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ABSTRACT
We report in this paper our recent progress on the new devel-

opment, implementation, and evaluation of the structured speech
model with statistically characterized hidden trajectories. Uni-
directionality in coarticulation modeling in such hidden trajectory
models as presented in previous EARS workshops has been ex-
tended to bi-directionality (forward as well as backward in the
temporal dimension), offering significantly more power in parsi-
monious modeling of long-span context dependency. This new
type of model, when appropriately implemented, also simultane-
ously exhibits the property of contextually assimilated phonetic
reduction or phonetic target undershooting that is prevalent in ca-
sual, fluent speech (e.g., conversational speech). Experiments on
large-scale N-best rescoring (N=1000) have demonstrated substan-
tially lower phone recognition errors achieved by the model com-
pared with a context-dependent (triphone) HMM system built with
HTK. When the “error propagation” effect of the long-span acous-
tic model is artificially removed in the N-best rescoring paradigm
(via adding the reference hypotheses into the 1000-best list), the
error rate is further cut down in a dramatic manner.

1. INTRODUCTION

Modeling hidden dynamics in the temporal structure of human
speech has been a salient theme in recent speech recognition re-
search, and a growing body of literature on this theme is emerging
(e.g., [1, 2, 3, 5, 7, 9, 8, 11, 15, 14, 18, 19, 20]). Hidden dynamic
modeling provides a potential to overcome fundamental limita-
tions of the HMM, especially those related to recognizing casual,
spontaneous, or conversational speech with a high degree of pho-
netic reduction. One specific type of such modeling approaches is
exemplified by the hidden trajectory model (HTM), where the hid-
den dynamics take parametric forms of temporal functions defined
in a non-recursive manner. This offers implementational advan-
tages over the recursive forms of hidden dynamic models (e.g.,
[2, 3, 11]). In the earlier work on HTM, various parametric forms
of temporal functions with the properties of target-directedness
and of uni-directional coarticulation have been proposed and pos-
itively evaluated [3, 14, 19]. Two significant extensions of the
earlier HTM have been recently developed and will be reported
in this paper. First, the uni-directional coarticulation model in
the vocal tract resonance (VTR) hidden space is extended to the
bi-directional model via finite-impulse response (FIR) filtering of
both forward and backward VTR targets. This overcomes the
heuristic boundary-shift rule used in [19] for handling bi-directional
coarticulation within the framework of uni-directional, target-directed
hidden trajectory modeling. (This also provides greater implemen-
tational simplicity compared with the bi-directional coarticulation

model via infinite-impulse response (FIR) filtering proposed in
[2].) Second, compared with the HTM of [19] where the map-
ping function from the hidden VTR space to the observed acoustic
space was implemented via a mixture of linear functions with a
large number of trainable parameters, the new model presented in
this paper exploits an analytical nonlinear mapping function de-
veloped in our recent work of [6], offering more precise and yet
more parsimonious account for the speech dynamics in the ob-
served acoustic (cepstral) domain.

Some detailed analyses of coarticulatory properties, includ-
ing phonetic reduction, as exhibited by the bi-directional target-
filtering HTM were presented recently in [4], where scientific ev-
idence supporting the underlying concept of the model was pro-
vided (e.g., [10, 12, 13]). The focus of the current paper is on ways
of implementing this HTM for the purpose of automatic speech
recognition using the measured cepstral features. We have im-
plemented two versions of the model, one with straightforward
cascading of two stages in the model; i.e., passing the output of
the VTR trajectory model (stage I) directly as input to the VTR-
to-cepstrum mapping function (stage II), and another which inte-
grates the two stages of the model in computing the likelihood of
acoustic observations.

The organization of this paper is as follows. In Sec. 2, the
HTM consisting of two stages of the speech generative process is
outlined. Two ways of model implementation, cascaded one and
integrated one, are presented in Secs. 3 and 4, respectively. HTM
parameter training is described in Sec. 5. We provide experimen-
tal results in Sec. 6 on a standard TIMIT phonetic recognition task
based on N-best rescoring, which demonstrates significant advan-
tages of the integrated HTM implementation.

2. HIDDEN TRAJECTORY MODEL WITH
BI-DIRECTIONAL TARGET FILTERING

2.1. Model stage I

Stage I of the novel HTM presented in this paper is responsible
for converting a sequence of VTR targets with discrete jumps at
the phone segments’ boundaries into the a smooth dynamic pat-
tern (i.e., trajectory) across all these boundaries. Forward as well
as backward coarticulation occurs when the bi-directional filtering
and smoothing process makes the VTR value at each time depen-
dent on not only the VTR target at the current phone, but also the
VTR targets from the adjacent phones. In the mean time, the filter-
ing process automatically exhibits contextually assimilated reduc-
tion when the segment’s duration is reasonably short. especially
when the filter’s “stiffness” parameter is close to one. Reduction is
defined in this paper as VTR target undershooting, i.e., the physi-



cally realized VTR value being away from the VTR target. When
reduction is controlled by the targets of contextual (left and right)
segments, we say that the reduction is contextually assimilated.

The HTM developed in this work gives quantitative prediction
of the magnitude of contextually assimilated reduction. It is con-
structed using a slowly time-varying, FIR filter characterized by
the non-causal, vector-valued, impulse response function of 1
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where
�

represents time frame, and � ��� ��� is the segment-dependent
“stiffness” parameter vector, one component for each resonance.
Each component is positive and real-valued, ranging between zero
and one. In this paper, � is treated as a deterministic quantity for
simplicity purposes. The subscript $ ����� in � ��� ��� indicates that the
stiffness parameter is dependent on the segment state $ ����� which
varies over time. � in (1) is the unidirectional length of the im-
pulse response, representing the temporal extent of coarticulation
in one temporal direction, assumed for simplicity to be equal in
length for the forward direction (anticipatory coarticulation) and
the backward direction (regressive coarticulation).

Given the filter’s impulse response and the input to the filter
as the segmental VTR target sequence % ����� , the filter’s output as
the model’s prediction for the VTR trajectories is the convolution
between these two signals. The result of the convolution within
the boundaries of the home segment $ is

& � �����'	(� ��� ���*) % �����+	,��-*./021 �2��. �
� � ��� 0 � � % ��� 0 � �43 �2� 0 3��� 0 �65 (2)

where the input target vector’s value and the filter’s stiffness vec-
tor’s value typically take not only those associated with the current
home segment, but also those associated with the adjacent seg-
ments. The latter case happens when the time 7 in (??) goes be-
yond the home segment’s boundaries; i.e., when the segment $ � 7 �
occupied at time 7 switches from the home segment to an adjacent
one.

2.2. Model stage II

Stage II of the HTM converts the VTR vector & ����� at each time
frame

�
into a corresponding vector of LPC cepstra 8 �9�:� . Thus,

the smooth dynamic pattern of & �9�:� as the output from Stage I
is mapped to a dynamic pattern of 8 ����� , which is typically less
smooth, reflecting quantal properties in speech production [16,
17]. The mapping, as has been implemented, is in a memoryless
fashion (i.e., no temporal smoothing), and is statistical rather than
deterministic.

To describe this mapping function, we decompose the VTR
vector into a set of ; resonant frequencies < 	=� <?> 5 <�@ 5�A A A 5 <�B �DCand bandwidth E 	F� E�> 5 EG@ 5�A A A 5 EGB � C , and let & 	F� <HE � C . Then
the statistical mapping from VTR to cepstrum, which constitutes
Stage II of the model, is represented byI �����+	KJL� & � �����M�*NPO*QMRSNUT � ����� 5 (3)

1For simplicity purposes, we use scalar instead of vector notations
to describe the model construction as well as model implementations
throughout this paper.

where
TV�

is a subsegment-dependent,2zero-mean Gaussian random
vector:

T �XW=Y �ZT�[  \5^] @QMR � , and
O�QMR

is a subsegment-dependent
bias vector for the nonlinear predictive function

J_� & � � . A subseg-
ment of a phone is defined to be a consecutive temporal portion of
the phone segment. Linear concatenation of several subsegments
constitutes a phone segment.

In (3), the output of the mapping function
JL� & � has the fol-

lowing parameter-free, analytical form [6] for its ` -th vector com-
ponent (i.e., ` -th order cepstrum):

Jba������'	Fc`
d/e 1 >?f �hg

a4i jVk l�mn RFo�prq � c2s ` < e �9�:�< � � 5 (4)

where < � is the sampling frequency, and t is the highest VTR
order.

3. CASCADED IMPLEMENTATION

In this implementation, we assume that given the segment $ , there
is no variability in the VTR targets for a fixed speaker and con-
sequently there is no variability in the VTR variable & in each
frame within the segment. (Such variability is absorbed into the
random component in model stage II.) That is, both & and % are
treated as deterministic instead of random variables. Hence we
have u � &�v $ �_	xw

for & 	 &2ySzG{ as generated from the FIR fil-
ter, and u � &�v $ �|	  otherwise. Segment-dependent and speaker-
specific targets % � in the training data are obtained by an iterative
adaptative algorithm that adjusts % � so that the FIR output from
(2) matches, with minimal errors, the automatically tracked VTR
produced from the algorithm described in [6]. For the test data, tar-
gets are estimated using an algorithm similar to vocal tract length
normalization techniques.

To compute the acoustic likelihood required for scoring in
recognition, the above stage-I output & 	 & ySzG{ , as the determinis-
tic signal, is passed to model’s stage-II to produce the cepstral pre-
diction

J_� &2ySzG{ �����M� on a frame-by-frame basis. For each frame of
the observed cepstral vector I ����� within each segment $ (or sub-
segment), we have the following approximate likelihood score:

u � I ����� v $ �'}�~��2�� u � I ����� v & �9�:� 5 $ � u � & ����� v $ �} u � I ����� v & y
zG{ ����� 5 $ � u � & y
zG{ ����� v $ �'	 u � I ����� v & y
zG{ ����� 5 $ �	 Y�� I ������[�J_� &2y
zG{ �����M�*NPO�Q R 5M] @QMR�� A (5)

This Gaussian likelihood computation is done directly using the
HTK’s forced-alignment tool (Hvite) for the N-best rescoring ex-
periments (to be presented in Sec. 6).

Training of model parameters (
O QMR 5^] @QMR ) is carried out in a

similar way, using the same assumption and approximation as above.
This is also easily accomplished using the HTK tool for training
monophone HMMs on the cepstral residuals after the model pre-
diction is subtracted from the cepstral data.

4. INTEGRATED IMPLEMENTATION

This more elaborate implementation removes the assumption in
the above cascaded implementation that the VTR target % or VTR& is deterministic and that the optimal VTR vector &�y
zG{ is not a

2For notational simplicity, we use the same label � to denote a segment
as well as for a subsegment.



function of the acoustic observation I ����� . Instead, we incorporate
uncertainty in % (or equivalently in & ) in the formal model con-
struction and in computing the acoustic likelihood. This likelihood
scoring is essential for speech recognition, and is accomplished by
marginalizing (integrating) over the statistical distribution of VTR
variables.

4.1. Characterizing VTR uncertainty in model stage-I

In order to perform the marginalization, we first need to character-
ize the VTR uncertainty in terms of its statistical distribution. In
the current implementation, for each gender (not denoted here for
simplicity) and for each segment $ , we assume a separate Gaussian
distribution for the target:u � % v $ �'	 Y � % [DO�� R 5M] @��R � A

Given a sampled target sequence % ��� ��� from this distribution,
we have the random VTR trajectory & �9�:� in the form of (2). Hence
we have the Gaussian distribution (gender-specific) for VTR:u � & ����� v $ �'	 Y�� & ������[�O � ����� 5^] @� ������� (6)

where O � �����+	 ��-*./021 �2�h. �
� � ��� 0 � �9O�� R k ��m �'3 ��� 0 3��� 0 �

and

] @� �����'	 ��-*./021 �2��. �
@ � � ��� 0 � � ] @� R k ��m � @ 3 �2� 0 3��� 0 � A (7)

In our implementation, VTR target means
O ��R

and variances] @� R above are estimated using sample statistics for the empirically
estimated VTR targets for each of the speakers in the training set.

4.2. Linearization of nonlinear cepstral prediction in model
stage-II

In order to perform the marginalization, we also need to charac-
terize the cepstrum uncertainty in terms of its conditional distribu-
tion on the VTR, and to simplify the distribution to a computation-
ally tractable form. That is, we need to specify and approximateu � I�v & 5 $ � .For the simplest case where Gaussianity is assumed for subsegment-
dependent cepstral prediction residuals as in the current implemen-
tation, we have

u � I ����� v & ����� 5 $ �+	 Y�� I ������[�J � & �������:N O�Q R 5M] @QMR�� A (8)

For computational tractability in marginalization (next subsec-
tion), we need to linearize the nonlinear mean function of

J � & �������
in (8). To do this, we use the following first-order Taylor series
approximation to the nonlinear mean function:J � & ��������}!J � &	� �������\NPJ C � &	� �������9� & �9�:� � &	� �����M� 5 (9)

where the components of the Jacobian above ( ` -th order cepstrum’s
derivative with respect to VTR & ) areJ Ca � < e ��������	 �


 s< � f �hg
a�i jVk l�mn R q�� 
 � c2s ` < e �����< � �

(10)

for the VTR frequency components of & , andJ Ca � E e �������h	 � c2s< � f �hg
a i jVk l�mn R o�prq � c2s ` < e �����< � �

(11)

for the VTR bandwidth components of & . In the current implemen-
tation, the expansion point &�� ����� in (9) is fixed to be the output of
stage-I of the model, rather than being iteratively updated.

Substituting (9) into (8), we obtain the approximate condi-
tional acoustic observation probability where the mean

O�� R
is ex-

pressed as a linear function of the VTR variable & :
u � I ����� v & ����� 5 $ �'} Y�� I �9�:��[MO � R �9�:� 5M] @Q R � 5 (12)

where O � RV����� 	 J � & �������:NPO�QMR (13)	 J C � &	� ������� & �����*N�� � 5
where � � 	!J � & � �������\NPO QMR � J C � & � ������� & � ����� A (14)

This then permits a closed-form solution for acoustic likelihood
computation, which we derive now.

4.3. Marginalizing VTR uncertainty

Given the results above, the marginalization over the random VTR
variable & in computing the acoustic likelihood can be proceeded
analytically as follows:

��� ��������� ����� �!������� ����� "�� ���$#���� ��� "�� ���%� ���'&("
) �!*,+ ��� ���'-'.0/ R #$1324 R6587 *,+ "�� ���'-$.09������$#'1329 � ��� 5 &(" (15)

�:� *<; �������'-'=?> + "6@(� ��� 5 "�� ���8ACB R #'1324 R(DE7 *,+ "�� ���'-'.09������$#$1329 � ��� 5 &("
�:� *<; = > + "%@�� ��� 5 "�� ���'-���� ����FGB R #'1 24 R(DE7 *,+ "�� ���'-'.09�� ����#$1 29 � ��� 5 &("� *<; �������HFGB R -'= > + "%@������ 5H7 .09	� ���$#�1 24 R A,� = > + "%@������ 5 � 2 1 29 � ��� D
� � I6J0�$K @�L MN 1 24 R A,� = > + "%@�� ��� 5 � 2 1 29 � ����O$P	Q8R F ����� ����FGB

R FS= > + "%@�� ��� 5 .09�� ���T� 2I + 1 24 R A,� = > + "%@�� ��� 5 � 2 1 29 ����� 5VU
� � I6J0�$K @�L MN 1 24 R A,� = > + "%@�� ��� 5 � 2 1 29 � ����O$P	Q R F ����� ����FXW.0/ R � ����� 2I + 1 24 R A,� = > + "%@�� ��� 5 � 2 1 29 � ��� 5YU

where the (time-varying) mean of this Gaussian distribution

ZO � RV�����'	!O � R v � � ��� 1�[ 9 � ��� 	!J C � &	� ������� O � �����*N\� � (16)

is the expectation of
O � RV�����

over & ����� (i.e., when the VTR ran-
dom variable & �9�:� is replaced by its mean

O � ����� ). The final result
of (15) is intuitive. For example, when the Taylor series expan-
sion point is set at &	� �����
	(O � �9�:� , (16) is simplified to

ZO � R �9�:�S	J � O � �������*N(O�QMR , as the noise-free part of prediction. Also, the
variance in (15) is increased by a quantity of

�ZJ C � &	� ������� � @ ] @� �����compared with the corresponding variance ] @Q^R in the cascaded im-
plementation. This magnitude of increase reflects the newly intro-
duced uncertainty in the hidden variable, measured by ] @� ����� as
computed from (7). The variance amplification factor

� J C � &	� �������Z� @
results from the local “slope” in the nonlinear function

J � & � which
maps from VTR & ����� to cepstrum I ����� . Note that in (15), the vari-
ance changes dynamically as a function of time frame, instead of
as a function of segment as in the conventional HMM.



5. ML TRAINING OF RESIDUAL PARAMETERS

In the cascaded implementation, the parameters of the cepstral pre-
diction residuals,

O��
and ] @Q^R , are trained using the standard Baum-

Welch algorithm (HTK tool for monophones) on the prediction
residual signals. It can be easily shown that this gives maximum-
likelihood (ML) parameter estimates for the likelihood function of
(5). However, in the integrated implementation, where the likeli-
hood function is in the form of (15), a new training technique is
required, which we have developed and are describing now.

For maximum-likelihood training of residual means, we set��� p���� B� 1 > u � I ����� v $ �� O QMR 	  \5
where u � I �9�:� v $ � is given by (15), and ; denotes the total duration
of subsegment $ in the training data. This gives

 	 B/
� 1 >

� I ����� � ZO � R �} B/
� 1 >

� I ����� � J C � & � ������� O � ����� � �b� �	 B/
� 1 >

� I ����� � J C � &	� ������� O � ����� �
� � J � &	� �������:NPO�QMR � J C � &	� ������� &	� ����� �� �
	 �� R �

(17)

This gives the estimation formula:


� QMR���� B� 1 >�� ��� ������� � ! � � ���#"$�%� C � ! � � ��� " � � � ����&'� C � ! � � ��� " ! � � ��� () *
(18)

When the Taylor series expansion point is chosen to be the output
of model stage-I with the target mean as the FIR filter’s input, or&	� �����
	!O � ����� , (18) is simplified to:3

+O�QMRb	-, B� 1 > � I �9�:� � J � &	� ������� �; A (19)

For training the (static) base residual variances in the inte-
grated implementation, we set��� p�� � B� 1 > u � I ����� v $ �� ] @QMR

	  \A
This gives /

�
� � w� ] @Q^R N(� J C � &	� �������Z� @ ] @� �������

�
N /

�
� � I ����� � ZO � R2� @� ] @Q^R N(� J C � &	� �������Z� @ ] @� ������� @

� 	  \5 (20)

or /
�
� ] @QMR N(� J C � & � �������Z� @ ] @� ����� � � I ����� � ZO�� R � @� ] @QMR N(� J C � & � �������Z� @ ] @� ������� @

� 	  \5 (21)

3We have found in our empirical experiments that this simple way of
setting Taylor series expansion points is more effective than other more
elaborative ways.

Assuming the dependency of the denominator term,
�ZJ C � & � ������� � @ ] @� ����� ,on time

�
is not very strong, we obtain the approximate estimation

formula:

+] @Q R } , �/.
� I ����� � ZO � R2� @ � � J C � O � ������� � @ ] @� �9�:�10; A (22)

The above estimation formulas are applied iteratively since
new boundaries of subsegments are obtained after the new updated
parameters become available. The initial parameters used for the
iteration are obtained using HTK for training monophone HMMs
(with three left-to-right states for each phone).

6. EXPERIMENTS AND RESULTS

The phonetic recognition experiments which we have carried out
to evaluate the bi-directional, target-filtering HTM with both cas-
caded and integrated implementations are based on the widely used
TIMIT database. No language model is used in any HTM exper-
iment. We build the acoustic models based on HTMs using the
standard TIMIT label set, with slight expansion, in training the
residual means and variances. The expansion includes the use of
two separate targets for diphthongs and affricates, assuming one
target following another. Phonetic recognition errors are tabulated
using the 39 labels adopted by many researchers to report recogni-
tion results. The results are reported on the standard core test set
with a total of 192 utterances by 24 speakers.

We use the N-best rescoring paradigm to evaluate the HTM.
For each of the core test utterances, we use a standard triphone
HMM with a decision tree to generate a very large N-best list
where N=1000. The average number (over the 192 utterances) of
distinct phone sequences in this N=1000 list is 788, the remain-
ing being due to variations in the phone segmentation in the same
phone sequence. A bi-phone language model is used to gener-
ate this N-best list in order to improve the quality of the list as
much as possible. Mel-frequency cepstral coefficients (with delta
and acceleration features), which are known to be better than LPC
cepstra, are used in generating this N-best list for improving its
quality also.

With the use of a flat phone language model and of the LPC
cepstra as features (the same conditions as the HTM), the phone
recognition accuracy for the HTK-implemented standard triphone
HMM in N-best list rescoring, with (N=1001) and without (N=1000)
adding reference hypotheses, is 64.04%. The sentence recogni-
tion accuracy is 0.0% for HMM, even with references included.
That is, the HMM system does not score the reference phone se-
quence higher than the N-best candidates for any of the 192 test
sentences. In contrast, the HTM system dramatically increases
both phone and sentence recognition accuracies, as shown in Ta-
ble 6. We list the HTM performances for two types of cascaded
and integrated implementations, respectively. First, the HTM with
Cascaded-I implementation uses (5) for likelihood scoring, with
the residual parameters (

+O4QMR 5 +] @Q R ) trained by HTK based on the
residual features computed as the difference between cepstral data
and cepstral prediction. Second, Cascaded-II system uses (5) for
scoring also, but with the parameters

+O�Q R
and

+] @QMR trained using
(19) and (22). Noticeable performance improvement is obtained
after the new training. Third, Integrated-I system uses (15) for
scoring, with the parameters

+O QMR
and

+] @QMR trained by HTK in the
same way as for the Cascaded-I implementation. Rather poor per-
formance is observed. Finally, Integrated-II system uses (15) for



Types 101-Best 1001-Best 1000-Best
of the (with ref.) (with ref.) (no ref.)
HTM sent phn sent phn sent phn

Cascaded I 26.6 78.8 16.2 76.4 0.0 71.8
Cascaded II 52.6 86.8 33.1 81.0 0.0 71.7
Integrated I 22.4 79.0 16.2 76.6 0.0 72.4
Integrated II 83.3 95.6 78.1 94.3 0.5 73.0
CD-HMM 0.0 64.0 0.0 64.0 0.0 64.0

Table 1. Performance comparison of four types of HTM imple-
mentation (all with context independent parameters) and of tri-
phone HMM baseline (with context dependent parameters). Per-
formance is measured by percent sentence and phone recognition
accuracies (%) in the core test set defined in the TIMIT database.
See text for details of the four types of HTM implementations.
“Flat” or no language model is used. Acoustic features for all sys-
tems are the same LPC cepstral vectors.

scoring, with the parameters
+O�QMR

and
+] @QMR trained using (19) and

(22). The best performance, both in sentence and phone recogni-
tion accuracies, is achieved. The improvement is the greatest when
references are added into the N-best list.

7. SUMMARY AND ONGOING RESEARCH

A novel acoustic model of speech, based on hidden trajectory mod-
eling of structured dynamics with bi-directional VTR target fil-
tering, is developed in this work and is presented in this paper
for the purpose of automatic speech recognition. The HTM con-
sists of two stages of a simplified generative process of human
speech: 1) from the phone sequence to VTR dynamics and 2) from
the VTR dynamics to the cepstrum-based acoustic observation se-
quence. Two types of model implementation are detailed, one with
straightforward two-stage cascading (that does not take into ac-
count randomness in the VTR dynamics), and another which inte-
grates over the statistical distribution of VTR in model construc-
tion and in computing acoustic likelihood. With the use of the
first-order Taylor series approximation to the nonlinearity in the
VTR-to-cepstrum prediction component of the HTM, the acous-
tic likelihood is established in an analytical form. It is a Gaus-
sian with the time-varying mean that gives structured long-span
context dependence over the entire speech utterance, and with the
dynamically adjusted variance proportional to the squared “local
slope” in the nonlinear mapping function from VTR to cepstrum.
When the key HTM parameters are trained via maximizing this
“integrated” likelihood, dramatic error reduction is achieved in the
standard TIMIT phonetic recognition task using a large-scale N-
best (N=1000) rescoring paradigm.

The recognition results presented in this paper are from a large-
scale N-best rescoring experiment where N=1000. Since the ora-
cle phone accuracy (TIMIT) of the entire 1000-best list is only
82.4% (and oracle sentence accuracy is only 3%), the long-span
coarticulatory HTM is negatively affected by a large number of
incorrect phone hypotheses in the N-best list for virtually all test
utterances. Although such an “error-propagation” effect does not
hurt short-span context-dependent HMM nearly as much as it hurts
long-span models such as our HTM, the results of Sec. 6 neverthe-
less show a much lower error rate for the HTM than for the HMM
in the rigorous N-best rescoring experiment (see last column in

Table 1). When the “error-propagation” effect is artificially re-
moved by adding references into the N-best lists, further drastic
error reduction has been obtained. This illustrates that the desired
behavior in the HTM design — for the model to accurately ac-
count for detailed acoustic dynamics (given the correct phone and
the corresponding VTR target sequence) — has indeed been estab-
lished in the integrated implementation. In order to achieve anal-
ogous dramatic performance gain with no reference information
available, it would be necessary to carry out lattice rescoring using
large, virtually error-free lattices, or to develop a full decoder using
highly conservative pruning strategies (to ensure that minimal er-
rors occur during the search process). Our preliminary work also
found that extending the current acoustic features from the LPC
cepstrum to its Mel-warped version gives substantial performance
gain. This requires that the HTM be able to predict the warped
cepstrum’s dynamics based on the model’s structure with reason-
able accuracy. Finally, we currently use TIMIT database mainly
for the purpose of convenient model development and software
debugging. While the reduction phenomenon is not manifestly
strong for the TIMIT-style read speech, we nevertheless observed
good performance advantages with the use of the HTM. For the
conversation-style speech with much stronger reduction that our
model is intended for, greater performance gain is expected. We
are currently pursuing the structured acoustic modeling research in
these promising directions.
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