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ABSTRACT This paper has proposed a novel bearing fault detection method about adaptive Sparse-spike

Deconvolution based on Curvelet Transform (CTSSD), where the novel technique about adaptive

Sparse-spike Deconvolution names after ASSD. Its purpose is to recover the pulse sequence from a vibration

signal including complex noise, and to evaluate the periodic pulse position and pulse amplitude. Firstly,

in order to make the results sparse and improves the stability of the result, the L1 norm regularization method

is proposed in this paper, which is used to constrain the signal pulse sequence sparsely. Secondly, considering

that regularization parameters are not adaptive, the Quantum behavior Particle Swarm Optimization (QPSO)

algorithm is proposed to determine the optimal regularization parameters, adaptively. Finally, considering

that the periodic features of ASSD extraction are not continuous, the Curvelet transform is further introduced.

The fault signal is transformed into the Curvelet domain, and the Curvelet coefficient is used to characterize

the fault signal pulse sequence. This method proposed in this paper is applied to the simulation signal

and the vibration signal of rolling bearing fault, and is compared with the ASSD and the minimum entropy

deconvolution (MED) to verify the reliability and effectiveness.

INDEX TERMS Fault diagnosis, Curvelet transform, L1 norm regularization, quantum-behavior particle

swarm optimization algorithm.

I. INTRODUCTION

In the development of science and technology nowadays,

fault diagnosis is applied to all walks of life. For example,

fault diagnosis of modern power grid [1], [2], fault detection

of Diesel engine [3] and fault diagnosis of various instruments

[4]–[7]. Gearboxes are an indispensable mechanical device in

industrial production [8], [9]. In recent years, the fault diagno-

sis of gearbox has developed rapidly. The fault feature recog-

nition of gearboxmainly includes fault classification [10] and

fault feature extraction [11], [12]. Because the rolling bearing

is an important part of the gearbox [13], many scholars have

done a lot of research on the fault diagnosis of the rolling

bearing. When the original component of the rolling bearing

fault, the impact periodic signal will be generated, but it’s the

early fault is very weak [14]. Therefore, under the complex
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background noise interference, the fault characteristics of the

rolling bearing are difficult to detect in time [15].

In recent years, a large number of scholars have made

a lot of research for obtaining advanced fault characteristic

signal processing technology. For example, Endo and Ran-

dall [16] successfully applied Minimum Entropy Deconvo-

lution (MED) to fault detection, MED technology is used

to improve the filtering technology based on autoregressive

(AR) model, at the same time, the advantages of combin-

ing AR filtering and MED filtering in detecting local faults

of gearboxes are verified by experiments. Since variational

mode decomposition (VMD) can adaptively decompose the

vibration signal into multiple intrinsic modes [17], therefore,

Liu and Xiang [18] proposed a novel strategy using VMD,

L-Kurtosis and minimum entropy deconvolution (MED) to

detect mechanical faults. First, the VMD is employed to

decompose the raw vibration signal into a set of intrin-

sic mode functions (IMFs) to eliminate the interference of

the noise. Second, the optimal IMF, which contains the
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faulty information, is determined using L-Kurtosis. Then,

the impact characteristic of the periodic impulses in optimal

IMF is enhanced through MED. Finally, a Hilbert envelope

spectrum analysis is performed to the enhanced signal to

extract the faulty feature frequency.

Experiments show that this method can effectively

detect mechanical component failure. Wang et al. [19]

proposed a Maximum Kurtosis Spectrum Entropy Decon-

volution (MKSED) method based on MED. It is applied

to bearing fault diagnosis. It overcomes the problem that

MED is sensitive to the vibration of single abnormal pulse

and the problem that the filter length cannot be determined

adaptively. However, the MED algorithm uses the kurtosis

as the objective function and solves the optimal filter by

iteration. Therefore, the shortcoming that only extract a single

pulse limits its development. In order to overcome the short-

comings of MED, a method called Maximum Correlation

Kurtosis Deconvolution (MCKD) is proposed [20]. Its pur-

pose is to obtain a number of continuous impulse signals by

convoluting periodic pulse faults with mechanical vibration

signals. A large number of scholars have studied this method.

In recent years, for example, Zhang et al. [21] proposed a new

fault detection method for detecting rolling bearings of wind

turbines called VMD-AMCKD. This method combines com-

plementary advantages of VMD and adaptive maximum cor-

related kurtosis deconvolution (AMCKD). At the same time,

the Grasshopper optimization algorithm (GOA) is adapted to

adaptively select the key parameters in MCKD. The experi-

ment show that the method has strong stability. Cui et al. [22]

proposed a fault feature extraction method based on parallel

double Q factor and improved MCKD. The method firstly

uses the parallel double Q factor to sparsely decompose the

fault signal to obtain the resonance component of the signal,

and the fault signal is filtered and de-noised by the proposed

method. The results show that the method effectively avoids

mutual interference between fault components. However,

MCKD cannot extract continuous pulse signals, which makes

fault feature extraction inaccurate, this shortcoming limits its

development. In order to overcome the shortcomings ofMED

and MCKD, the method of Multi-point Optimal Adjustment

of Minimum Entropy Deconvolution (MOMEDA) [23] was

proposed. The purpose of this algorithm is to deconvolve con-

tinuous pulses by multi-point kurtosis, however, MOMEDA

can only search for a single period of pulses each time in a

certain time interval [24]. In addition, under the environment

of strong noise, the periodic pulse searched by MOMEDA

may be false component. At the same time, the fault period

needs to be evaluated before using MOMEDA to process

signals, the purpose is to reduce the noise reduction range

as much as possible so as to improve the diagnostic accuracy.

These shortcomings limit its development.

This paper has proposed a novel bearing fault detection

method about adaptive Sparse-spike Deconvolution based

on Curvelet Transform (CTSSD), where the novel tech-

nique about adaptive Sparse-spike Deconvolution names after

ASSD. The purpose of ASSD is to recover the pulse sequence

from a vibration signal including complex noise [25], and

to evaluate the periodic pulse position and pulse amplitude.

In this process, this paper proposes the L1 norm regular-

ization method [26] to sparsely constrain the signal pulse

sequence, so that its results are sparse and improves the

stability of the result. But considering that regularization

parameters are not adaptive. Therefore, the composite multi-

scale dispersion entropy is selected as the fitness function in

this paper. Then, the Quantum-behavior Particle SwarmOpti-

mization (QPSO) algorithm is used for iterative operation

to determine the optimal regularization parameters. Finally,

considering the periodic features of ASSD extraction are not

continuous, and the Curvelet transform is further introduced.

The fault signal is transformed into the Curvelet domain, and

the Curvelet coefficient is used to characterize the fault signal

pulse sequence.

In recent years, due to the continuous development of intel-

ligent algorithms, they have been widely used in parameter

optimization. The Quantum-behaved Particle Swarm Opti-

mization Algorithm [27] (QPSO) is a novel swarm intel-

ligence optimization algorithm. The evolutionary equation

of this algorithm is completely different from that of Par-

ticle Swarm Optimization (PSO), it has no velocity vector

and is a completely random iterative equation, which over-

comes many defects of PSO algorithm. Yi et al. [28] pro-

posed an optimization method for operating parameters of

aluminum electrolysis process based on improved quantum

behavior particle swarm optimization algorithm. First, the

aluminum electrolysis process (AEP) operating parameter

optimization is formulated as a constrained multi-objective

optimization problem. Then, the improved multi-objective

quantum-behaved particle swarm optimization (IMQPSO)

algorithm is proposed to optimize the parameters. Experi-

ments verify the effectiveness of the method. Li et al. [29]

proposed the prediction of atmospheric pollutant concentra-

tion based on support vector regression and quantum behav-

ioral particle swarm optimization. The compared with PSO,

QPSO algorithm has been tested more effectively in the pro-

cess of parameter selection, which improves the global search

ability and robustness.

The main contributions of this paper are as follows:

(1) This paper presents a novel adaptive Sparse-spike Decon-

volution (ASSD) which applies to fault diagnosis of rolling

bearing. (2) In the process of ASSD processing fault sig-

nal, the L1 norm regularization parameter β is not adaptive.

Therefore, the algorithm of QPSO is introduced to optimize

the regularized parameter β. (3) Considering that the periodic

features of ASSD extraction are not continuous, the Curvelet

transform is further introduced. The fault signal is trans-

formed into the Curvelet domain, and the Curvelet coefficient

is used to characterize the fault signal pulse sequence.

II. SPARSE SPIKE DECONVOLUTION PRINCIPLE

In the bearing fault diagnosis, the vibration signal model can

be expressed as:

dt = wt
∗rt + nt t = 1, 2, . . . ,N (1)
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The matrix form of equation (1) is (2)

d = wr + n (2)

where dt represents the vibration signal, wt represents the

transfer function, rt represents the impact sequence, and nt
represents the noise. The purpose of SSD is to find a fil-

ter to recover the original shock signal rt in the output dt .

According to equation (1), rt can be considered as a highly

ill-conditioned inverse problem. The specific process is as

follows:

Calculate the error between the actual output and the

expected output:

et =
∑

i

wt−iri − dt i = 1, 2, . . . ,N (3)

According to formula (4), the error is constrained by the

least square to ensure that the solution tends to the true

solution.

Jr =
∑

i

1

2
e2 (4)

Define the objective function J , so that the objective func-

tion J is minimized when rt satisfies the condition.

J = Jr + βJx (5)

Among them, Jx is the regularization term and β is the reg-

ularization parameter. However, the choice of β is difficult,

when β is chosen properly, its solution is accurate and sparse.

In section B, the simulation signals are used to illustrate

the influence of regularization parameters on sparse spike

deconvolution, which verifies the necessity of optimizing

regularization parameters. In this paper, the regularization

parameters are optimized by using the QPSO algorithm, and

the composite multiscale dispersion entropy is selected as the

objective function of QPSO algorithm.

In paper, the L1 norm regularization method is proposed

to sparsely constrain the signal pulse sequence, so that

the result is the sparse and the stability of the solution is

improved. The following analysis of regularization constraint

method.

A. REGULARIZATION CONSTRAINT

Solving rt according to equation (1) can be considered as a

highly ill-conditioned inverse problem. In order to solve this

inverse problem, it is necessary to find a method to correct

the it, so that the it can overcome its own uncertainty, this

method is called regularization method. At present, due to

L2 regularization method has strong practicability and good

effectiveness, L2 norm regularization method has become the

preferred method for scientific researchers to solve highly

ill-conditioned inverse problems. However, when the solution

x is sparse, the sparsity of solution x cannot be reflected by

using the L2 norm regularization method. At the same time,

the solution x obtained by L2 norm regularization method is

quite different from the real solution. So, in order to make

the result more accurate and sparse, this paper uses L1 norm

regularization to constrain the pulse sequences. The model of

L1 norm regularization in this paper is as follows:

Jx =
∑

i

|rt | (6)

The new objective function can be defined as follows:

J =
∑

i

1

2
e2 + β

∑

i

|rt | (7)

In order to obtain rt satisfying conditions, formula (6) can

be minimized according to formula (8).

∂J
/

∂ri =
∑

t
etwt−i + β

∑

i
|ri|

/

ri = 0 (8)

The formula (9) can be derived from the above formula.
∑

t

∑

i
[(wt−i wt−i + β 1

/

|ri|
)

ri] =
∑

t
(wt−idt) (9)

Transform formula (9) into matrix form is:

(R+ Q)x = g (10)

Among them, Q = diag(β
/

|ri|), diag represents that the

column vector is transformed into the corresponding diagonal

matrix; x represents that the column vector of the pulse

sequence ri.

The solution of SSD is an iterative process, the paper

proposes an adaptive linear least squares iteration to obtain

a high-precision signal pulse sequence to evaluate the peri-

odic pulse position and pulse amplitude. The iteration stops

when the expected error or the customizedmaximum iteration

number itmax is reached. The main process is as follows:

(1) Set the parameter β of L1 norm regularization.

(2) Calculate the matrices R and g.

(3) Using the conventional deconvolution result A, the ini-

tial matrix B is calculated according to equation (11).

Q(0) = diag(β
/

|xs|) (11)

(4) Calculate x(k) and Q(k) according to the following

formula:
{

x(k) = (R+ Q(k−1))−1g

Q(k) = diag(β
/∣

∣

∣
x(k)

∣

∣

∣
)

(12)

Among them, k is the number of iterations.

(5) When the maximum number of iterations is reached,

the iteration is stopped.

B. THE INFLUENCE OF REGULARIZATION PARAMETERS

ON SSD

The selection of regularization parameters is very important

for solving highly ill-conditioned inverse problems.When the

regularization parameters are selected properly, its solution is

accurate and sparse. The following simulation signals were

constructed to verify the necessity of optimizing regulariza-

tion parameters.

x (t) = x1 (t)+ noise (13)

The composition signal x1 (t)=Am×exp(−g
/

Tm) sin (2π fct).
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FIGURE 1. Simulation signal.

FIGURE 2. Influence of different regularization parameters on sparse
spike deconvolution results, (a) is the time domain diagram, (b) is the
corresponding envelope spectrum.

x1 (t) is a periodic impact signal, which is specifically used

to simulate the failure of the rolling bearing.

Am represents the impact amplitude, and value of Am is 2.5;

g is the damping coefficient, and value of g is 0.1;

Tm is the impact period, and value of Tm is 0.1, the failure

period is 10Hz;

fc is the rotation frequency of the bearing, and value of fc
is 280Hz;

The composition signal noise = A× randn(n) is the noise

signal, and the value of A is 0.7.

The signal is shown in Figure 1. In Figure 2, if the value

of the regularization parameters is set too small, such as

β = 3, the highly ill-conditioned inverse problem will be

not improved well, and the result of solution is still unstable.

If the value of the regularization parameter is set too large,

such as β = 8, an unideal approximate solution, which make

the solution often deviates seriously from the ideal solution,

cannot reach the expected result. Therefore, the selection of

optimal regularization parameters can prevent the occurrence

of the above two cases.

C. QPSO ALGORITHM OPTIMIZES REGULARIZATION

PARAMETERS

QPSO algorithm is a population intelligent algorithm based

on the PSO algorithm, this algorithm gets rid of the limita-

tion of traditional speed-displacement orbital model, and the

Monte Carlo algorithm is used to locate the updated particles,

which make the algorithm more intelligent.

QPSO is improved particle swarm optimization algorithm

based on quantum mechanics, which has the advantages of

fast convergence, high robustness, strong global optimization

ability and no special requirements on objective function.

At the same time, QPSO algorithm has strong global search

ability and can converge to the global optimal solution.

In quantum space, it is impossible to determine the position

and velocity of particles at the same time. Therefore, we need

to use a wave function ψ(x, t) to represent the state of the

particle, and the potential well model of particle swarm is

established, the probability density function Q (Y) of the

particle is:
ψ (Y ) = 1

/√
Le−2|Y |/L (14)

Q (Y ) = |ψ (Y )|2 = 1
/

Le−2|Y |/L (15)

Among them, L = 1
/

β = h2
/

mγ is the characteristic

length of the particle swarm potential well, m is the mass of

the particle; h is the Planck constant.

The particle probability distribution function F(Y) is:
F (Y ) = 1 − e−2|Y |/L (16)

In order to describe the precise position of particles in the

search space in QPSO algorithm, the Monte Carlo simulation

of the equation is used to transform the quantum state of

the particle into the traditional state to measure the particle

position. The particles move around the P point under the

action of the potential well, and through evolution, its position

equation is expressed as:

x = p± L
/

2 ln 1
/

u (17)

Among them L = 1
/

β = h2
/

mγ is the character-

istic length of the particle swarm potential well. u is the

uniformly distributed random number on the interval (0,1).

Equation (17) is the basic evolution equation of QPSO algo-

rithm.

In N-dimensional space, the convergence of QPSO algo-

rithm is that the flight path of the particle gradually con-

verges to its attractor. If the total number of particles in the

population is M, each particle is N-dimensional, then the

attractor of the i-th particle is pi =
(

pi,1, pi,1, . . . , pi,N
)

and

the coordinate is:
pi,j (t) = ϕi,j (t) pi,j (t)+

[

1 − ϕi,j (t)
]

Gj (t) (18)

ϕi,j (t) = c1r1,i,j (t)
/[

c1r1,i,j (t)+ c2r2,i,j (t)
]

(19)

Which, when c1 = c2, ϕj (t) a random number on (0,1),

pi,j (t) is individual optimal position of the t-th particle i,

Gj (t) is the global optimal position for the t-th particle.
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The potential well is constructed for the particle with

attractor pi,j as the center. According to formula (14),

the wave function of particle i is:

ψ
(

xi,j (t+1)
)

=1
/√

Li,j (t) exp

[

−
∣

∣xi,j (t + 1)− pi,j (t)
∣

∣

Li,j (t)

]

(20)

The probability density function of particle i is:

Q
(

xi,j (t + 1)
)

=
∣

∣ψ
(

xi,j (t + 1)
)∣

∣

2

= 1
/√

Li,j (t) exp
[

−2
∣

∣xi,j (t + 1)

−pi,j (t)
∣

∣

/

Li,j (t)
]

(21)

The probability distribution function of particle i is:

F
(

xi,j (t + 1)
)

= 1 − exp

[

−2
∣

∣xi,j (t + 1)− pi,j (t)
∣

∣

Li,j (t)

]

(22)

According to equation (17), the evolution equation of the

j-th dimension of particle i is:

xi,j (t + 1) = pi,j (t)± Li,j (t)
/

2 ln 1
/

ui,j (23)

Among them, ui,j ∼ U (0, 1). According to equation (23),

if the particle swarm can converge to the local attractor pi,

Li,j (t)must be controlled so that it converges to 0, Li,j (t) can

be evaluated by equation (24):

Li,j (t) = 2a
∣

∣Cj (t)− xi,j (t)
∣

∣ (24)

In the formula, Cj (t) is the average individual optimal

position, and Cj (t) is introduced for the algorithm of QPSO

to better converge to the global optimal, the formula is as

follows:

Cj (t) = [C1 (t) ,C2 (t) , . . . , CN (t)]

=
[

1

/

M

M
∑

i=1

pi,1 (t) , 1

/

M

M
∑

i=2

pi,2 (t), . . . ,

1

/

M

M
∑

i=N
pi,N (t)

]

(25)

Then the evolution equation of the particle is:

xi,j (t + 1) = pi,j (t)± a
∣

∣Cj (t)− xi,j (t)
∣

∣ ln 1
/

ui,j (26)

In the formula, a is the coefficient of contraction and

expansion, whose value determines the convergence speed

of the algorithm. In order to make the algorithm have better

convergence results, its value is generally linearly reduced

from 1.0 to 0.5.

The ± in the evolution equation is determined by random

number ui,j, When ui,j < 0.5, take the ‘‘+’’sign, when ui,j ≥
0.5, take the ‘‘-’’sign.

The basic process of QPSO algorithm is as follows:

Set the dimension of the solution space is N. In the solution

space, quantum particle swarm consists of the M solution

particles, the composition of the particle form is x (t) =
[x1 (t) , x2 (t) , . . . , xM (t)]. The position of the i-th particle

is:
xi (t) =

[

xi,1 (t) , xi,2 (t) , . . . , xi,N (t)
]

i = 1, 2, . . . ,M

(27)

In a particle swarm, the best position of each individual

particle is:
pi (t) =

[

pi,1 (t) , pi,2 (t) , . . . , pi,N (t)
]

(28)

The global best position of the group is:
G (t) = [G1 (t) ,XG2 (t) , . . . ,GM (t)] (29)

Among them, pi (t) = Gg (t), g is the subscript of the

particle at the global best position, g ∈ {1, 2, . . . ,M}.
For minimization problem minx∈s f (x), the smaller the

fitness value of the particle, it represents that the better the

candidate solution. The individual best position (pbest) of

particle i is determined by equation (30).

pi (t) =
{

xi (t) f [xi (t)] ≥ f [xi (t)]

pi (t − 1) f [xi (t)] ≥ f [xi (t)]
(30)

The global best position (gbest) of quantum particle swarm

is determined by equations (30) and (31).

{

g = arg min
1<i<M

{f [pi (t)]}
G (t) = pg (t)

(31)

{

pi,j (t) = ϕj (t) pi,j (t)+
[

1 − pi,j (t)
]

.Gi (t)

ϕj (t) = U (0, 1)
(32)

Then the evolution equation of the particle is:
{

xi,j (t + 1) = pi,j (t)± α
∣

∣Cj (t)− xi,j (t)
∣

∣

/

ln 1
/

ui,j

ui,j = U (0, 1)

(33)

Among them,

Cj (t) = 1

/

M

M
∑

i=2

pi,j (t) (34)

In this paper, the composite multiscale dispersion

entropy(CMDE)is selected as the objective function of QPSO

algorithm to optimize the regularization parameter. The

composite multiscale dispersion entropy theory is as follows:

The DE algorithm is based on the mapping of the normal

distribution function. There are two parameters: the aver-

age value µ and the standard deviation σ of the data to be

analyzed. In the CMDE algorithm, when calculating the DE

value of the composite coarse-grained multiscale sequence,

both µ and σ are Based on raw data, not coarse-grained

sequences.

The CMDE calculation steps are as follows:

(1) For the initial time series {u(i), i = 1, 2, . . . ,L}, When

the scale factor is τ , theKTH coarse granulation order is listed
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as xτk =
{

x
(τ )
k,1, x

(τ )
k,1, . . .

}

Known by the following formula:

xτk,j = 1

τ

k+jτ−1
∑

i=k+τ (j−1)

ui, 1 ≤ j ≤ L
/

τ (35)

Then: 1 ≤ k ≤ τ .

(2) The CMDE under each scale factor τ is defined as:

CMDE(X ,m, c, d, τ ) = 1

τ

τ
∑

i=k+τ (j−1)

ui, 1 ≤ j ≤ L
/

τ

(36)

In the formula: DE represents the calculation of the distri-

bution entropy, the parameters m, c and d are the embedding

dimension, category and delay in DE, respectively. See the

literature for the calculation process of DE.

D. THE QPSO ALGORITHM OPTIMIZES REGULARIZATION

PARAMETER AS FOLLOWS

Step1: Determine the parameters of the quantum particle

swarm. Such as dimension, sizeW and the maximum number

of iterations.

Step2: Set t = 0, and initialize each particle of quantum

particle swarm in M-dimensional solution space, randomly

obtain the spatial position xi (0) of each particle, and initialize

the individual best position of each particle to pi (0) = xi (0).

Step3: According to equation (34), the quantum particle

swarm mbest is obtained.

Step4: Perform steps 5-8 for each particlei.

Step5: Calculate the fitness value of the current position

xi (t) of particle i, and pbest of particle is updated according

to equation (30). The update method is to compare the fitness

value of the current xi (t) with the current fitness value of

pi (t − 1), if the fitness value of xi (t) is better than the fitness

value of the pi (t − 1), that is, f [xi (t)] < f [pi (t − 1)]. Then

set pi (t) = xi (t). Otherwise pi (t) = pi (t − 1).

Step6: For particle i, we need to compare its fitness value

of pi (t) with the current fitness value of G (t − 1), if the

fitness value of the pi (t) is better than the fitness value of the

G (t − 1), that is, f [pi (t)] < f [G (t − 1)], then set pi (t) =
G (t). Otherwise G (t) = G (t − 1)

Step7:According to equation (32), the random positions of

each particle in the particle swarm can be obtained.

Step8: Update the latest position of the particle according

to equation (33).

Step9: For whether to stop the iteration, if the termination

condition is satisfied, the iteration is terminated. If the termi-

nation condition is not satisfied, then t = t + 1 and returns

step 2.

The specific flow chart of the proposed method is as fol-

lows:

Sparse-spike deconvolution uses the quantum behavior

particle swarm optimization algorithm to optimize the reg-

ularization parameters, and extracts part of the signal pulse

sequence. However, more impact components are lost in the

whole deconvolution process. As a result, the extracted shock

signal is not complete. This process will not only lead to

misdiagnosis, but also not easy to find the location of the

fault. So a novel adaptive Sparse-spike deconvolution based

on Curvelet transform is proposed in this paper. In theory,

the Curvelet transform has the best sparse representation of

fault signal and can obtain the best nonlinear approximation.

According to the different distribution characteristics of the

effective signal and random noise in the Curvelet domain,

the continuity of the signal pulse sequence can be realized,

and ensure the integrity of the signal. The further improve

the accuracy of the method proposed in this paper to deal with

bearing fault signals.

III. NOVEL SPARSE SPIKE DECONVOLUTION BASED ON

CURVELET TRANSFORM (CTSSD)

A. THE CURVELET TRANSFORMATION PRINCIPLE

The Curvelet transform [32], [33] is implemented by the

inner product of the Curvelet basis function and the objective

function. In order to construct the Curvelet basis function,

first, the two window functions are introduced. In the space,

assuming that the spatial domain variable is x, the frequency

domain variable is w, and the polar coordinates are r and

θ , the radius window W (r) and the angle window V (t) are

introduced, both of which satisfy the allowable conditions:
∞
∑

j=−∞
W 2(2jr) = 1r ∈ (3

/

4, 3
/

2) (37)

∞
∑

j=−∞
V 2(t − l) = 1t ∈ (−1

/

2, 1
/

2) (38)

For all j0 ≤ j, According to the Fourier transform, the

frequency window Ujc can be defined as:

Uj(r, θ) = 2−3j/4W (2−jr)V
(

2[j/2]
/

2π
)

(39)

where [j
/

2] is the integer part of j
/

2. ϕj(x) is defined as the

basis function of the Curvelet, its Fourier form is ϕ̂j(w) =
Uj(w), then other 2−j-scale Curvelet basis functions can be

obtained by the rotation and translation of the basis function

ϕj(x). Define the rotation angle to θl = 2π · 2−[j/2] · l,
l = 0, 1, . . . , 0 ≤ θl ≤ 2π ; The translation parameter is

k = (k1, k2) ∈ z2, The Curvelet basis function at scale 2−j,
direction θl , and position x

(j,l)
k = R−1

θl

(

k1 · 2−j, k2 · 2−j/2
)

is

defined as:

ϕi,l,k (x) = ϕj

[

Rθl

(

x − x
(j,l)
k

)]

(40)

where Rθ = (
cos θ sin θ

− sin θ cos θ
) represents the rotation of θ

radians and R−1
θ represents the inverse of Rθ , that is R

−1
θ =

RTθ = Rθ .

After the Curvelet base function of the f (x) ∈ L2
(

R2
)

function, the L2
(

R2
)

-tight frame can be obtained by rotation

and translation, and its reconstruction formula is:

f (x) =
∑

j,l,k

[

f (x), ϕj,l,k
]

ϕj,l,k (41)
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FIGURE 3. L1 norm regularization parameter optimization flow chart.

Since the scaling factors of the radiuswindow and the angle

window are not uniform during rotation and translation, in the

time domain, when the dimension is j, the expansion scale

of radius window is 2−j, and the expansion scale of angle

window is 2−j/2.

B. NOVEL SPARSE-SPIKE DECONVOLUTION BASED ON

CURVELET TRANSFORM (CTSSD)
Although the ASSD extracts the pulse sequence of the partial

fault signal, more impact components are lost during the

entire deconvolution process, causes the extracted shock sig-

nal to be incomplete and misdiagnosed. Therefore, this paper

proposes a novel adaptive sparse-spike deconvolution based

on Curvelet transform, which overcomes the shortcomings

of ASSD and further improves the accuracy of the proposed

method in dealing with bearing fault signals.

Introducing the Curvelet transform operator C in equa-

tion (2), then

d = wr + n = wCT xc + n (42)

where xc is the Curvelet coefficient of the signal r , and C
T is

the inverse transform of the Curvelet, that is r = CT xc.

In this paper, the bearing fault signal is transformed into

Curvelet domain, and the pulse sequence is represented by

Curvelet coefficient. The formula is expressed as:
{

x1 = argminx ‖xc‖1
r = CT x1

(43)

where r is the pulse sequence of the bearing fault signal;CT is

the inverse Curvelet transform operator, and x1 is the Curvelet

coefficient vector. Equation (43) represents solving a set of

sparse Curvelet coefficients that are the smallest in the sense

of a set of L1 norms.

The constrained optimal problem of equation (43) can

be solved by the unconstrained optimization problem

equation (44).

x1 = argmin
1

2

∥

∥

∥
d − wCT xc

∥

∥

∥

2
+ λ ‖xc‖1 (44)

where λ is the tradeoff parameter and the value of the tradeoff

parameter λ is critical. If the value of λ is too large, the loss

of the Curvelet coefficient corresponding to the effective

signal in the bearing fault signal, so that the impulse sig-

nal extracted by the method proposed in this paper has no

integrity; If the value of R is too small, the random noise

in the bearing fault signal will be residual, which will result

in misdiagnosis. Therefore, the method for selecting the λ

value in this paper is: Solving the optimization problem of

equation (19) by gradually decreasing the value of λ from

a large λ value, when the optimal solution of equation (19)

satisfies
∥

∥d − wCT x
∥

∥ ≈ ε, the value of λ is the optimal

value.

xc = Tλ

(

xc +
(

wCT
)T (

Y − wCT xc

)

)

(45)

whereTλ represents a soft threshold function and T represents

a conjugate operator.

Tλ (xc) = sgn (xc) · max (0, |xc| − |λ|) (46)

Loop iteration once, λ value decreases once. The Curvelet

coefficients are iteratively updated through threshold itera-

tions to obtain a fault signal sequence with high accuracy.

The specific solution steps are as follows:

Step1: First initialize a set of zero value Curvelet coeffi-

cients, set the c value, select the number of iterations M;

Step2: The bearing fault signal d is
(

wCT
)T

transformed

to obtain the initial Curvelet coefficient Cc;

Step3: To obtain xιc by
(

wCT
)T

transformation of xc in (1);

Step4: The coefficient of Curvelet is xc = Cc − xιc, and the

cycle iteration is M times;
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FIGURE 4. Novel sparse-spike deconvolution flow chart based on
Curvelet transform.

Step5: Threshold processing of xc according to

equation (46);

Step6: According to a certain step size, reduces the value

of λ, and repeats the process of steps Step3 to Step6;

Step7: Finally, the impact sequence of the fault signal is

obtained by the formula r = CT xc.

IV. APPLICATION OF THE METHOD PROPOSED IN THIS

PAPER IN BEARING FAILURE

A. TESTING USING SIMULATION SIGNALS

In order to illustrate the effectiveness of ASSD in signal pro-

cessing, this paper uses the simulation signal of bearing fault

to analyze in the strong noise environment. The simulation

signal model is shown in equation (13).

The simulation signal waveform is shown in figure 1. It can

be seen that the amplitude of the noise is larger than amplitude

of the pulse, and the pulse is drowned by the noise.

In this paper, QPSO is used to search the regularization

parameters of SSD. It can be known from the reference [27],

the parameters of QPSO are set is: the number of parti-

cles 40, number of iterations n = 20. In QPSO algorithm,

the composite multiscale dispersion entropy is selected as the

fitness function. In order to make the noise reduced signal

highlight more effective continuous periods, the composite

multiscale dispersion entropy is as small as possible. Due to

the minimum value of fitness function appears in the sixth

generation, and its fitness value is 7.093, so the corresponding

regularization optimal parameter is 7.217.

In order to verify the reliability and effectiveness of the

proposed method, this section will use ASSD, MED and

CTSSD to process the above rolling bearing fault simulation

signals, the analysis results are shown in figure 5, figure 6 and

figure 7. The simulation signal is processed by ASSD, and

the results are shown in figure 5. Figure 5 (a) shows the time

domain diagram after ASSD process signal, it can be seen

that the ASSD extracts part of the pulse signal, but loses more

impact components during the entire deconvolution process,

resulting in the extracted impact signal not having integrity;

FIGURE 5. ASSD deals with simulation signal (a) is the time domain
diagram (b) is the corresponding envelope spectrum.

FIGURE 6. MED deals with simulation signal (a) is the time domain
diagram (b) is the corresponding envelope spectrum.

FIGURE 7. CTSSD deals with simulation signal (a) is the time domain
diagram (b) is the corresponding envelope spectrum.

Figure 5 (b) is the corresponding envelope spectrum, it can

be seen from the envelope spectrum that the fault frequency

period cannot be accurately extracted.

It can be known from the reference [30], set a parameter

of MED is: L = 68, the simulation signal is processed by

MED are shown in figure 6. Figure 6 (a) is the time domain

waveform diagram after MED process signal, it can be seen

that there is no obvious periodic shock in the time domain

diagram, and the time domain waveform is disorderly, and

there is still a lot of noise. Figure 6 (b) is the corresponding

envelope spectrum, it can be seen that there is a failure

frequency period of 10Hz and its double frequency 20Hz, and

the surrounding is covered with many useless noise spectral

lines, which cannot accurately extract the fault frequency

period. Therefore, the MED cannot effectively reduce signal

noise and highlights its periodicity in the environment of

strong noise.

The simulation signal is processed by CTSSD, and the

results are shown in figure 7. Figure 7 (a) shows the time

domain diagram after CTSSD process signal. It shows that

the pulse signal extracted by CTSSD has strong periodicity,

and the noise reduction effect of CTSSD is obvious; Figure 7

(b) is the corresponding envelope spectrum. It shows from the

envelope spectrum that the fault frequency and its frequency

doubling are obvious.

B. TEST WITH EXPERIMENTAL SIGNALS

In order to verify the feasibility and superiority of the adap-

tive SSD in engineering application. Test bearing type is
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FIGURE 8. Rolling bearing test bed.

FIGURE 9. Fault signal of outer ring of rolling bearing (a) is the time
domain diagram (b) is the corresponding envelope spectrum.

LDK UER204 [31], it is provided by the Institute of Design

Science and Basic Component at Xi,an Jiaotong University,

Shanxi and the Changxing Sumyoung Technology Co., Ltd.

Its parameters are: Bearing mean diameter D = 34.55mm,

ball diameter D1 = 7.92mm, ball number n = 8, the shaft

speed n1 = 2400, sampling point 4096, sampling frequency

25600Hz. According to the calculation, the outer ring fault

characteristic frequency is f = 123.2Hz. The bearing test bed

shown in Figure 8 is composed of an alternating current (AC)

induction motor, a motor speed controller, a support shaft,

two support bearings (heavy duty roller bearings), a hydraulic

loading system and so on. The accelerated degradation tests

of rolling element bearings conduct in this test bed under

different operating conditions (that is, different radial force

and rotating speed). The hydraulic loading system generates

the radial force applied to the housing of tested bearings. The

speed controller of AC induction motor sets and keeps the

rotating speed.

Figure 9 shows the outer ring fault signal of the rolling

bearing. It can be seen that the amplitude of the noise is

greater than the amplitude of the outer ring fault signal,

and the fault signal of the outer ring is drowned by the

noise. The corresponding envelope spectrum is 47.8 Hz

and 123.2 Hz, so the fault frequency cannot be accurately

determined. Therefore, the fault signal needs further noise

reduction processing.

In this paper, QPSO is used to search the regularization

parameters of ASSD. The parameters of QPSO are set is:

the number of particles 40, number of iterations n = 100.

In QPSO algorithm, the composite multiscale dispersion

entropy is selected as the fitness function. In order to make

the noise reduced signal highlight more effective continu-

ous periods, the composite multiscale dispersion entropy is

as small as possible. The minimum value of fitness func-

tion appears in the sixth generation, and its fitness value is

FIGURE 10. ASSD deals with the failure signal of the outer ring of rolling
bearing (a) is the time domain diagram (b) is the corresponding envelope
spectrum.

FIGURE 11. MED deals with the failure signal of the outer ring of rolling
bearing (a) is the time domain diagram (b) is the corresponding envelope
spectrum.

7.790, so the corresponding regularization optimal parameter

is 7.8214.

The ASSD is used to process the outer ring fault signal

of the rolling bearing, and the result is shown in figure 10.

Figure 10 (a) shows the time domain diagram after ASSDpro-

cess signal. It shows that the ASSD extracts part of the pulse

signal, but loses more impact components during the entire

deconvolution process, resulting in the extracted impact sig-

nal not having integrity; Figure 10 (b) is the corresponding

envelope spectrum, it can be seen from the envelope spectrum

that the fault frequency period is 123.2Hz. However, the fault

frequency is covered with useless noise lines, and the fault

frequency period cannot be accurately extracted, resulting in

misdiagnosis.

It can be known from the reference [30], set the parameters

of MED is: L = 346. The fault signal of rolling bearing outer

ring is processed by MED; the result is shown in figure 11.

Figure 11(a) shows the time-domain waveform diagram after

the EMD processes the fault signal. It can be seen that there

is no obvious periodic shock in the time domain diagram,

and the time domain waveform is disorganized, there is still

a lot of noise, the noise reduction effect of MED is not

obvious. Figure 11 (b) shows the corresponding envelope

spectrum, it can be seen that the failure frequency period is

123.2Hz and there’s a lot of noise frequency around, so the

failure frequency cannot be accurately extracted by MED the

processing signal. Therefore, in the environment of strong

noise, MED cannot effectively reduce signal noise and can’t

highlight its periodicity. Obviously, when processing signals,

the method proposed in this paper is obviously superior to

MED.

The CTSSD is used to process the outer ring fault signal

of the rolling bearing, and the result is shown in figure 12.

Figure 12 (a) shows the time domain diagram after CTSSD

process signal. It can be seen that rolling bearing fault signal

extracted by CTSSD has periodicity. In addition, the noise

reduction effect is obvious. Figure 12 (b) is the corresponding
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FIGURE 12. CTSSD deals with the failure signal of the outer ring of rolling
bearing (a) is the time domain diagram (b) is the corresponding envelope
spectrum.

envelope spectrum. It can be clearly seen from the envelope

spectrum that the fault frequency is 123.2Hz, the frequency

doubling is 246.4Hz, and the 3 times frequency is 369.6Hz.

At the same time, the fault frequency is obvious. Therefore,

the CTSSD is better than the ASSD and the MED in dealing

with rolling bearing fault signals.

V. CONCLUSION

(1) This paper proposes an adaptive technology ASSD for

fault diagnosis. However, in the process of processing the

fault signal by the ASSD, since the L1 norm regularization

parameter β is not adaptive, the sparsity and stability of the

solution are not ideal, which seriously affects the result of

the ASSD processing fault signal. Therefore, the quantum

behavior particle swarm optimization algorithm is introduced

to optimize the regularization parameter β.

(2) This paper proposes a novel bearing fault detection

method about adaptive Sparse-spike Deconvolution based on

Curvelet Transform (CTSSD). In this paper, the ASSD is ana-

lyzed by using the rolling bearing fault simulation signal and

experimental signal. It is found that the ASSD extracts part

of the pulse signal, but loses more impact components during

the entire deconvolution process, resulting in the extracted

impact signal not having integrity, causing misdiagnosis.

Therefore, in this paper, Curvelet transform is introduced to

transform the fault signal into the Curvelet domain, and the

Curvelet coefficient is used to characterize the fault signal

pulse sequence. This method proposed in this paper is applied

to simulation signal and vibration signal of rolling bearing

fault, and it is compared with the ASSD and the minimum

entropy deconvolution (MED) to verify the reliability and

effectiveness.

REFERENCES

[1] Z. Huang, Z. Wang, and L. Liu, ‘‘A practical fault diagnosis algorithm

based on aperiodic corrected-second low-frequency processing for micro-

grid inverter,’’ IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3889–3898,

Jul. 2019.

[2] N. Liu, L. He, X. Yu, and L. Ma, ‘‘Multiparty energy management

for grid-connected microgrids with heat-and electricity-coupled demand

response,’’ IEEE Trans. Ind. Informat., vol. 14, no. 5, pp. 1887–1897,

May 2018.

[3] K. Zhong, M. Han, T. Qiu, and B. Han, ‘‘Fault diagnosis of complex

processes using sparse kernel local Fisher discriminant analysis,’’ IEEE

Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1581–1591, May 2020.

[4] P. Sangeetha B. and H. S., ‘‘Rational-dilation wavelet transform based

torque estimation from acoustic signals for fault diagnosis in a three-

phase induction motor,’’ IEEE Trans. Ind. Informat., vol. 15, no. 6,

pp. 3492–3501, Jun. 2019.

[5] X. Deng, X. Tian, S. Chen, and C. J. Harris, ‘‘Nonlinear process fault

diagnosis based on serial principal component analysis,’’ IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 560–572, Mar. 2018.

[6] C. Keliris, M. M. Polycarpou, and T. Parisini, ‘‘An integrated learning and

filtering approach for fault diagnosis of a class of nonlinear dynamical sys-

tems,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 4, pp. 988–1004,

Apr. 2017.

[7] T. de Bruin, K. Verbert, and R. Babuska, ‘‘Railway track circuit fault

diagnosis using recurrent neural networks,’’ IEEE Trans. Neural Netw.

Learn. Syst., vol. 28, no. 3, pp. 523–533, Mar. 2017.

[8] S. Lu, Q. He, and J. Wang, ‘‘A review of stochastic resonance in rotat-

ing machine fault detection,’’ Mech. Syst. Signal Process., vol. 116,

pp. 230–260, Feb. 2019.

[9] Z.-X. Yang, X. Wang, and P. K. Wong, ‘‘Single and simultaneous fault

diagnosis with application to a multistage gearbox: A versatile dual-

ELM network approach,’’ IEEE Trans. Ind. Informat., vol. 14, no. 12,

pp. 5245–5255, Dec. 2018.

[10] Y. Li, M. Xu, Y.Wei, andW. Huang, ‘‘A new rolling bearing fault diagnosis

method based on multiscale permutation entropy and improved support

vector machine based binary tree,’’ Measurement, vol. 77, pp. 80–94,

Jan. 2016.

[11] Z. Wang, J. Wang, W. Cai, J. Zhou, W. Du, J. Wang, G. He, and H. He,

‘‘Application of an improved ensemble local mean decomposition method

for gearbox composite fault diagnosis,’’ Complexity, vol. 2019, May 2019,

Art. no. 1564243, doi: 10.1155/2019/1564243.

[12] Z. Wang, L. Zheng, W. Du, W. Cai, J. Zhou, J. Wang, X. Han, and

G. He, ‘‘A novel method for intelligent fault diagnosis of bearing based

on capsule neural network,’’ Complexity, vol. 2019, pp. 1–17, Jun. 2019,

doi: 10.1155/2019/6943234.

[13] Z. Du, X. Chen, H. Zhang, and B. Yang, ‘‘Compressed-sensing-based

periodic impulsive feature detection for wind turbine systems,’’ IEEE

Trans. Ind. Informat., vol. 13, no. 6, pp. 2933–2945, Dec. 2017.

[14] Z. Du, X. Chen, H. Zhang, R. Yan, and W. Yin, ‘‘Learning collaborative

sparsity structure via nonconvex optimization for feature recognition,’’

IEEE Trans. Ind. Informat., vol. 14, no. 10, pp. 4417–4430, Oct. 2018.

[15] Z. Feng, X. Chen, and M. J. Zuo, ‘‘Induction motor stator current AM-FM

model and demodulation analysis for planetary gearbox fault diagnosis,’’

IEEE Trans. Ind. Informat., vol. 15, no. 4, pp. 2386–2394, Apr. 2019.

[16] H. Endo and R. B. Randall, ‘‘Enhancement of autoregressive model based

gear tooth fault detection technique by the use of minimum entropy decon-

volution filter,’’ Mech. Syst. Signal Process., vol. 21, no. 2, pp. 906–919,

Feb. 2007.

[17] Z. Wang, G. He, W. Du, J. Zhou, X. Han, J. Wang, H. He, X. Guo,

J. Wang, and Y. Kou, ‘‘Application of parameter optimized variational

mode decomposition method in fault diagnosis of gearbox,’’ IEEE Access,

vol. 7, pp. 44871–44882, 2019.

[18] H. Liu and J. Xiang, ‘‘A strategy using variational mode decomposition,

L-kurtosis and minimum entropy deconvolution to detect mechanical

faults,’’ IEEE Access, vol. 7, pp. 70564–70573, 2019.

[19] Z. Wang, J. Zhou, J. Wang, W. Du, J. Wang, X. Han, and G. He, ‘‘A novel

fault diagnosis method of gearbox based on maximum kurtosis spectral

entropy deconvolution,’’ IEEE Access, vol. 7, pp. 29520–29532, 2019.

[20] Y. Miao, M. Zhao, J. Lin, and Y. Lei, ‘‘Application of an improved

maximum correlated kurtosis deconvolution method for fault diagno-

sis of rolling element bearings,’’ Mech. Syst. Signal Process., vol. 92,

pp. 173–195, Aug. 2017.

[21] J. Zhang, J. Zhang, M. Zhong, J. Zhong, J. Zheng, and L. Yao, ‘‘Detection

for incipient damages of wind turbine rolling bearing based on VMD-

AMCKD method,’’ IEEE Access, vol. 7, pp. 67944–67959, 2019.

[22] Cui, Du, Yang, Xu, and Song, ‘‘Compound faults feature extraction for

rolling bearings based on parallel Dual-Q-Factors and the improved maxi-

mum correlated kurtosis deconvolution,’’ Appl. Sci., vol. 9, no. 8, p. 1681,

Apr. 2019.

[23] G. L. McDonald and Q. Zhao, ‘‘Multipoint optimal minimum entropy

deconvolution and convolution fix: Application to vibration fault detec-

tion,’’ Mech. Syst. Signal Process., vol. 82, pp. 461–477, Jan. 2017.

[24] Z. Wang, W. Du, J. Wang, J. Zhou, X. Han, Z. Zhang, and L. Huang,

‘‘Research and application of improved adaptive MOMEDA fault diagno-

sis method,’’ Measurement, vol. 140, pp. 63–75, Jul. 2019.

[25] D. R. Velis, ‘‘Stochastic sparse-spike deconvolution,’’Geophysics, vol. 73,

no. 1, pp. R1–R9, Jan. 2008.

[26] R. Fernandes, H. Lopes, andM.Gattass, ‘‘Lobbes: An algorithm for sparse-

spike deconvolution,’’ IEEE Geosci. Remote Sens. Lett., vol. 14, no. 12,

pp. 2240–2244, Dec. 2017.

[27] J. Sun, W. Fang, X.Wu, V. Palade, andW. Xu, ‘‘Quantum-behaved particle

swarm optimization: Analysis of individual particle behavior and parame-

ter selection,’’ Evol. Comput., vol. 20, no. 3, pp. 349–393, Sep. 2012.

6248 VOLUME 9, 2021

http://dx.doi.org/10.1155/2019/1564243
http://dx.doi.org/10.1155/2019/6943234


Y. Li et al.: Novel Adaptive Sparse-Spike Deconvolution Bearing Fault Detection Method Based on Curvelet Transform

[28] J. Yi, J. Bai, W. Zhou, H. He, and L. Yao, ‘‘Operating parameters optimiza-

tion for the aluminum electrolysis process using an improved quantum-

behaved particle swarm algorithm,’’ IEEE Trans. Ind. Informat., vol. 14,

no. 8, pp. 3405–3415, Aug. 2018.

[29] X. Li, A. Luo, J. Li, and Y. Li, ‘‘Air pollutant concentration forecast

based on support vector regression and quantum-behaved particle swarm

optimization,’’ Environ. Model. Assessment, vol. 24, no. 2, pp. 205–222,

Apr. 2019.

[30] J. Li, M. Li, and J. Zhang, ‘‘Rolling bearing fault diagnosis based on time-

delayed feedback monostable stochastic resonance and adaptive minimum

entropy deconvolution,’’ J. Sound Vib., vol. 401, pp. 139–151, Aug. 2017.

[31] B. Wang, Y. Lei, N. Li, and N. Li, ‘‘A hybrid prognostics approach

for estimating remaining useful life of rolling element bearings,’’

IEEE Trans. Rel., vol. 69, no. 1, pp. 401–412, Mar. 2020, doi:

10.1109/TR.2018.2882682.

[32] N. Eslahi and A. Aghagolzadeh, ‘‘Compressive sensing image restoration

using adaptive curvelet thresholding and nonlocal sparse regularization,’’

IEEE Trans. Image Process., vol. 25, no. 7, pp. 3126–3140, Jul. 2016.

[33] P. Hill, A. Achim, M. E. Al-Mualla, and D. Bull, ‘‘Contrast sensitivity of

the wavelet, dual tree complex wavelet, curvelet, and steerable pyramid

transforms,’’ IEEE Trans. Image Process., vol. 25, no. 6, pp. 2739–2751,

Jun. 2016.

YANFENG LI was born in Taiyuan, Shanxi, China,
in 1990. He received the bachelor’s degree in engi-

neering from the University of Jinan, in 2014,

and the master’s degree in engineering from the

Taiyuan University of Technology, in 2017, where

he is currently pursuing the Ph.D. degree with the

College of Mechanical and Vehicle Engineering.

From 2014 to 2019, he was committed to the

fault diagnosis research of rotating machinery.

He participated in a number of National Natural

Science Foundation of China. He has been responsible for the design and

analysis of experiments and has written reports on them. He has published a

number of research articles.

Dr. Li was awarded the Doctoral Scholarship in 2018 and 2019.

ZHIJIAN WANG was born in Zhengzhou, Henan,

in 1985. He received the Ph.D. degree in engineer-

ing from the Taiyuan University of Technology,

in 2015. He is currently pursuing the Ph.D. degree

with Xi’an Jiaotong University.

He is currently an Associate Professor and a

Master Supervisor with the School of Mechanical

Engineering, North University of China. He has

presided the National Natural Science Foundation

of China and the Natural Science Foundation of

Shanxi Province. Since 2015, he has published more than 40 academic

articles, among which the first author or corresponding author has published

more than 20 SCI articles related to the subject, two articles cited by ESI,

and seven articles included by EI, and has authorized four patents and more

than 20 national invention patents applied by the first inventor and one

monograph.

Dr. Wang is a review expert of international famous SCI journals, such as

ISA Transactions,Measurement, Journal of Vibration and Control, and IEEE

ACCESS.

TIANSHENG ZHAO was born in China, in 1978.

He received the bachelor’s degree in industrial

automation from East China Jiaotong University,

in 2001. He is currently a Senior Engineer with

the Zhengzhou Mechanical and Electrical Engi-

neering Research Institute. His research inter-

ests include mechanical and electrical control and

fault diagnosis technology. He has won one first

prize and one second prize from China Shipbuild-

ing Industry Corporation Science and Technology

Award.

YUAN ZHAO received the Ph.D. degree from

the Taiyuan University of Technology, Taiyuan,

China, in 2019. In 2020, he entered Taiyuan

Research Institute Company Ltd., China Coal

Technology and Engineering Group, where he

holds a postdoctoral position. He currently works

with Taiyuan Research Institute Company Ltd.,

China Coal Technology and Engineering Group,

as an Associate Researcher. He was engaged in

the design and development of trackless auxiliary

transportation equipment.

VOLUME 9, 2021 6249

http://dx.doi.org/10.1109/TR.2018.2882682

