a–c)
�e appropriate aromatic acids (0.01  mol) were dissolved in 
absolute ethanol (10 ml) followed by the addition of hydrazine 
hydrate (0.02 mol) and 2–3 drops of conc. sulfuric acid. �e reac-
tion mixture was re�uxed for 7 h. �e completion of reaction was 
monitored by thin layer chromatography, and the resulting solid 
obtained was �ltered, dried, and crystallized (3a-c).

General Procedure for the Synthesis of 

1,3,4-Oxadiazole (5a–l)
�e aromatic acid hydrazide (0.01 mol) and an appropriate aro-
matic acid (0.01 mol) were re�uxed in phosphorous oxychloride 
(5  ml) for 8  h, and the reaction mixture was cooled to room 
temperature. Excess POCl3 was removed through high vacuum, 
the residue was quenched with ice and made alkaline with potas-
sium carbonate solution. �e precipitate was �ltered, dried, and 
crystallized from ethanol. �e completion of reaction was moni-
tored by thin layer chromatography. �e representative spectra 
of some of the new compounds are provided as Supplemental 
Information.

4-(5-(3-Chlorobenzyl)-1,3,4-Oxadiazol-2-yl)-N ,N-
Dimethylaniline (5a)
Yellow solid; mp 110–112°C; 71% yield; 1H NMR (400  MHz, 
CDCl3): δ = 7.84–7.81 (d, 2H, Ar-H), 7.34 (s, 1H, Ar-H), 7.22–7.25 
(m, 3H, Ar-H), 6.70–6.68 (d, 2H, Ar-H), 4.19 (s, 2H, –CH2), 
3.02 (s, 6H, 2CH3); 13C (100  MHz CDCl3): δ  =  152.37, 136.19, 
134.64, 130.05, 128.96, 128.20, 127.65, 126.96, 111.54, 40.00, and 
31.49 ppm; exact mass: 313.0, ESI mass [M + 1] 314.1; Anal. Calcd 
for C17H16ClN3O: C, 65.07; H, 5.14; N, 13.39; found: C, 65.23; H, 
5.11; N, 13.11.

4-(5-Benzyl-1,3,4-Oxadiazol-2-yl)-N,N-Dimethylaniline (5b)
Yellow solid; mp 154–156°C; 79% yield; 1H NMR (400  MHz, 
CDCl3): δ = 7.84–7.82 (d, 2H, Ar-H), 7.25–7.34 (m, 5H, Ar-H), 
6.72–6.69 (d, 2H, Ar-H), 4.23 (s, 2H, -CH2), 3.04 (s, 6H, 2CH3); 
13C (100 MHz CDCl3): δ = 134.34, 128.80, 128.77, 128.18, 127.33, 
111.68, 40.10, and 31.88 ppm; exact mass: 279.1, ESI mass [M + 1] 
280.2; Anal. Calcd for C17H17N3O: C, 73.10; H, 6.13; N, 15.04; 
found: C, 73.34, H, 5.88, N, 15.24.
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4-(5-(4-Bromobenzyl)-1,3,4-Oxadiazol-2-yl)-N ,N-
Dimethylaniline (5c)
Yellow solid; mp 107–109°C; 82% yield; 1H NMR (400  MHz, 
CDCl3): δ = 7.82–7.80 (d, 2H, Ar-H), 7.47–7.42 (t, 2H, Ar-H), 
7.25–7.21 (t, 2H, Ar-H), 6.70–6.68 (d, 2H Ar-H), 4.18 (s, 2H, 
-CH2), 3.02 (s, 6H, 2CH3); exact mass: 357.1, ESI mass [M + 2] 
359.6; Anal. Calcd for C17H16BrN3O: C, 57.00; H, 4.50; N, 11.73; 
found: C, 56.98; H, 4.32; N, 11.81.

4-(5-(3-Chlorobenzo[b]thiophen-2-yl)-1,3,4-Oxadiazol-2-
yl)-N,N-Dimethylaniline (5d)
Yellow solid; mp 120–123°C; 86% yield; 1H NMR (400  MHz, 
CDCl3): δ = 8.04–8.02 (d, 1H), 7.96–7.82 (m, 3H), 7.52–7.49 (m, 
2H), 6.91–6.88 (d, 2H), 3.08–3.05 (t, 6H); exact mass: 355.1, ESI 
mass: [M + 1] 356.3, Anal. Calcd for C18H14ClN3OS: C, 60.76; H, 
3.97; N, 11.81; found: C, 60.58; H, 3.88, N, 11.52.

3-(5-(4-(Dimethylamino)phenyl)-1,3,4-Oxadiazol-2-yl)-N-
(2-Methyl-3-(Tri�uoromethyl) phenyl)pyridin-2-amine (5e)
Yellow solid; mp 170–173°C; 78% yield; 1H NMR (400  MHz, 
CDCl3): δ = 8.31–8.21 (m, 3H, Ar-H), 7.99–7.98 (d, 2H, Ar-H), 
7.45–7.25 (m, 2H, Ar-H), 6.88–6.85 (m, 1H, Ar-H), 6.78–6.76 
(d, 2H, Ar-H), 3.07–3.05 (d, 6H, 2CH3), 2.53 (s, 3H, -CH3); 13C 
(100  MHz CDCl3): δ  =  164.57, 161.92, 153.26, 152.62, 150.61, 
139.56, 136.00, 128.48, 127.16, 125.69, 121.52, 121.47, 113.70, 
111.68, 110.18, 103.53, 40.04, 14.28; exact mass: 439.2 [M + 1] 
440.3; Anal. Calcd for C23H20F3N5O: C, 62.86; H, 4.59; N, 15.94; 
found: C, 62.91, H, 4.42; N, 15.63.

2-(4-Bromobenzyl)-5-(6-Chloropyridin-3-yl)-1,3,4-
Oxadiazole (5f)
Brown solid; mp 110–112°C; 83% yield; 1H NMR (400  MHz, 
CDCl3): δ = 8.97–8.96 (d, 1H), 8.26–8.23 (m, 1H), 7.50–7.43 (m, 
3H), 7.25–7.21 (t, 2H), 4.24 (s, 2H); exact mass: 348.9, ESI Mass: 
[M + 2] 351.3; Anal. Calcd for C14H9BrClN3O: C, 47.96; H, 2.59; 
N, 11.99; found: C, 47.81, H, 2.49, N, 12.13.

2-(4-Bromobenzyl)-5-(Pyridin-3-yl)-1,3,4-Oxadiazole (5g)
Brown solid; mp 133–135°C; 71% yield; 1H NMR (400  MHz, 
CDCl3): δ = 9.97 (s, 1H), 8.32–8.31 (d, 1H), 8.23–8.21 (t, 1H), 
7.99–7.97 (d, 2H), 7.32–7.25 (t, 1H), 6.78–6.76 (d, 2H), 3.08 (s, 
2H); exact mass: 315.0, ESI mass: [M + 2] 317.3, Anal. Calcd for 
C14H10BrN3O: C, 53.19; H, 3.19; N, 13.29; found: C, 53.10; H, 2.99; 
N, 13.42.

2-Benzyl-5-(4-Bromobenzyl)-1,3,4-Oxadiazole (5h)
Brown solid; 123–124°C; 86% yield; 1H NMR (400 MHz, CDCl3): 
δ  =  7.83–7.81 (d, 2H), 7.47–7.43 (t, 2H), 7.25–7.21 (m, 2H), 
6.72–6.70 (d, 2H), 4.02–4.05 (m, 4H); exact mass: 328.0, ESI 
mass: [M + 2] 330.5; Anal. Calcd for C16H13BrN2O: C, 58.38; H, 
3.98; N, 8.51; found: C, 58.19, H, 3.88; N, 8.67.

2-(3-Methoxyphenyl)-5-(4-(Trif luoromethyl)phenyl)- 
1,3,4-Oxadiazole (5i)
White solid; mp 100–102°C; 77% yield; 1H NMR (400  MHz, 
CDCl3): δ  =  7.98–7.43 (m, 7H), 7.12–7.09 (m, 1H), 3.19 (s, 
3H); 13C (100 MHz CDCl3): δ = 160.02, 138.15, 130.29, 127.79, 
125.75, 124.56, 123.28, 122.73, 119.59, 119.33, 118.15, 111.91, 

55.54; exact mass: 320.1 ESI mass: [M +  1] 321.3; Anal. Calcd 
for C16H11F3N2O2: C, 60.00; H, 3.46; N, 8.75; found: C, 60.17, H, 
3.41, N, 8.69.

2-(3-Chlorobenzo[b]thiophen-2-yl)-5-(3-Methoxyphenyl)-
1,3,4-Oxadiazole (CMO, 5j)
White solid; mp 112–114°C; 72% yield; 1H NMR (400  MHz, 
CDCl3): δ = 7.44–8.00 (m, 7H), 7.12–7.10 (m, 1H), 3.91 (s, 3H); 
13C (100 MHz CDCl3): δ = 160.33, 158.67, 155.32, 125.53, 125.43, 
122.62, 122.48, 121.47, 121.38, 121.34, 119.91, 114.66, 114.58, 
113.66, 113.39, 107.12, and 50.79  ppm; exact mass: 342.0, ESI 
mass: [M + 1] 343.1; Anal. Calcd for C17H11ClN2O2S: C, 59.56; H, 
3.23; N, 8.17; found: C, 59.42; H, 3.32, N, 8.23.

Pharmacology
MTT Assay
�e antiproliferative e�ect of newly synthesized compounds 
against HCC cells was determined by the MTT dye uptake 
method as described previously (27, 28). Brie�y, HCC cells 
(4  ×  103  cells/well) were incubated in triplicate in a 96-well 
plate, in the presence of di�erent concentrations of compounds 
at a volume of 0.2  ml, for di�erent time intervals at 37°C. 
�erea�er, a 20 µl MTT solution (5 mg/ml in PBS) was added 
to each well. A�er a 2 h incubation at 37°C, 0.1 ml lysis bu�er 
(20% SDS, 50% dimethylformamide) was added; incubation 
was performed for 1 h at 37°C, and the optical density (OD) 
at 570 nm was measured by Tecan plate reader. 0.01% DMSO 
was used as the negative control and 0.01% MTT was used as 
a control agent.

Flow Cytometric Analysis
Flow cytometric analysis was performed to evaluate apoptosis 
inducing e�ect of CMO in HepG2 and HCCLM3 cells as described 
earlier (29, 30). Brie�y, HCC cells (5 × 105) were plated in petri 
dish and, 24 h later, the cells were exposed to compound CMO 
(50  µM) for 0, 24, 48, and 72  h. �erea�er, cells were washed, 
�xed with 70% ethanol, and incubated for 30 min at 37°C with 
0.1% RNase A in PBS. Cells were washed again, resuspended, and 
stained with PBS containing 25 µg/ml propidium iodide (PI) for 
15 min at room temperature. �e cell cycle distribution across the 
various phases was analyzed using �ow cytometer.

Annexin V/PI Apoptosis Assay
Phosphatidylserine exposure and cell death were assessed by 
FACS analysis using Annexin-V-PI-stained cells as described 
previously (31). Brie�y, 1 ×  105 HepG2 cells/well (190 μl/well) 
were seeded in 96-well plates and incubated with CMO (50 µM) 
for indicated time points (24, 48, and 72 h), and DMSO treated 
samples were used as control. Cells were then washed with 
Annexin V binding bu�er (10  mM HEPES/NaOH, pH 7.4, 
140  mM NaCl, 2.5  mM CaCl2), stained with Annexin V FITC 
for 30 min at room temperature in the dark, then washed again, 
and re-suspended in Annexin V binding bu�er containing PI. 
Samples were analyzed immediately.

Immunoblotting Assay
For detection of phophoproteins, control and CMO treated cells, 
cytoplasmic and nuclear extract were prepared for according to 
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TABLE 1 | Library of newly synthesized 1,3,4-oxadiazoles.

Entry Acid hydrazide Carboxylic acid Oxadiazole

1

 3a

 

4a  

5a 

2

4b

5b

3

4c

5c

4

4d

5d

5

4e

5e

SCHEME 1 | Schematic representation for the synthesis of 1,3,4-oxadiazoles.
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Entry Acid hydrazide Carboxylic acid Oxadiazole

6

3b
4f

5f

7

4g 5g

8

4b 5h

9

3c 4h

5i

10

4d

5j

TABLE 1 | Continued
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manufacturer’s instructions. Lysates were then spun at 14,000 rpm 
for 10 min to remove insoluble material and resolved on a 10% SDS 
gel. A�er electrophoresis, the proteins were electrotransferred to 
a nitrocellulose membrane, blocked with blocking bu�er, and 
probed with primary antibodies overnight at 4°C. �e blot was 
washed, exposed to HRP-conjugated secondary antibodies for 
1  h, and �nally examined by chemiluminescence and imaged 
using ChemiDoc™ imaging system (BioRad, USA).

NF-κB DNA Binding Assays
To determine NF-κB activation, we performed DNA-binding 
assay using TransAM NF-κB kit according to the manufacturer’s 
instructions and as previously described (32). Brie�y, 50  µg of 
nuclear proteins were added into 96-well plate coated with an 
unlabeled oligonucleotide containing the consensus binding site 
for NF-κB (5′-GGGACTTTCC-3′) and incubated for 4, 8, and 
12 h. �e wells were washed and incubated with antibodies against 
NF-κB p65 subunit. An HRP conjugated secondary antibody was 
then applied to detect the bound primary antibody and provided 

the basis for colorimetric quanti�cation. �e enzymatic product 
was measured at 450 nm by microplate reader (Tecan Systems).

NF-κB Luciferase Reporter Assay
�e e�ect of CMO on constitutive a NF-κB-dependent reporter 
gene transcription in HepG2 and HCCLM3 cells was determined 
as previously described (32). NF-κB responsive elements linked 
to a luciferase reporter gene were transfected with wild-type or 
dominant-negative IκB. �e transfected cells were then treated with 
CMO for 4, 8, and 12 h. Luciferase activity was measured with a Tecan 
(Durham, NC, USA) plate reader and normalized to β-galactosidase 
activity. All luciferase experiments were done in triplicate.

p65 siRNA Transfection
HepG2 cells were plated in 6-well plates and allowed to adhere 
for 24  h. On the day of transfection, lipofectamine was added 
to control or p65 siRNA in a �nal volume of 1  ml of culture 
medium. A�er 48 h of incubation following transfection, HepG2 
cells (1 × 104 cells/well) in 6-well plate were treated with CMO for 
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FIGURE 1 | (A,B) CMO induces antiproliferative effect in time- and 

dose-dependent manner. HepG2 and HCCLM3 cells were plated in triplicate, 

treated with indicated concentrations of CMO, and then subjected to MTT 

assay after 24, 48, and 72 h to analyze proliferation of cells. The data are 

expressed as mean ± SD, compared with the untreated control (*p < 0.05, 

**p < 0.01).
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24 h. Equal volume of Caspase-Glo® 3/7 reagent was then added 
to the wells to provide the 1:1 ratio of reagent volume to sample 
volume. A�er incubation for 15–30  min at room temperature, 
the luminescence was measured by Tecan microplate reader and 
activation of caspase-3/7 was analyzed.

Caspase-Glo® 3/7 Luminescent Assay
Caspase activity was measured using Caspase-Glo® 3/7 assay kit 
(Promega) according to the manufacturer’s instructions.

In Silico Interaction Analysis
Discovery Studio 2.5 so�ware from Accelrys was used for dock-
ing and visualization of the results as described earlier (33, 34). 
Initially, we retrieved the crystal structure of NF-κB complex 
(PDB: 1IKN) (35), cleaned, minimized the energy, and identi-
�ed the spatial region of p65. All the energy calculations were 
performed using CHARMM force �eld. �e three-dimensional 
structures of all oxadiazoles were prepared and docked toward 
the p65 using LIGANDFIT protocol of Discovery Studio. �e 
binding pose of ligands was evaluated using the interaction 
score function in the Ligand Fit module of Discovery Studio as 
reported previously (36).

RESULTS AND DISCUSSION

Chemistry
Initially, carboxylic acid (1a-c) was converted to their correspond-
ing ester (2a-c) followed by re�uxing with hydrazine hydrate in 
ethanol, which resulted in the formation of acid hydrazides (3a-c). 
�erea�er, 1,3,4-oxadiazoles (5a-j) were synthesized by re�uxing 
equimolar mixture of acid hydrazide (3a-c), with di�erent aro-
matic carboxylic acid (4a–h) in phosphorous oxychloride (5 ml) 
for 7 h (Scheme 1). �e structures of all the target compounds 
(Table  1) were characterized by elemental analysis LCMS, 1H 
NMR and 13C NMR spectrometry.

Pharmacology
1,3,4-Oxadiazoles Mitigate the Proliferation of HCC 

Cells in Time- and Dose-Dependent Manner
Initially, we prepared the library of 10 novel 1,3,4-oxadiazoles and 
screened the newly synthesized compounds for their antiprolif-
erative potential against HepG2 and HCCLM3 cells by MTT 
assay (37). Among the screened compounds, CMO was identi�ed 
as the most potent antiproliferative agent with an IC50 of 27.5 µM 
against HCCLM3 cells. Our results presented that CMO possess 
relatively higher antiproliferative e�cacy against HCCLM3 than 
HepG2 cells. We next treated HCCLM3 and HepG2 cells with 
di�erent concentrations of CMO for di�erent time intervals. We 
observed a signi�cant reduction in proliferation of cells in a dose- 
and time-dependent manner (Figures 1A,B).

CMO Causes Increased Accumulation of HCC Cells 

in subG1 Phase
Caspase-activated DNase-mediated fragmentation of the genomic 
DNA is remarkable event in the cells committed to undergo 
apoptosis, which results in the formation of cells with lesser DNA 

content (38). �ese cells are termed as hypodiploid cells and can 
be detected as subG1 cell population in �ow cytometric analysis 
(39). In order to investigate the e�ect of CMO on distribution of 
cell cycle, HepG2 and HCCLM3 cells were treated with CMO at 
50 µM for di�erent time points up to 72 h and analyzed cell cycle 
distribution a�er PI staining. �e results demonstrated that CMO 
signi�cantly increased the subG1 cell population of HCCLM3 to 
6, 12.5, and 25.3% at 24, 48, and 72 h, respectively. �e cells in 
subG1 phase of HepG2 were found to be 2.8, 9.66, and 48.6% at 
24, 48, and 72 h, respectively (Figures 2A,B).

CMO Induces Apoptosis in HCC Cells
�e exposure of phosphatidylserine in the outer lea�et of plasma 
membrane is the most common biochemical change that is 
observed in the apoptotic cells, which can be detected using 
annexin V-FITC-PI staining (40). To ensure that CMO induces 
antiproliferative e�ect via apoptosis, we next examined the e�ect 
of CMO externalization of phosphatidylserine in HCCLM3 cells. 
Interestingly, the treatment with CMO signi�cantly increased the 
percentage of early (annexin V-positive and PI-negative cells) 
and late (annexin V-positive and PI-positive cells) apoptotic 

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


FIGURE 2 | (A,B) CMO induces accumulation of hepatocellular carcinoma (HCC) cells in SubG1 phase. HepG2 and HCCLM3 cells were treated with 50 µM of 

CMO for 24, 48, and 72 h, after which, the cells were washed, fixed, stained with propidium iodide, and subjected to flow cytometric analysis. (C,D) CMO induces 

substantial apoptosis in HCC cells. HepG2 and HCCLM3 cells were exposed to 50 µM CMO at indicated times, after which, cells were harvested and stained with 

Annexin V and propidium iodide. The percentage of early and late apoptosis in the HCC cells treated with 50 µM CMO was examined using flow cytometry. The bar 

graph shows total percentage of apoptotic cells of HepG2 and HCCLM3 upon treatment with 50 µM of CMO at the indicated time points. The data are expressed 

as mean ± SD, compared with the untreated control (*p < 0.05, **p < 0.01).
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cells compared with DMSO-treated cells (Figures 2C,D). �ese 
results demonstrate that CMO induce apoptosis in HCC cells.

CMO Inhibits the Phosphorylation of IκB and 

Depletes the Nuclear Pool of p65 in HCC Cells
Inactive NF-κB in association with inhibitory kappa B (IκB) is 
present in the cytoplasm (41). Phosphorylation and proteolytic 
degradation of IκB is essential for posttranslational activation 
of NF-κB and, upon activation, NF-κB translocate to nucleus to 
induce the expression of target genes (42). In order to investigate 
the e�ect of CMO on NF-κB signaling pathway, HepG2 cells were 
treated with CMO for di�erent time points up to 12 h, prepared 
the cytoplasmic extract, and analyzed the levels of phospho-
IκB. Interestingly, we found the decrease in phosphorylation 
of IκB (Ser 32) in a time-dependent manner (Figure  3A). At 
the same time, IκB and GAPDH protein expression remained  
unchanged.

�e phosphorylation of p65 (Ser 536) de�nes an IκB-
independent NF-κB signaling pathway (43). �erefore, we fur-
ther examined the levels of phospho-p65 in the nuclear extract 

of cells treated with CMO at di�erent time points up to 12 h. �e 
results clearly demonstrated the decline in phospho-p65 and 
p65 in a time-dependent manner (Figure 3B). �e expression 
of lamin B was used as input control, which remained unaltered.

CMO Abrogated NF-κB DNA Binding and Luciferase 

Activity in HCC Cells
We next investigated the e�ect of CMO on constitutive NF-κB 
activity in HCC cells. Cells were preincubated with 25 µM CMO 
for 4, 8, and 12 h and then nuclear extracts were prepared and 
tested for NF-κB DNA-binding activity. We noted that treatment 
with CMO suppressed constitutive NF-κB activity in a time-
dependent manner (Figure 4A). To analyze the e�ect of CMO on 
constitutive NF-κB-dependent reporter gene expression in HCC 
cells, transfection was done as described in Section “Materials 
and Methods.” In the presence of CMO, NF-κB-dependent lucif-
erase expression was signi�cantly reduced in a time-dependent 
manner with maximum inhibition at 12 h (Figures 4B,C). �ese 
results further demonstrate that CMO can abrogate constitutive 
NF-κB activation in HCC cells.
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FIGURE 5 | (A) Knockdown of p65 by small interfering RNA (siRNA) 

reduces the apoptotic effect of CMO. HepG2 cells were transfected with 

either control or p65 specific siRNA (50 nM). After 48 h, the cells were 

treated with CMO (25 or 50 µM) for 24 h, and the enzymatic activity of 

caspase-3/7 was determined by Caspase-Glo® 3/7 assay kit. (B) CMO 

increases the cleavage of PARP and Caspase 3 in HCCLM3 cells. HCCLM3 

cells were treated with 50 µM CMO for 12, 24, 36, and 48 h, after which, 

the whole-cell extracts were prepared, and 30 µg of protein was resolved 

on 12% SDS-PAGE gel, electrotransferred onto nitrocellulose membranes, 

and probed for cleaved PARP and cleaved caspase 3 antibodies. The data 

are expressed as mean ± SD, compared with the untreated control 

(*p < 0.05).

FIGURE 3 | (A,B) CMO inhibits the phosphorylation of IκB and depletes the 

nuclear pool of p65 in hepatocellular carcinoma cells. HepG2 cells were treated 

with 25 µM CMO for indicated time point, after which, the cytoplasmic and 

nuclear extracts were prepared, and protein was resolved on SDS-PAGE gel, 

electrotransferred onto nitrocellulose membranes, and probed for phospho-

IκB, IκB, phospho-p65, p65, GAPDH, and Lamin B antibodies.

FIGURE 4 | (A) The effect of CMO on constitutive NF-κB DNA-binding 

activity. HepG2 cells (5 × 105/ml) and HCCLM3 cells (5 × 105/ml) were treated 

with CMO for 4, 8, and 12 h. Nuclear extracts were prepared, 50 µg of the 

nuclear extract protein was taken for DNA-binding assay as described in 

Section “Materials and Methods.” (B,C) CMO inhibits constitutive activation 

of reporter gene expression. HepG2 (5 × 105/ml) and HCCLM3 (5 × 105/ml) 

cells were transfected with NF-κB luciferase and β-galactosidase reporter 

plasmid using lipofectamine, incubated for 24 h, and then treated with CMO 

for 4, 8, and 12 h. Cells were lysed in reporter lysis buffer and analyzed for 

luciferase activity and normalized with β-galactosidase activity. Results are 

expressed as % fold activity over the activity of vector control. *p < 0.05.

FIGURE 4 | Continued
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Transfection with p65 siRNA Blocks CMO Induced 

Caspase-3/7 Activation
We determined whether the knockdown of p65 using siRNA could 
signi�cantly block the increase in CMO induced caspase-3/7 
activation in HepG2 cells. In cells transfected with control siRNA, 
CMO treatment signi�cantly increased caspase-3/7 activation, 
thereby inducing apoptosis (Figure  5A). �e results clearly 
indicate that the observed increase in caspase-3/7 activation was 
signi�cantly suppressed in the cells transfected with p65 siRNA 
when compared to control siRNA treated group.

CMO Induces the Cleavage of PARP and Caspase-3
During apoptosis, procaspase-3 is cleaved to form active caspase 
3 (executioner caspase), which in turn cleaves the full-length 
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TABLE 2 | Molecular docking results of p65 with oxadiazoles.

Entry LS1 LS2 -PLP1 -PLP2 JAIN -PMF DS

1 2.26 5.49 91.7 82.35 0.23 54.81 54.86

2 2.19 5.31 90.55 83.5 0.37 52.69 53.72

3 2.23 5.40 91.14 85.13 0.34 53.51 53.98

4 2.96 5.94 86.94 81.35 2.02 51.45 56.80

5 3.60 5.68 95.92 85.44 0.09 56.92 58.38

6 2.70 5.72 78.03 71.04 0.46 48.53 51.54

7 2.70 5.47 77.54 71.31 0.35 50.87 50.72

8 2.42 5.59 78.85 74.85 0.48 50.49 52.58

9 5.29 5.77 80.3 75.22 1.6 29.64 56.64

10 4.00 6.26 84.55 74.9 2.85 46.21 61.00

LS1 and LS2: LigScore1 and 2 are a fast, simple, scoring function for predicting 

protein–ligand binding affinities.

PLP1 and PLP2, piecewise linear potentials 1 and 2 are fast, simple, docking function 

that has been shown to correlate well with protein–ligand binding affinities.

JAIN, an empirical scoring function (lipophilic, polar attractive, and polar repulsive 

interactions, solvation of the protein and ligand, and an entropy term for the ligand) 

through an evaluation of the structures and binding affinities of a series of protein–

ligand complexes.

PMF, potential of mean force is the scoring function developed based on statistical 

analysis of the 3D structures of protein–ligand complexes.

DS, Dock Score, ligand poses are evaluated and prioritized according to the Dock 

Score function.

FIGURE 6 | In silico molecular interactions between p65 of NF-κB complex 

and the oxadiazole derivatives: (A) hydrophobic region of p65 was shown as 

green mass; (B) surface view of CMO bound p65 with the key amino acids 

(labeled); (C) interaction map and hydrogen bonding (dotted line) pattern of 

p65 protein with CMO.
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PARP (116 kDa) into 85- and 24-kDa fragments. PARP is associ-
ated with DNA repair mechanism, and its cleavage drives the cell 
to apoptosis. We next evaluated whether inhibition of NF-κB by 
CMO induce PARP and caspase-3 cleavage. We observed the 
increase in cleaved caspase-3 and PARP demonstrating that 
CMO induces caspase-3-mediated apoptosis, which is in agree-
ment with the results of previous experiments (Figure 5B).

In Silico Analysis of Oxadiazoles with p65
Compounds of the type 1,3,4-oxadiazoles are known to target 
NF-κB in several proin�ammatory disease models. It was also 
demonstrated that alkylating agent such as N-ethylmaleimide 
and oxidizing agent eliminated the DNA binding ability of NF-κB 
(44). In another study, helenalin (the sesquiterpene lactone) 
selectively alkylates p65 subunit and inhibits the activation of 
NF-κB (45). Helenalin is an oxygen containing heterocycle 
with good NF-κB inhibitory activity. Based on these reports, we 
predicted that electronegativity of oxygen and nitrogen and elec-
tropositivity of other atoms in the oxadiazole ring contributes for 
inhibiting the activation of NF-κB. To test the hypothesis and in 
order to understand the interaction of 1,3,4-oxadiazoles toward 
NF-κB, the crystal structure of NF-κB complex was considered 
in our study. Accelrys Discovery Studio default tools and settings 
(version 2.5) were used for the molecular docking procedures. 
Further, the hydrophobic region near the Cys38 of p65 protein 
was identi�ed using Accelrys binding site identi�cation tool. 
Using the LIGANDFIT protocol of the ligand–receptor interac-
tion module of Discovery Studio version 2.5, the oxadiazoles were 
docked into the hydrophobic region of p65 (Figure 6A), and the 
docking scores of all the compounds were summarized (Table 2). 
Docking scores indicated that CMO binds to the p65 with the 
higher value of (and thus most favorable) score of 61.0 kcal/mol. 
�e interaction pattern revealed that benzothiazole ring of CMO 
enters the hydrophobic region of p65 and interacts with Asn186, 
Arg187, Ala188 on one side and Arg30, Gly31, Asp223, Arg274, 
ser276, Asp277 on the other side. Further, oxadiazole ring of 
CMO is found to interact with Ala190, �r191, and Gln220 
(Figures 6B,C). In addition, hydrogen bonding is observed with 
the methoxy phenyl group of CMO and Gln247 and Lys218 of 
p65. �e results of in  silico analysis are in agreement with the 
results of cell based assays.

https://www.frontiersin.org/Oncology/
https://www.frontiersin.org
https://www.frontiersin.org/oncology/archive


10

Mohan et al. Oxadiazole Targets NF-κB Signaling Pathway

Frontiers in Oncology | www.frontiersin.org March 2018 | Volume 8 | Article 42

CONCLUSION

In summary, this study aimed at designing a library of chemically 
novel and biologically active 1,3,4-oxadiazoles. We generated 10 
oxadiazole structural analogs and evaluated for their cytotoxic e�ect 
against HCC cells, and the lead compound (CMO) displayed good 
antiproliferative e�cacy. Based on the literature, we speculated 
NF-κB signaling as the putative target of the lead compound, and it 
is validated via in vitro and in silico approaches. Although, this study 
identi�es NF-κB signaling as the likely target of 1,3,4-oxadiazoles, 
more comprehensive study on its o�-targets, signaling cross talks 
and in vivo antitumor potential needs to be investigated.
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