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Abstract

Background: Alzheimer's disease, a common dementia of the elder, is characterized by

accumulation of protein amyloid deposits in the brain. Immunization to prevent this accumulation

has been proposed as a therapeutic possibility, although adverse inflammatory reactions in human

trials indicate the need for novel vaccination strategies.

Method: Here vaccination with novel amyloid peptide immunogens was assessed in a transgenic

mouse model displaying age-related accumulation of fibrillar plaques.

Results: Immunization with any conformation of the amyloid peptide initiated at 12 months of age

(at which time fibrillar amyloid has just begun to accumulate) showed significant decrease in total

and fibrillar amyloid deposits and in glial reactivity relative to control transgenic animals. In contrast,

there was no significant decrease in amyloid deposition or glial activation in mice in which

vaccination was initiated at 16 months of age, despite the presence of similar levels anti-Aβ
antibodies in young and old animals vaccinated with a given immunogen. Interestingly, immunization

with an oligomeric conformation of Aβ was equally as effective as other amyloid peptides at

reducing plaque accumulation. However, the antibodies generated by immunization with the

oligomeric conformation of Aβ have more limited epitope reactivity than those generated by fAβ,

and the microglial response was significantly less robust.

Conclusion: These results suggest that a more specific immunogen such as oligomeric Aβ can be

designed that achieves the goal of depleting amyloid while reducing potential detrimental

inflammatory reactions. In addition, the data show that active immunization of older Tg2576 mice

with any amyloid conformation is not as efficient at reducing amyloid accumulation and related

pathology as immunization of younger mice, and that serum anti-amyloid antibody levels are not

quantitatively related to reduced amyloid-associated pathology.
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Background
Alzheimer's disease (AD) is an age-related common
dementia or loss of cognitive abilities. Neuronal loss, neu-
rofibrillar tangles and senile plaques, abnormal protein
deposits which include cleavage products of the amyloid
precursor protein (amyloid β peptides (Aβ)) are patho-
logic characteristics of the disease. While the mechanism
of this neurodegeneration remains to be defined, substan-
tial evidence implicating a significant role for the Aβ pep-
tide (40–42 amino acids) has been reported (reviewed in
[1,2]). As a result, one general therapeutic approach being
investigated is the reduction of amyloid peptide accumu-
lation in the brain. Several reports have shown that when
mice containing the transgene for human mutant amyloid
precursor protein (APP) were immunized with fibrillar Aβ
peptide prior to the accumulation of amyloid deposits, Aβ
deposition observed at later ages was greatly decreased [3-
6]. However, when applied to humans, "immunization"
with Aβ resulted in the development of an adverse inflam-
matory reaction in a fraction of the patients [7-9], which
led to a reevaluation of this strategy for AD in humans,
particularly at that stage of the disease when substantial
fibrillar amyloid deposits have begun to accumulate [10].
It is this stage of the disease that often correlates with
appearance of cognitive deficiencies that is a defined
point at which potential therapy may be initiated.

Several studies in mouse models have shown that passive
immunization, in these cases intracranial or peripheral
injection of anti-Aβ antibodies, resulted in relatively rapid
clearance of significant amounts of Aβ immunoreactivity,
both extracellular deposits as well as intraneuronal Aβ
accumulation [11-15]. Furthermore, decreases in amyloid
accumulation by either passive or active immunization
are accompanied by improvement of cognitive function
in these murine models [16,17] and previous work
reviewed in [18]). However, not all anti-amyloid antibod-
ies provide the same degree of protection [19], and there
have been at least two reports in which animals with
established robust plaque load did not respond to a par-
ticular immunogen [3,20]. Thus, as with other immuno-
logical responses, the nature of the immunogen, the
adjuvant used for immunization, the age and the genetics
of the animals immunized all contribute to defining the
immune response that subsequently develops and these
differences lead to various degrees of clearance and pro-
tection from injury.

Recent reports have defined an oligomeric conformation
of the Aβ structure that alters LTP activity [21,22] and
induces neurotoxicity in vitro that can be reversed by addi-
tion of anti-oligomeric antibody [23,24]. Since Aβ oli-
gomers are proposed to be an intermediary conformation
prior to fibril formation and it has been proposed that
antibodies preventing or reversing amyloid assemblies

may be therapeutic [25-27], we tested immunization with
a novel immunogen presenting the oligomeric conforma-
tion of Aβ [23]. In addition, the Aβ oligomers may be
more transient (and present at lower concentrations at
any given time) than other conformations, and thus
immunization with the oligomeric form of the amyloid
peptide may provide benefit with minimal induction of
inflammatory cascade. The data obtained demonstrate
that immunization with an oligomeric conformation of
the peptide is as efficient as immunization with either
fibrillar amyloid or a multiple antigen peptide amyloid
immunogen in terms of clearing amyloid, and that micro-
glial reactivity is significantly less with oligomers as the
immunogen than other amyloid conformations.

The experiments described here were also designed to
assess the effect of immunization of animals at an
advanced age/stage of pathology on the mitigation of
amyloid associated neuropathology in a mouse overex-
pressing human mutant amyloid precursor protein, and
to determine whether differences in complement deposi-
tion could be detected on plaques resistant to clearance.
Our results, in addition to identifying a novel candidate
immunogen, demonstrate that while the level of meas-
ured serum antibodies are similar or only slightly different
in animals immunized with a given immunogen at differ-
ent ages, a decrease in the accumulation of both fibrillar
and diffuse amyloid plaques occurs only when mice are
immunized at early stages of the disease (12–16 months
of age). The level of C3 activation fragments associated
with plaques was also reduced in animals immunized
with any amyloid immunogen, correlating with reduced
fibrillar plaque burden. Finally, a new, automated, com-
puter assisted method of quantification of immunoreac-
tivity is described and shown to correlate well with
conventional image analysis.

Methods
Amyloid peptide fibril and oligomer preparation

Lyophilized Aβ1–42 peptides were resuspended in 50%
acetonitrile in water and re-lyophilized. Soluble oligom-
ers were prepared by dissolving 1.0 mg of peptide in 400
µL hexafluoroisopropanol (HFIP) for 10–20 min at room
temperature. 100 µl of the resulting seedless solution was
added to 900 µl MilliQ H2O in a siliconized Eppendorf
tube. After 10–20 min incubation at room temperature,
the samples were centrifuged for 15 min. at 14,000 × G
and the supernatant fraction (pH 2.8–3.5) was transferred
to a new siliconized tube and subjected to a gentle stream
of N2 for 5–10 min to evaporate the HFIP. The samples
were then stirred at 500 RPM using a Teflon coated micro
stir bar for 24–48 hr at 22°C. Oligomers were validated by
atomic force microscopy (AFM), electron microscopy
(EM) and size exclusion chromatography (SEC) as
described [23]. Fibrils are formed by stirring the same
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solution for 7 days. Fibrils were sedimented and washed
in PBS, and resuspended at 2 mg/ml. Fibrillar β amyloid
(fAβ) peptides were stored at -70°C until immunization.
For the oligomer antigen (oligo), Aβ oligomer molecular
mimic was prepared by conjugating Aβ40 via a carboxyl
terminal thioester to 5 nm colloidal gold as previously
described [23], and stored at 4°C until used. A multiple
antigen peptide (MAP) which contains a core matrix of 4
branching lysines contiguous with the amyloid beta 1–33
peptide (ie.MAPAβ1–33) containing both the native B and
T cell epitopes of Aβ was synthesized (Invitrogen Inc.,
Carlsbad, CA) to increase the response to Aβ. Peptides
were resuspended in sterile PBS at 2 mg/ml, vortexed and
stored at -70°C.

Animals and immunization scheme

Tg (HuAPP695.K670N-M671L)2576 mice from K. Hsiao
[28] and non-transgenic littermates or B6/SJL wild type
mice were used as controls. fAβ or oligomer mimic were
emulsified 1:1 (v/v) with complete Freund's adjuvant
(CFA) for the first immunization, while MAPAβ1–33 pep-
tides were emulsified 1:1 (v/v) with complete Freund's
adjuvant containing 4 mg/ml Mycobacterium tuberculo-
sis (Difco, Voight Global, Kansas City, Mo) [29]. Subse-
quent immunizations with each immunogen in
incomplete Freund's adjuvant (IFA) were performed after
2 weeks, and monthly thereafter for 3 additional injec-
tions. Two weeks after the final immunization, animals
were bled and perfused as described below. In all immu-
nizations 100 ug peptide was injected subcutaneously per
mouse. In addition, at the time of initial immunization
with MAPAβ1–33 500 ng of pertussis toxin (PTX) (Sigma,
St. Louis, MO) in 200 ul PBS was injected IP, followed by
a second injection 24 hours later [29]. Immunization con-
trols for both wild type and transgenic mice included
injections of adjuvant with PBS only (no peptide antigen).
All experimental procedures were carried out under proto-
cols approved by the University of California Irvine Insti-
tutional Animal Care and Use Committee.

Tissue collection and immunohistochemistry

Mice were deeply anesthetized with an overdose of pento-
barbital (150 mg/kg, IP), blood collected by cardiac punc-

ture, and then animals perfused transcardially with cold
phosphate-buffered saline (PBS). After dissection, brain
tissue was fixed overnight with 4% paraformaldehyde in
PBS, pH 7.4 at 4°C. Thereafter, fixed tissue was stored in
PBS/0.02% sodium azide (NaN3) at 4°C until use. Fixed
brain tissue was sectioned (40 um) with a vibratome, and
coronal sections were collected in PBS (containing 0.02%
sodium azide), and stored at 4°C prior to staining.

Immunohistochemistry (IHC) was performed on free-
floating brain sections. To stain for Aβ plaques, sections
were immersed in 50% formic acid for 5 min. Endog-
enous peroxidase in tissue was blocked by treating with
3% H2O2 in PBS, 10 min at room temperature. Nonspe-
cific background staining was blocked by1 hour incuba-
tion in 2% BSA with 0.3% Triton X-100 (TX) at room
temperature. Sections were then incubated with primary
antibodies (Table 1) overnight at 4°C, rinsed 3 times with
PBS with 0.1% TX and incubated with biotinylated sec-
ondary antibody followed by ABC kit reagent (Vector,
Burlingame, CA) for 1 hour each at room temperature.
Finally, after washing three times, the sections were incu-
bated for approximately 2~5 min with diamino-benzi-
dine (DAB), (Vector). Sections were mounted on slides,
dehydrated in a series of graded ethanol, cleared with
xylene, and then coverslipped with DePeX (Biomedical
Specialities, CA). For fluorescent staining, biotinylated
secondary was detected by incubation with Streptavidin-
CY3 (Vector) for 1 h at RT. Fibrillar Aβ was visualized by
incubating the sections in 1% thioflavine for 30 minutes
followed by a 1 minute wash in 50% ethanol, 5 min in
deionized distilled water, and 5 min in PBS. Sections incu-
bated in parallel without primary antibody or IgG control
did not develop staining.

Image analysis

Immunostaining was observed under a Zeiss Axiovert-200
inverted microscope (Carl Zeiss, Thornwood NY) and
images acquired with a Zeiss Axiocam high-resolution
digital color camera (1300 × 1030 pixel) using Axiovision
3.1 software. Digital images were analyzed using KS300
analysis program (Zeiss). Percentage of immunostained
area (area of immunostaining/total image area × 100) was

Table 1: Summary of antibodies used in this study

Antibody Antigen Type Source DilutionA Reference

GFAP Glial Fibrillary acidic protein (bovine) Rabbit polyclonal Dako IHC: 4 ug/ml [58]

6E10 Aβ1–17 (human) Mouse monoclonal Seneteck IHC: 1 ug/ml [59]

MAC-1 CD11b (mouse) Rat monoclonal Serotec IHC: 10 ug/ml [60]

CD45 CD45 (mouse) Rat Monoclonal Serotec IHC: 1 ug/ml [61]

C3(2/16) C3/iC3b/C3c (mouse) Rat Monoclonal Lambris IHC 1:500 [36]

C3(2/11) C3b/iC3b/C3c (mouse) Rat Monoclonal Lambris IHC 1:1000 [36]

M-16 β-Amyloid Rabbit Polyclonal Glabe IHC 1:2000 [62]

A IHC, immunohistochemistry
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Thioflavine positive plaques are decreased in TG 2576 mice immunized from 12–16 months with oligomeric or fibrillar Aβ con-formationsFigure 1
Thioflavine positive plaques are decreased in TG 2576 mice immunized from 12–16 months with oligomeric or 
fibrillar Aβ conformations. A. Cortex of Tg2576 at 16 months was stained with thioflavine as described in Materials and 
Methods (control: untreated, CFA: adjuvant only, Oligo Aβ: colloidal gold conjugated amyloid β, and fAβ1–42: fibrillar amy-
loid). Scale bar = 100 microns. B. Image analysis of thioflavine in hippocampus and cortex of animals immunized at 12–16 
months. Mean of each animal is the average of 2–4 sections (except untreated control which is 1 section per animal) in which 
most to all of the area of study was analyzed (total 4–8 images per section). Bars represent group mean ± SD of n mice per 
group: Control n = 9, CFA n = 4, oligo Aβ n = 7, Aβ n = 5. *p < 0.02, **p < 0.005 by ANOVA relative to CFA (adjuvant only) 
control.
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determined for all the markers studied by averaging %
Field Area of several images per section that cover most, or
all, of the region of study. Assays were repeated at least
twice, with n = 4–7 animals per group per age per marker
as noted in legends and text. Quantitative comparisons
were performed on sections processed at the same time.
Single ANOVA statistical analysis was used to assess the
significance of the differences in plaque area, glial and C3
activation products reactivity among the animals groups.

A second method of quantification developed for the
ACIS image analysis system (Clarient, Inc., San Juan Cap-
istrano, CA) was utilized to analyze the 6E10 immunore-
activity. Images were acquired automatically. Cortical and
hippocampal regions appropriate for analysis were
selected and automatically scored using an algorithm that
identifies objects based on user-configurable parameters.
Object identification was paired with a watershed seg-
mentation algorithm to facilitate separation of touching
and overlapping deposits. In this manner large deposits
that form contiguous bands of Aβ were separated into
individual objects. Because Aβ deposits in these animals
can vary markedly in size and shape, the identification of
Aβ-positive objects utilized a broad size filter (12–3,000
microns effective diameter) and did not employ rigorous
morphometric filters. Data collected for each Region of
Interest (ROI) were the area of tissue scored (area of the
ROI), the number of Aβ-positive objects identified and
the total area of the Aβ-positive objects. These parameters
allowed calculation of two different measures of amyloid
load: the Aβ-Positive Object Density, which is simply the
number of objects per mm2 of tissue scored and is used as
an approximation of the number of plaque-like structures
per mm2, and secondly, the ratio (as a percent) of the total
area of the Aβ-positive objects to the area of tissue scored.
It should be noted that, since the numerator of this second
ratio contains only the area enclosed within the bounda-
ries of the identified objects and does not incorporate
small particles of Aβ-immunoreactivity that are excluded
by the size filter (i.e. <12 microns effective diameter), this
measure is distinct from the area ratio described in the
previous section and will thus be denoted as the Aβ-Posi-
tive Object Area Ratio.

Comparisons among experimental groups were based on
single values per animal for Aβ-Positive Object Density
and Aβ-Positive Object Area Ratio. These were calculated
by determining the sum of the numbers of Aβ-positive
objects (or the sum of the areas of the Aβ positive objects)
for the entire section and dividing by the sum of the areas
of all ROIs. This analysis was performed blinded to results
from prior conventional quantification as described
above.

ELISA analysis of anti Aβ antibodies

ELISA assays were performed as previously described [23].
Briefly, 50 ng/100 ul of monomeric, oligomeric or fibrillar
Aβ40 was plated on ELISA wells and blocked with BSA.
Serum samples were initially diluted 250-fold and then
serially diluted two-fold to an end point of 1:64,000. The
secondary antibodies used for detection were peroxidase-
conjugated AffiniPure Goat Anti-mouse IgG (H+L) (Jack-
son ImmunoResearch) and peroxidase-conjugated anti-
mouse IgM (Zymed/Invitrogen, Carlsbad, CA). For sam-
ples where the absorbance exceeded 3 times the back-
ground absorbance, the titer was determined from the
midpoint of the dilution curve (IC50). For samples that
did not exceed this criterion, the titer was assumed to be
less than the initial dilution of 1:250.

Results
Immunization initiated at 12 months of age with any Aβ 

conformation decreased both total and fibrillar Aβ 

immunostaining in Tg2576 mice

In AD significant cognitive decline is generally correlated
with the appearance of "mature" amyloid plaques
[26,30]. These plaques contain fibrillar amyloid peptide
and as such can be detected by thioflavine, a reagent that
stains proteins in beta sheet conformation [31]. There-
fore, the accumulation of thioflavine stained plaques in
animals immunized at ages 12–16 months was assessed
in hippocampus and cortical regions of control animals or
animals immunized from 12–16 months of age with fAβ,
oligo Aβ, MAPAβ1–33 or adjuvant alone. Representative
photomicrographs presented in Figure 1A, and image
analysis using KS300 analysis program (Zeiss) of sections
from multiple animals demonstrated that the mean %
thioflavine positive area in oligo Aβ and fAβ immunized
groups (sacrificed at 16 months of age) was decreased by
56 and 40% respectively, relative to adjuvant control.
Similarly, when MAPAβ1–33 was used as an immunogen,
fibrillar plaque accumulation was decreased by 53% rela-
tive to adjuvant control (Figure 2). There was no signifi-
cant difference between untreated controls and animals
treated with adjuvant only (Figure 1A and 1B) or adjuvant
plus pertussis toxin in thioflavine positive plaques (Figure
2A and 2B) or any of the markers tested below.

To assess total amyloid deposits in the APP transgenic
mice after the 4 month regime of immunization, the
human Aβ specific monoclonal antibody, 6E10, was used
as described in Material and Methods. Figure 3 shows rep-
resentative photomicrographs from the cortex and hip-
pocampal region of control or immunized animals. Image
analysis of sections from multiple animals demonstrated
that the mean % field stained area (ie. Aβ deposits) in
oligo Aβ and fAβ immunized groups was decreased by
greater than 44% relative to the CFA/IFA controls (Figure
3). Immunization with MAPAβ1–33 decreased total amy-
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Immunization of animals at 12–16 months with MAPAβ1–33 decreases thioflavine and anti CD45 reactivityFigure 2
Immunization of animals at 12–16 months with MAPAβ1–33 decreases thioflavine and anti CD45 reactivity. A. 
Representative photomicrographs of thioflavine (green) or CD45 (brown) staining of brain sections from 16 months Tg2576 
untreated (control), or injected with adjuvant alone (SCFA) or MAPAβ1–33 (MAP). Scale bar 100 microns (upper panel) and 50 
microns (lower panel). B. Image analysis of thioflavine staining or CD45 immunoreactivity in cortex and hippocampus of ani-
mals untreated or immunized at 12–16 months. Mean of each animal is the average of two sections (stained in two independent 
assays, each of which contained animals from each treatment group) in which most to all the area of study was analyzed (4–8 
images per section). Bars represent mean +/- SD of n mice per group. Thioflavine: Control n = 6, SCFA n = 6, MAP n = 5, *p < 
0.02; CD45: Control n = 5, SCFA n = 7, MAP n = 5, * p < 0.04.
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loid deposition (6E10 staining) by 52% and 44% relative
to adjuvant and untreated control respectively (data not
shown, n = 6 animals per group, p < 0.03).

To further validate the quantification of these immuno-
histochemical results, sections were also analyzed using
an automated digital imaging system (ACIS, CLARiENT).
A digital image was acquired for the entirety of each sec-
tion at a resolution of one pixel per micron. All cortical
and hippocampal tissues were then analyzed by object
identification and feature extraction algorithms. Since
analysis of over 50 sections containing both cortex and
hippocampus demonstrated that immunoreactivity was
higher in the cortex than in the hippocampus, only sec-
tions containing cortex and hippocampus were used in
these treatment comparisons. Both oligomeric and fibril-
lar Aβ conformations, as well as the MAPAβ1–33 immuno-
gen, resulted in significant changes in Aβ deposition, with
2- and 3-fold reductions in both plaque number (Aβ-Pos-
itive Object Density) and plaque area (Aβ-Positive Object
Area Ratio) relative to the respective adjuvant controls (p
< 0.05 by two-tailed t-test). In particular, the extent of the
reduction in the novel measure of Object Density by Aβ,
oligo or the MAPAβ1–33 immunized groups was essentially
identical compared to the adjuvant controls, (ie. reduc-
tions in plaque number were 2.73, 2.76 and 2.63-fold
respectively, p < 0.01, one tail t-test). The significant
decreases in plaque area in Aβ, oligo or the MAPAβ1–33

immunized groups obtained by this method were 1.96,
2.39, and 2.72-fold. These quantitative results correlated
well with conventional image analysis of the same speci-
mens (r = 0.84, p < 0.0001 for Aβ Positive Object Density
vs. conventional Area Ratio, and r = 0.75, p < 0.0001 for
Aβ Positive Object Area Ratio vs. conventional Area
Ratio), providing additional validation to the conclusion
that immunization with three different forms of the amy-
loid peptide result in a similar decrease in amyloid plaque
accumulation in this murine model when immunized
during a period of rapid amyloid deposition.

GFAP reactivity is decreased in Tg2576 immunized at 12–

16 months with oligo Aβ or fAβ
Characteristic of fibrillar amyloid plaques in both human
AD brain and in mouse models of amyloid accumulation
is robust association of activated astrocytes, which can be
envisioned by the astrocyte cell marker GFAP. GFAP stain-
ing of B6/SJL control animals was negligible relative to the
APP transgenic animals, whether untreated, immunized
with adjuvant only or any Aβ immunogen (data not
shown). However, while prominent plaque associated
GFAP staining was seen in both untreated and adjuvant
only transgenic mouse brain, the mean GFAP % field area
after the 4 month immunization scheme described in M &
M with oligo Aβ or fAβ was 42 and 41% respectively of
CFA control, ie a decrease of 58% and 59% (Figure 4A and

4B). This is consistent with the quantitative correlation
between mature, fibrillar amyloid plaque accumulation
and astrogliosis. That is, the amount of fibrillar plaque
deposition correlates with astrogliosis.

Immunization with oligomeric Aβ at 12–16 months 

resulted in less microglial immunoreactivity relative to 

immunization with fAβ
Microglia play a major role in regulating homeostasis in
the brain and have the ability to actively phagocytose, to
secrete cytokines, and to present antigen to T cells depend-
ing on their stimulatory environment [32]. However,
some of these same neuroprotective functions can
become detrimental if dysregulated [33]. Given the com-
mon observation that reactive microglia are characteristi-
cally associated with fibrillar amyloid containing plaques
in both human AD and animal models, we assessed the
effect of immunization on microglial reactivity as meas-
ured by CD45 and MAC-1 surface antigens. The photom-
icrographs from cortical brain areas show a pronounced
decrease in MAC-1 in animals immunized with oligo Aβ
or fAβ as compared to untreated or adjuvant treated trans-
genic mice (Figure 5A). Mean % area of MAC-1 staining in
oligo Aβ and fAβ immunized groups is 40 and 76%
respectively of CFA control (Figure 5B). Results were sim-
ilar when immunoreactive CD45 was assessed with mean
field area % staining in oligo Aβ and fAβ groups at 35 and
60% respectively of the CFA control (Figure 5C and data
not shown). Adjuvant only (CFA) animals and untreated
animals were indistinguishable. Interestingly, while there
is a clear trend to lower microglial activation in the fAβ
immunized animals, a statistically significant difference
was not established in the group studied relative to the
CFA control, perhaps due in part to the variability in the
animals. However, the difference in microglial reactivity
in those animals immunized with the oligomeric confor-
mation of Aβ was statistically significant relative to either
the untreated controls or adjuvant controls (p < 0.01,
MAC-1; p < 0.001, CD45). Indeed, CD45 and MAC-1
reactivity in the Oligo Aβ immunized animals is signifi-
cantly lower than that in the fAβ immunized animals (p <
0.02 and p < 0.05, for MAC-1 and CD45 respectively).
These results could reflect a lower variability in the activa-
tion of microglia in response to immunization with oligo
Aβ than with fAβ and could be related to the mechanisms
resulting in the decreased accumulation of amyloid in the
immunized animals in each case. Interestingly, immuni-
zation with MAPAβ1–33 also showed significantly less
CD45 (50% of adjuvant control, p < 0.036) (Figure 2) and
MAC-1 (38% of adjuvant control, p < 0.012, 1 experi-
ment, 4–7 animals per group, data not shown).
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Immunization initiated at 12 months of age in Tg2576 animals decreases total amyloid depositsFigure 3
Immunization initiated at 12 months of age in Tg2576 animals decreases total amyloid deposits. A. Representa-
tive photomicrographs of sections from brains of 16 m Tg2576 (Control, CFA, Oligo Aβ and fAβ) that had been immunized as 
described in Materials & Methods from 12 to 16 months of age immunostained with 6E10 (which reacts with the human amy-
loid peptide). Scale bar: 100 microns. B. Image analysis (% Field area) of Aβ (6E10 antibody) immunoreactivity in hippocampus 
and cortex of animals untreated or immunized at 12–16 months. Mean of each animal is the average of 2 sections (except 
untreated control which is 1 section per animal) assessing 4–8 images per section (most to all of the area of the section was 
analyzed). Bars represent group mean ± SD of n mice per group: Control n = 6, CFA n = 4, Oligo Aβ n = 7, Aβ n = 4, 
*p < 0.04, **p < 0.03 by ANOVA.
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Immunization with oligomeric or fibrillar Aβ at 12–16 months decreases astrocyte activation relative to untreated or adjuvant treated age matched controlsFigure 4
Immunization with oligomeric or fibrillar Aβ at 12–16 months decreases astrocyte activation relative to 
untreated or adjuvant treated age matched controls. A. GFAP reactivity (red) around fibrillar plaques (thioflavine, 
green) at 16 months in Tg2576 mice either untreated (Control), or immunized at 12–16 months of age with adjuvant only 
(CFA), oligo Aβ or fAβ. Scale bar = 50 microns. B. Image analysis of GFAP immunoreactivity in cortex of animals immunized at 
12–16 months. Mean of each animal is the average of 2–4 sections (total 4–8 images per section) in which most to all of the 
area of study was analyzed. Bars represent group mean ± SD of n mice per group: untreated = 4, CFA n = 4, oligo Aβ n = 7, 
fAβ n = 5. *p < 0.03, **p < 0.01 by ANOVA.
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Immunization with oligomeric Aβ at 12–16 months decreases microglia reactivity to a greater extent than immunization with fAβFigure 5
Immunization with oligomeric Aβ at 12–16 months decreases microglia reactivity to a greater extent than 
immunization with fAβ. Photomicrographs of immunohistochemical staining of microglial reactivity (MAC-1, brown) in 
Tg2576 untreated or immunized with CFA, Oligo Aβ and fAβ at 12–16 mos (A). Scale bar = 50 microns Image analysis of 
MAC-1 (B) and CD45 (C) immunoreactivity in hippocampus and cortex of animals immunized at 12–16 months. Values for 
each animal were the average of 6–8 images per section which resulted in analysis of most to all of the area of the section. Bars 
represent group mean ± SD of n mice per group: Control n = 7, CFA n = 4, oligo Aβ n = 6–7, fAβ n = 5. By ANOVA, for 
MAC, CFA: oligo Aβ *p < 0.01; for CD45, CFA: oligo Aβ *p < 0.001. Data for each marker are from one assay representative 
of 2 independent assays.
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Immunization with any amyloid immunogen at 16–20 

months shows no effect on plaque pathology

The identical immunization scheme was performed with
older Tg2576 and wild type (B6/SJL) animals. Immuniza-
tion was initiated at 16 months of age, a time at which
there was robust total and fibrillar amyloid deposits (see
untreated controls in Figures 1, 2, 3, 4, 5) in the transgenic
mice, and continued through 20 months of age. Animals
were then bled, sacrificed and assessed for each of the
markers described above. No differences in thioflavine
staining, 6E10, GFAP, MAC-1, or CD45 were seen
between any treatment groups regardless of the immuno-
gen (Figure 6 and data not shown for MAC-1 and the
MAPAβ1–33 immunized animals).

Immunization with oligomeric Aβ conformations induced 

measurable antibody reactivity to oligomers but not to 

soluble or fibrillar amyloid

Levels of anti-amyloid antibody induced in all immu-
nized animals differed to some extent among the immu-
nogen and the age of animals at the time of
immunization, although all animals responded to immu-
nization. A most notable observation was that immuniza-
tion of both transgenic and wild type mice with the
oligomeric conformation of Aβ resulted in measurable
antibody to the oligomeric form of Aβ (Table 2), with
trace to no reactivity to fibrillar Aβ or soluble Aβ as
assessed by conformation specific ELISA. Immunization
with fAβ or Aβ1–33 as a MAP peptide generated significant
levels of IgG anti-oligomeric Aβ as detected by ELISA
(Table 2), but also induced antibody to fAβ and to soluble
Aβ (data not shown). The transgenic animals immunized
with fAβ or oligo Aβ at a younger age (12–16 m) had
slightly higher antibody titers than those immunized later
(16–20 m), although the level of antibody in animals
immunized with MAPAβ1–33 was not related to age of
immunization. Nontransgenic immunized mice had
greater responses to all immunogens relative to the trans-
genic mice, and those responses did not vary according to
the age of immunization. However, the level of anti-oligo-
meric IgG antibody or any anti Aβ antibody had no detect-
able correlation with any of the pathologic markers at
either age group when individual transgenic animals were
compared (data not shown). Furthermore, as would be
expected after 4 months of immunization, no appreciable
IgM anti oligomeric Aβ or anti fibrillar Aβ was detected
(using an ELISA specific for IgM detection). Only very low
levels of IgM anti soluble Aβ was observed in sera from
animals immunized with fibrillar Aβ.

To determine if the antibodies generated with each immu-
nogen were able to bind amyloid plaques in the APP
transgenic mice, dilutions of sera from each group of ani-
mals immunized at 12–16 months and animals immu-
nized with fAβ at 16–20 months were screened for the

ability to bind to amyloid deposits in brain sections from
an unimmunized 16 month APP mouse. Consistent with
the ELISA data above, antisera from oligo immunized ani-
mals did not stain plaques, whereas antisera from animals
immunized at 12–16 months and 16–20 months with fAβ
and sera from MAPAβ1–33 animals all stained cortical
plaques (data not shown).

Mouse IgG is detected colocalized with plaques in Tg 2576 

immunized at 12 months with fAβ
As an indication of whether any induced antibody to β-
amyloid had access to the brain, sections from brain of
immunized animals were tested for immunoreactivity to
mouse IgG using two approaches: direct staining with
biotinylated anti mouse IgG (Figure 7A) and indirect
immunohistochemistry using rabbit anti mouse IgG as a
primary antibody and subsequently probing with anti
rabbit immunoglobulin (data not shown). Both staining
approaches gave comparable results. Deposits of IgG were
detected in cortex/hippocampus sections of animals
immunized with fAβ at 12 months (Figure 7A) and these
deposits of mIgG colocalized with Aβ positive plaques
(Figure 7B). All animals immunized with fAβ at 12–16
months that were tested (n = 6) showed these deposits. Of
the animals tested immunized with the oligo Aβ (n = 7)
only one had slight IgG reactivity (Figure 7A) within the
cortex, while no staining was detected on any of the adju-
vant controls (Figure 7A, n = 5). Interestingly, none of the
animals immunized at 16 months showed any IgG depos-
ited in the brain (data not shown, CFA controls = 3, oligo
Aβ n = 5, fAβ n = 5). All the animals immunized with
SCFA (n = 4) or MAPAβ1–33(n = 4) at 12–16 months that
were tested were negative for plaque-associated mouse
IgG. Sections from each animal were tested 2–4 times.
Thus, only animals immunized with fAβ at 12–16 months
showed any plaque-like IgG deposition in brain tissue,
even though the titer of anti fibrils and anti-soluble Aβ,
were generally higher in the MAPAβ1–33 immunized ani-
mals.

Complement C3 protein correlates with plaque pathology

Complement activation products associated with plaques
have been detected in murine models of AD [34,35]. Since
antibody-antigen complexes are known to activate com-
plement, it was hypothesized that complement activation
on plaques with associated antibodies (ie. those immu-
nized with fAβ at 12–16 months) may initiate the comple-
ment cascade thereby increasing the amount of C3 bound
to the plaques (and thereby possibly contributing to
greater microglial reactivity). Novel monoclonal antibod-
ies have recently become available that specifically recog-
nize C3 activation products (C3b, iC3b and C3c) [36].
These antibodies (2/16 and 2/11) were used to compare
C3 activation products in brain sections from mice immu-
nized with oligo Aβ and fAβ or with adjuvant alone. C3b/
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iC3b immunoreactivity was detected in all brain sections
of Tg2576 mice (Figure 8A). Interestingly, results of image
analysis demonstrated that the level of activated C3 corre-
lated with fibrillar Aβ plaque load (Figure 8B). That is, no
apparent increase in C3 deposition was detected in those
animals immunized with fAβ and shown to have anti-
body associated with the plaques. Rather, the amount of
C3 reactivity reflected the reduced quantity of plaques
present in the immunized animals relative to the adjuvant
control animals, and was nearly identical to that seen in
similar brain sections of animals immunized with oligo
Aβ. C3 staining in animals immunized at 16–20 months
correlated with thioflavine staining with no increase or
decrease in C3 deposition detectable in any of the animals
(data not shown).

Discussion
The data presented here is the first investigation of the
effect of active immunization with amyloid beta peptide
in a specific oligomeric conformation in a murine mouse

model of Alzheimer's Disease. Immunization with this
form of the peptide was as efficient at reducing amyloid
deposition in Tg2576 animals as either fibrillar Aβ or a
multiple Aβ antigen peptide when immunization was ini-
tiated at 12 mos. Interestingly, there was significantly less
(p < 0.05) activated microglia in the animals immunized
with the oligomeric form of Aβ than in those immunized
with fAβ. In addition, the antibody response induced by
immunization with oligomeric Aβ had a much more
restricted epitope response, generating antibodies to oli-
gomeric Aβ, but not to soluble or fibrillar Aβ, similarly to
that observed in vaccination of rabbits with the oligo-
meric conformation of Aβ [23]. The other two immuno-
gens tested, fAβ and MAPAβ1–33, induced antibodies to
oligomeric, fibrillar and soluble Aβ. Thus, one could spec-
ulate that the lower microglia activation is the result of
this restricted induction and that this feature may lead to
a lower potential for autoimmune responses and inflam-
matory responses. Further delineation of the basis for the
apparently lower microglial activation is, however, neces-

Immunization of Tg2576 mice at 16 – 20 months provided no significant change in brain pathologyFigure 6
Immunization of Tg2576 mice at 16 – 20 months provided no significant change in brain pathology. Image analy-
sis of immunoreactivity in sections of cortex/hippocampus of animals immunized at 16–20 months. Animals were immunized 
and tissue processed and stained for thioflavine (A), 6E10 (B), CD45 (C) and GFAP (D) as described above for the younger ani-
mals. Mean of each animal is the average of 2–3 assays/sections per marker, derived from 4 – 8 images per section (including 
most to all of the area of study). Bars represent group mean ± SD of n mice per group: Control (untreated) = 4–6, CFA n = 6, 
oligo Aβ n = 6–7, fAβ n = 4–6. No significant differences are seen between groups in any of the markers.
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sary to substantiate this hypothesis. Since we did not stain
these sections for T cells, it is unknown if the Oligo Aβ
immunogen elicited a strong T cell mediated immune
response beyond the induction of anti-oligomeric anti-
body. While this is a concern since a fraction of patients in
the human amyloid immunization trial (AN1792) devel-
oped meningoencephalitis [7-9,37], any reduction of
potentially adverse effects of immunization is desirable.

In contrast, no significant decrease was seen in any patho-
logical marker measured in mice vaccinated with any pep-
tide form when vaccination was initiated at 16 months, a
time at which there are high levels of accumulated
plaques. The lack of efficacy in reduction of plaque asso-
ciated pathology by immunization of these older mice,
similar to that reported by Das, et al [3], was not due to
lower anti-Aβ titers of antibodies in the mice as the levels
of reactivity were either equivalent or only slightly lower
than those of the mice immunized at an earlier age (12
mo) suggesting age related alterations/differences in traf-
ficking of amyloid out of the brain (see below) or anti-
bodies into the CNS via BBB (or to antibody-independent
clearance mechanisms). While it has been hypothesized
that older plaques are refractory to degradation and clear-
ance, intracranial injections of anti Aβ antibodies in old
APP/Tg mice (16–20 month-old) have been reported to
clear long established plaques [38]. Interestingly, Dodart
and colleagues reported that passive peripheral immuni-
zation of 24 month old PDAPP mice had no effect on
amyloid deposition in contrast to similar immunization
of younger mice. However, in these very old PDAPP mice
significant improvement of behavioral tasks were demon-
strated [39]. While the results here clearly demonstrate the
lack of effect on clearance of amyloid deposits in mice

immunized at an older age, it remains to be seen if
improvement in learning can be detected in the very old
Tg2576 mice actively immunized with specific conforma-
tions of Aβ (particularly the oligomeric conformation),
and whether effects of human Aβ immunization are simi-
larly influenced by age and/or plaque deposition at the
time of immunization.

In this study we used a second, novel method for quanti-
fication of immunohistochemical detection, specifically
of amyloid deposits. Although image analysis can bring
accuracy and objectivity to IHC, certain drawbacks have
historically limited its use. Not only are the processes of
image acquisition and data management labor-intensive,
but the mechanics of analysis itself can introduce some
subjectivity. Automated digital imaging systems, such as
the one tested here, have been developed to address such
drawbacks. Results from analysis of amyloid burden using
such an automated platform correlated tightly with those
obtained with an accepted more traditional image analy-
sis approach. Thus, this method is shown to accurately
assess amyloid burden in transgenic mouse models of AD.
In addition, the use of object-based analysis provides data
not obtainable through simple computation of % area
positive. For example, immunization with MAPAβ1–33

resulted in similar 2.63- and 2.72-fold reductions in Aβ-
Positive Object Density (i.e. plaque number) and Aβ-Pos-
itive Object Area Ratio (i.e. plaque area), respectively. In
contrast, fibrillar Aβ immunization affected these param-
eters somewhat differently, resulting in a 2.73-fold reduc-
tion in Aβ-Positive Object Density but a lower (though
still significant) 1.96-fold reduction in Aβ-Positive Object
Area Ratio. This raises the intriguing possibility that differ-
ent immunization paradigms might effect change in amy-

Table 2: IC50 Anti Oligomeric Aβ

12–16 m 16–20 m

TG2576 Average SD n Average SD n

CFA <250 3 <250 5

Oligo 894 122 4 444 75 5

fAβ 1463 75 6 1270 336 5

SCFA <250 5 <250 6

MAPAβ1–33 807 138 5 890 200 6

Wild Type Average SD n Average SD n

CFA <250 6 <250 2

Oligo 1051 246 4 1311 305 5

fAβ 2385 350 5 2267 248 7

SCFA <250 1 <250 2

MAPAβ1–33 1746 72 5 1586 178 4
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loid burden preferentially through alteration in either
plaque number or in plaque size, although additional
study will be required to rigorously test such an assertion.

Interestingly, plaque-associated IgG was detected only in
brain of animals immunized with fibrillar Aβ from 12 to
16 months old. While this is consistent with the lack of
anti-fibrillar amyloid antibody in the Oligo Aβ immuni-
zation scheme, sera of all animals immunized with
MAPAβ1–33 contained levels of anti-fibrillar Aβ similar to
the fAβ immunized animals, but no IgG was detected on
amyloid plaques even in the younger set (immunization
initiated at 12 m of age) of animals (n = 6) in which reduc-
tion of plaques and associated pathology was comparable
to fAβ immunized animals. These data suggest that there
may be differences in access of the antibody to brain tissue
via blood brain barrier or IgG-transport systems in mice

immunized with fAβ (perhaps due to antibody epitope
specificity [40]). Multiple injections of pertussis toxin
have been reported to result in infiltration of immune
cells into the brain [29]. However, while PT was given to
the MAPAβ1–33 mice at the time of initial injection and 24
hours later, these animals showed no immunoglobulin
associated with the remaining plaques and similar levels
of reduction of plaques in an age specific manner was seen
with the Oligo Aβ and fAβ immunogens. However, we did
not stain these sections for T cells and therefore cannot
confirm nor refute the previously published observation
of vascular associated T cells by Furlan and colleagues
[29].

Finally, the amount of C3 activation fragments deposited
on the plaques in all animals was largely correlated with
the amount of thioflavine staining detected in each ani-

IgG is deposited at detectable levels in Tg 2576 animals immunized at 12 months with fAβFigure 7
IgG is deposited at detectable levels in Tg 2576 animals immunized at 12 months with fAβ. Representative pic-
tures of cortex sections of mice immunized from 12–16 months with CFA, Oligo Aβ and fAβ. A. Direct immunoperoxidase 
labeling of mouse IgG using a biotinylated anti mouse IgG and streptavidin-HRP. B. Fluorescent double labeling with horse bioti-
nylated anti mouse IgG (Vector) detected with streptavidin-CY-3 (red) and polyclonal anti Aβ antibody (M-16) detected with 
FITC conjugated anti rabbit antibody (green). Arrowheads show colocalization of reactivity in some of the plaques. Scale bars: 
50 microns.
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Anti murine activated C3 is detected in plaque-like structures in Tg2576 and is decreased in animals immunized with either fAβ or oligo AβFigure 8
Anti murine activated C3 is detected in plaque-like structures in Tg2576 and is decreased in animals immu-
nized with either fAβ or oligo Aβ. A. Photomicrographs of immunohistochemical straining with 2/16 anti mouse C3b/iC3b 
(brown) in Tg2576 untreated or immunized with CFA, Oligo Aβ and fAβ at 12–16 mo. Scale bar = 20 microns. B. Anti C3b/
iC3b immunoreactivity in animals immunized at 12–16 months. Values for each animal were the average of 6–8 images per sec-
tion which resulted in analysis of most to all of the area of the section. Bars represent group mean ± SD of n mice per group: 
Control n = 4, CFA n = 3, oligo Aβ n = 6, fAβ n = 5. *p < 0.002, **p < 0.001 relative to CFA, by ANOVA.
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mal. While this would be expected since fibrillar amyloid
has been shown to activate complement [41-43], it is
somewhat surprising that there is no apparent increase in
those plaques with associated IgG (fAβ immunized, 12–
16 mo), since immune complexes (here Aβ/anti Aβ)
avidly bind C1q and activate complement. However,
additional investigations will be necessary to directly
determine the extent of complement activation in each
animal treatment group. Indeed increased complement
activation is predicted to enhance removal of complement
coated plaques (via C3 activation fragments, C3b and
iC3b) and thus, whether those plaques remaining are less
opsonized or display some other distinguishing character-
istic remains to be determined.

The mechanism by which immunization schemes
decrease neuropathology and prevent or reverse behavior
deficits has not yet been defined. A decrease in amyloid
deposition as a result of active immunization was seen in
APP overexpressing transgenic animals that are FcR
gamma chain deficient [44], suggesting that FcR mediated
ingestion by phagocytic cells is not a requirement. How-
ever, as stated above, complement activation fragments
(particularly C3b and iC3b) are also capable of mediating
particle ingestion and thus, complement receptors and/or
other phagocytic receptors may provide a mechanism for
enhanced ingestion in the absence of FcR. Bacskai et al.
demonstrated clearance of plaques by passive immuniza-
tion of Fab anti amyloid antibody fragments [13] which
lack the Fc portion of the antibody molecule and therefore
can neither engage Fc receptors nor activate complement,
thus providing support for multiple alternative clearance
mechanisms. Additional possible mechanisms by which
both passive and active immunization may be advanta-
geous have been proposed. The "peripheral sink" model
suggests amyloid is cleared in the periphery after being
transported from the brain across the vasculature into the
blood [12,45]. If therapeutically relevant concentrations
of anti Aβ antibodies do not cross the blood brain barrier
(BBB), then a mechanism for transporting Aβ out of the
brain across the BBB is required [46]. The principle mole-
cule that appears to be involved in transport of Aβ out of
the brain across the BBB is the low-density lipoprotein
receptor-protein-1 (LRP-1) [47-49], although other mole-
cules such as ApoE and α2- macroglobulin may be
involved in this process. Antibodies specific to LRP-1 sub-
stantially inhibited the clearance of Aβ40 from the brain
supporting the role of LRP-1 as a transporter of Aβ peptide
out of the brain [47]. Moreover, APP transgenic mice
crossed to receptor-associated protein knockout mice
(RAP-/-) mice, which are deficient in LRP-1 function,
develop increased extracellular Aβ deposition and neuro-
degeneration [50]. Interestingly, the LRP-1 expression in
the BBB appears to decrease significantly with normal
aging and in AD. Whether this occurs in aging mice and

contributes to the lack of clearance reported here remains
to be tested.

Another possible mechanism proposed is that antibodies
inhibit fibrillization of amyloid and/or promote depo-
lymerization of fibrils (reviewed in [51]). Still others sug-
gest antibodies must be reactive with the Aβ intermediates
to provide their functional protective effect. Wisniewski
and colleagues reported that the induction of a predomi-
nant IgM anti Aβ response also resulted in behavioral
improvements in the Tg2576 animal which did not neces-
sarily correspond to Aβ load in the brain, although high
IgM titers did correlate with low amyloid burden [52].
Active immunization of rats with mixed conformations of
Aβ peptides prevented the inhibition of LTP activity when
conditioned media containing Aβ oligomers were injected
intracerebroventricularly, and this prevention of inhibi-
tion of LTP correlated with antibody recognition of the Aβ
oligomers [24]. Anti-oligomeric antibody induced here
could promote therapeutic clearance and removal of amy-
loid via any of these mechanisms, and by limiting the
immune response, may limit detrimental activation and/
or promotion of inflammation.

A hypothesis consistent with the observations in both
human AD and transgenic mouse models of AD is that
there are at least two, likely overlapping, stages contribut-
ing to neuronal dysfunction in AD. Early events involving
the intracellular accumulation of Aβ peptides [53] and/or
generation of oligomeric Aβ peptides [21,23] or com-
plexes containing oligomeric Aβ [54] would lead to neu-
ronal alterations and cellular death. Factors arising during
aging such as oxidative stress, mitochondrial dysfunction,
deficiencies in lysosomal function or regulation of neuro-
trophic factors that lead to processing outcomes which are
harmful to the cell may contribute to, or enhance, suscep-
tibility to stress induced by Aβ [55-57]. Increased extracel-
lular fibrillar Aβ deposits from these processes and/or
overload of the phagocytic capacity of the local region
provide a nidus for complement activation [41,42]. The
generation of the proinflammatory complement activa-
tion products would initiate a secondary phase of inflam-
matory events that accelerate local neuronal damage, loss,
and decline of cognitive function [34]. Neuronal injury at
both stages could be avoided or diminished by a decrease
in amyloid peptide in the brain, a direct goal of immuno-
therapy. Providing increased specificity for the immune
response however, may also decrease the probability of
activating detrimental inflammatory responses, and thus
is a potential advantage of the oligomeric amyloid confor-
mation as the immunogen.

Conclusion
In summary, immunization with any amyloid peptide
immunogen resulted in significant reduction (45–55%)
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of plaque pathology and decreased inflammatory micro-
glial cell reactivity (40–65%) only when immunized prior
to the massive deposition of large mature plaques. These
decreases in pathology did not necessarily correlate with
the level of anti Aβ1–42 IgG in sera or with plaque-associ-
ated IgG. This first analysis of deposition/accumulation of
complement C3 activation within an immunization trial
shows association of C3b/iC3b with plaques that corre-
lates with the amount of thioflavine plaques present
rather than any association with the antibody response
induced. Finally, immunization with oligomeric Aβ1–42
induced a greater decrease in "reactive" microglia relative
to immunization with fibrillar Aβ as determined by
microglial surface expression of CD45 and MAC-1 anti-
gens. The lower microglial response resulting from immu-
nization with oligomeric Aβ suggests that the goal of
depleting plaques can be accomplished while inducing
less neuroinflammation, and thus facilitating the applica-
tion of immunotherapy to treatment and/or prevention of
AD in humans.
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