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Abstract

Objective Quantitative PET/MR imaging is challenged by the accuracy of synthetic CT (sCT) generation fromMR images. Deep

learning-based algorithms have recently gained momentum for a number of medical image analysis applications. In this work, a

novel sCT generation algorithm based on deep learning adversarial semantic structure (DL-AdvSS) is proposed for MRI-guided

attenuation correction in brain PET/MRI.

Materials and methods The proposed DL-AdvSS algorithm exploits the ASS learning framework to constrain the synthetic CT

generation process to comply with the extracted structural features from CT images. The proposed technique was evaluated

through comparison to an atlas-based sCT generation method (Atlas), previously developed for MRI-only or PET/MRI-guided

radiation planning. Moreover, the commercial segmentation-based approach (Segm) implemented on the Philips TF PET/MRI

system was included in the evaluation. Clinical brain studies of 40 patients who underwent PET/CT and MR imaging were used

for the evaluation of the proposed method under a two-fold cross validation scheme.

Results The accuracy of cortical bone extraction and CT value estimation were investigated for the three different methods. Atlas

and DL-AdvSS exhibited similar cortical bone extraction accuracy resulting in a Dice coefficient of 0.78 ± 0.07 and 0.77 ± 0.07,

respectively. Likewise, DL-AdvSS and Atlas techniques performed similarly in terms of CT value estimation in the cortical bone

region where a mean error (ME) of less than −11 HUwas obtained. The Segm approach led to aME of −1025 HU. Furthermore, the

quantitative analysis of corresponding PET images using the three approaches assuming the CT-based attenuation corrected PET

(PETCTAC) as reference demonstrated comparative performance of DL-AdvSS and Atlas techniques with a mean standardized

uptake value (SUV) bias less than 4% in 63 brain regions. In addition, less that 2%SUV bias was observed in the cortical bone when

using Atlas and DL-AdvSS approaches. However, Segm resulted in 14.7 ± 8.9% SUV underestimation in the cortical bone.

Conclusion The proposed DL-AdvSS approach demonstrated competitive performance with respect to the state-of-the-art atlas-

based technique achieving clinically tolerable errors, thus outperforming the commercial segmentation approach used in the clinic.
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Introduction

Positron emission tomography (PET) and magnetic resonance

imaging (MRI) have emerged as leading medical imaging

modalities enabling the early detection and characterization

of human diseases on standalone scanners or on hybrid PET/

MRI systems, enabling concurrent morphological and molec-

ular characterization of tissues. At the present time, molecular

PET imaging is capitalizing and complementing anatomical

MR imaging to answer basic research and clinical questions.

PET/MRI is attractive owing to MRI’s multiparametric imag-

ing capabilities, superior soft-tissue contrast compared to CT,

and the fact that MRI does not use ionizing radiation with the

consequence of reduced radiation dose to patients [1]. The

bulk of PET/MRI research to date is focusing on optimizing

instrumentation design and building MR-compatible PET de-

tectors and readout technologies and addressing the chal-

lenges of quantitative imaging biomarkers using this technol-

ogy through the development of appropriate schemes for

MRI-guided PET attenuation correction [2], partial volume

correction [3], motion compensation [4] and more recently

synergistic functional-structural image reconstruction [5, 6].

Photon attenuation, considered as one of the major physical

degradation factors hindering quantitative PET imaging, is

typically dealt with through the use of electron density infor-

mation provided by computed tomography (CT) on combined

PET/CT systems. The major challenge on combined PET/

MRI is the lack of direct correlation between MR intensities

and attenuation properties of biological tissues, which renders

direct attenuation map estimation from MRI difficult [7].

The strategies proposed in the literature to generate atten-

uation correction (AC) maps from MRI can be classified into

three generic categories [2]: Segmentation-based approaches

(including dedicated MR sequences enabling depiction of

bones) classify MR images into a number of tissue classes

followed by assignment of predefined attenuation coefficients

[8–10]; atlas-based mapping and machine learning ap-

proaches in which a co-registered MRI-CT atlas database is

used to generate a synthetic CT image through a mapping

function [11–13] or a learning process that predicts the syn-

thetic CT (sCT) images from patient-specificMR images. The

availability of time-of-flight (TOF) information enabled the

implementation of joint activity/attenuation reconstruction of

the PETemission data with or without the exploitation ofMRI

information [14–16]. Machine learning or deep learning tech-

niques, including random forest [17] and neural network

methods [18–21], emerged as a promising approach enabling

generation of AC maps directly from MR images through

prior training using samples of MRI and CT pairs.

Over the past few years, deep convolutional neural net-

works (DCNN) have been widely employed in medical

imaging showing promising results in image segmenta-

tion, denoising and reconstruction and radiomics analysis

[22, 23]. With respect to synthetic CT generation tasks, a

number of pioneering studies have demonstrated the po-

tential of DCNN approaches in brain [18, 21, 24–26] and

pelvic [19, 27–30] PET/MR attenuation correction or MR-

only radiation therapy.

In this work, a novel adversarial semantic structure

deep learning method is proposed to predict continuous

AC maps from structural MR images suitable for attenua-

tion correction in brain PET/MRI studies. Existing DCNN

algorithms, based on either fully convolutional networks

or generative adversarial networks, do not explicitly take

semantic structure learning into consideration, which

might result in incorrect tissue synthesis. This issue is

addressed herein by using adversarial semantic structure

learning implemented as CT classification into a number

of tissue classes to regularize the main adversarial MRI to

CT synthesis process. The performance of the proposed

technique is compared to previously proposed atlas- and

segmentation-based approaches using CT-based PET at-

tenuation correction (PETCTAC) as reference.

Materials and methods

PET/CT and MRI data acquisition

18F-FDG PET/CT and MRI brain studies of 50 patients

referred to the nuclear medicine division of Geneva

University Hospital were retrospectively employed for

the quantitative evaluation of the proposed deep learning

method. The patient population included a cohort of 28

women and 32 men (mean age = 61 ± 12 years). The clin-

ical indications included neurodegenerative disease (44),

epilepsy (3) and grading of brain tumors (3). Ten out of

the 50 patients were excluded from evaluation including

one epilepsy, one brain tumor and eight patients suffering

from neurodegenerative disease. Ten patients were exclud-

ed because of minor misalignment between CT and MR

images or corrupted PET raw data. The first-line diagnos-

tic step included an MRI scan on a 3 T MAGNETOM

Skyra (Siemens Healthcare, Erlangen, Germany) with a

64 channel head coil. The MRI scans included a 3D T1-

weighted (magnetization-prepared rapid gradient-echo

(MP-RAGE)) sequence using the following parameters

TE/TR/TI, 2.3 ms/1900 ms/970 ms, flip angle 8°;

NEX = 1. The 50 patients underwent an 18F-FDG PET/

CT scan on either the Biograph mCT (15 patients) or

Biograph 64 True Point (35 patients) scanners (Siemens

Healthcare, Erlangen, Germany). Low-dose CT scanning

(120 kVp, 20 mAs) was performed for PET attenuation

correction. This was followed by PET acquisitions

(~30 min post-injection) lasting 20 min after injection of

210.2 ± 13.9 MBq of 18F-FDG. The original T1-weighted
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MR images were acquired in a matrix dimension of 255 ×

255 × 250 with voxel size of 0.86 × 0.86 × 1 mm. The ref-

erence CT images were saved in a matrix of 512 × 512 ×

150 with voxel size of 0.97 × 0.97 × 1.5 mm. Due to the

temporal gap between the acquisition of MRI and CT, MR

images were aligned to the corresponding CT using a

combination of rigid and non-rigid deformation based on

the mutual information criteria. After alignment of MRI to

CT images, MR images were converted to the CT resolu-

tion for training and validation. PET images were recon-

structed in 200 × 200 × 109 and 168 × 168 × 100 resolution

from the Biograph mCT and Biograph 64 True Point scan-

ners, respectively, with a voxel size of 4 × 4 × 2 mm. PET

images were reconstructed in 200 × 200 × 109 and 168 ×

168 × 100 resolution from the Biograph mCT and

Biograph 64 True Point scanners, respectively, with a vox-

el size of 4 × 4 × 2 mm. PET image reconstruction was

performed using the Siemens VG50 e7 tool with an ordi-

nary Poisson ordered subsets-expectation maximization

(OP-OSEM) algorithm (4 iterations, 21 subsets). The single

scatter simulation (SSS) algorithm with tail fitting scaling was

employed for the scatter correction. Post-reconstruction filter-

ing was performed using a Gaussian filter with 5 mm FWHM.

For the sake of consistency between the two PETacquisitions,

PET image reconstruction was performed without time-of-

flight and point spread function information. The study proto-

col was approved by the ethics committee of Geneva

University Hospitals and all patients gave informed consent.

Deep learning adversarial semantic structure
(DL-AdvSS) model

Overview of the DL-AdvSS model

The deep learning adversarial semantic structure (DL-

AdvSS) model consists of two major compartments: syn-

thesis generative adversarial network (SynGAN) and seg-

mentation generative adversarial network (SegGAN)

(Fig. 1). The SynGAN block generates sCTs from the input

MR images whereas the SegGAN block segments the gen-

erated sCTs into four tissue classes, namely, air cavities,

soft-tissue, bone and background air. CT image segmenta-

tion was performed automatically using the following in-

tensity thresholds: bone (>160 HU), air cavities (<−400

HU inside the body contour), soft-tissue (between −400

HU and 160 HU), background (otherwise). SegGAN aims

at regularizing the main CT synthesis procedure through

back-propagating gradients from the SegGAN block to

the main sCT generation process (dashed lines from

SegGAN block to the SynGAN block in Fig. 1). The

SynGAN compartment consists of the two synthesis gen-

erator (Gsyn) and synthesis discriminator (Dsyn) networks.

Likewise, the SegGAN compartment includes the

segmentation generator (Gseg) and segmentation discrimi-

nator (Dseg) networks as illustrated in Fig. 1. Gsyn is the

main core of the DL-AdvSS model which aims at generat-

ing sCT images from MRI. The resulting sCT is then fed

into Gseg to perform the semantic segmentation. Each of

the SynGAN and SegGAN blocks consists of two loss

functions as described below.

SynGAN loss functions: LDsyn and LGsyn are the two loss

functions of the SynGAN block. Dsyn aims to distinguish

whether the input image is real or synthetic CT such that label

1 is returned for real CT and 0 for synthetic. LDsyn (loss of

Dsyn) is defined as a binary cross entropy loss (LbCE) between

the classification and label result of LDsyn as formulated in

Eqs. 1 and 2.

LDsyn ¼ LbCE Dsyn CT ref

� �

; 1
� �

þ LbCE Dsyn Gsyn MRIð Þ
� �

; 0
� �

ð1Þ

MRI and CTref indicate the input MRI and reference CT im-

ages, respectively.

LbCE â; að Þ ¼ −
1

N
∑N

j¼1a jlogâ j þ 1−a j

� �

log 1−â j

� �

ð2Þ

where âi is the predicted probability for the jth sample, aj is the

corresponding label andN the number of samples. Conversely,

the loss of Gsyn (LGsyn) includes a reconstruction error term and

an adversarial component from the Dsyn as follows:

LGsyn ¼ LbCE Dsyn Gsyn MRIð Þ
� �

; 1
� �

þ λ1 � CT ref −Gsyn MRIð Þ
�

�

�

�

2

2
ð3Þ

SegGAN loss functions: LDseg and LGseg are the two loss

functions of the SegGAN block. Gseg attempts to generate

Input MR

Gsyn

sCT

Reference CT

LGsyn

Dsyn

LDsyn

sCT

Gseg

Segmented sCT

Segmented Ref. CT

LGseg

Dseg

LDseg

SynGAN

SegGAN

Fig. 1 A schematic view of the DL-AdvSS model. The top and bottom

blocks show the SynGAN and SegGAN structures. The feedbacks from

SegGAN regularize the Gsyn (sCT generation process) by enforcing

higher-order consistency in the semantic structure space
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segmentation which is expected to trick Dseg. Dseg, as op-

posed to Gseg, focuses on discriminating the real segmen-

tation from the fake one produced by Gseg. To this end, the

loss function for Dseg is specifically defined as:

LDseg ¼ LbCE Dseg CT seg

� �

; 1
� �

þ LbCE Dseg Gseg CT ref

� �� �

; 0
� �

ð4Þ

where CTseg indicates the ground truth CT segmentation.

The loss function for Gseg is defined as follows (the first

term is the adversarial term from Dseg):

LGseg ¼ LbCE Dseg

�

Gseg CT ref

� �

; 1
� �

þ λ2

� LmCE Gseg CT ref

� �

;CT seg

� �

ð5Þ

LmCE (in Eq. 6) indicates the multi-class cross entropy be-

tween the segmentation performed on the generated sCT and

the ground truth tissue classification. λ1 and λ2 determine the

weight contribution of each item to the calculation of LGsyn
and LGseg loss functions.

LmCE â; að Þ ¼ −
1

N
∑N

j¼1∑
K
k¼1ajk logâjk ð6Þ

The architectures of SynGAN and SegGAN are similar;

however, they are governed by two different loss functions

and provide different outcomes. The network training is elab-

orated in the Supplemental Materials section.

Architecture of the DL-AdvSS model

Dsyn and Dseg in the DL-AdvSS model (Fig. 1) share the

same convolutional neural network containing three

convolutional layers followed by three fully connected

layers. Batch normalization (BN) layers were intermediate-

ly inserted to enhance the networks performance and ac-

celerate the training process [31]. As the activation func-

tion, the rectified linear units (ReLU) were used for non-

linear transformation [32]. A filter size of 3 × 3 × 3 and

stride step of 2 were used in all the 3D convolutional layers

of D syn and D s e g . The ent i re convolut ional and

deconvolutional layers in Dsyn and Dseg were linked to

BN and ReLU layers, except the layer before the output

of the network (last layer). The sigmoid and softmax acti-

vation functions were utilized for Gsyn (sCT generation

process) and Gseg, respectively. The dimensionality of the

output layer for the three fully connected layers are

512,128 and 1, respectively. Additional details about the

network layers are provided in Supplemental Tables 1 and 2 in

the Supplemental materials section. The training of the net-

work was performed on 3D images using a patch size of

224 × 224 × 32 voxels. The implementation details are cov-

ered in the Supplemental Materials section.

Comparison with alternative attenuation map
generation techniques

Segmentation-based approach (Segm)

The segmentation-based approach implemented on the Philips

Ingenuity TF PET/MR system (Philips Healthcare, Cleveland,

Ohio) entails segmentation of brainMR images into two tissue

classes: soft-tissue and background air, ignoring fat, bone and

internal air cavities [33]. Mean CT values of −1000 and 0 HU

were assigned to the background air and soft-tissue classes,

respectively. Then, the resulting AC maps were completed by

inserting the corresponding scanner bed extracted from the

patient’s CT image.

Atlas-based approach (Atlas)

The Atlas-based approach (Atlas) was originally developed

and validated in the context of MRI-guided radiation therapy

using in-phase Dixon MR images [29]. The Atlas approach

entailed pair-wise alignment of atlas MR images to the target

MRI using a two-fold cross validation scheme. Given the

MRI-to-MRI transformation maps, CT atlas images were ac-

cordingly mapped to the target MRI. In the first phase of sCT

estimation, bony structures are extracted from the target MRI

through voxel-by-voxel atlas voting. The outcome of this step

is a binary bone map representing the most likely bone tissue

delineation of the target MRI. The obtained bone map will be

later (in the second phase) exploited to guide the atlas CT

fusion task with special emphasis on bony structures. Bone

extraction from the target image at each voxel relies on mor-

phology likelihood between the target and atlas MR images as

well as the bone label prior.

The inter-image morphology likelihood was calculated

using the phase congruency map (PCM) having the ability

to detect significant image features and robustness to inter-

subject intensity variation and noise. The bone label prior

was calculated based on the signed distance transform estimat-

ed on the bone label maps. The estimated bone from the target

MRI was later used to define weighting factors for atlas im-

ages. The continuous valued sCT images were then generated

using a voxel-wise weighted atlas fusion framework.

Data analysis

The first part of the evaluation involved the assessment of CT

values estimation and bone extraction accuracy using the dif-

ferent sCT generation techniques. To this end, bony structures

were extracted from the reference CT and sCT images using

two intensity thresholds of 150 HU (entire bone tissue) and

600 HU (cortical bone). The accuracy of bone delineation was

assessed using standard segmentation metrics including the

Dice similarity coefficient (DSC), relative volume difference
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(RVD) and mean absolute surface distance (MASD) with re-

spect to reference CT images. For each method, the above-

mentioned metrics were calculated as follows:

DSC R;Að Þ ¼
2jR∩Aj

jRj þ jAj
ð7Þ

RVD R;Að Þ ¼ 100�
Rj j− Aj j

Aj j
ð8Þ

MASD R;Að Þ ¼
dave SA; SRð Þ þ dave SR; SAð Þ

2
ð9Þ

where R and A indicate the reference CT-derived and the

bones predicted from sCT images, respectively. dave stands

for the average of the absolute Euclidean distance between

two segmented surfaces (SA,R). In addition to the volumetric

evaluation of bone delineation, the mean error (ME) and mean

absolute errors (MAE) were calculated between reference CT

images (RCT) and sCTs (AsCT) for bony structures, soft-tissue

and air cavities taking into account all the voxels within the

regions (I):

MAECT ¼
1

I
∑I

i¼1jAsCT ið Þ−RCT ið Þj ð10Þ

MECT ¼
1

I
∑I

i¼1AsCT ið Þ−RCT ið Þ ð11Þ

The ground truth soft-tissue regions were extracted from

reference CTs using lower and upper intensity thresholds of

−465 and 150 HU, respectively. The PET data of each patient

were reconstructed four times using the different attenuation

maps, namely, reference CT, Segm, Atlas and DL-AdvSS.

This was performed using the Siemens VG50 e7 tool with

an ordinary Poisson ordered subsets-expectation maximiza-

tion (OP-OSEM) algorithm (4 iterations, 21 subsets). Prior

to attenuation correction, CT and sCT images were down-

sampled to PET’s image resolution (from 1 × 1 × 1.5 mm to

4 × 4 × 2 mm) followed by a 4-mm FWHM Gaussian filter to

match PET’s spatial resolution. The quantitative evaluation of

the brain PET data was performed using the Hermes BRASS

analysis tool (Hermes Medical Solutions AB, Sweden) for 63

brain regions.

Quantification bias was calculated for each individual re-

gion (j) with respect to the reference PETCTAC:

E j ¼
PET sCTð Þ j− PETCTACð Þ j

PETCTACð Þ j
� 100% ð12Þ

PET images of the clinical studies were coregistered to

BRASS template’s image, and the quality of PET image align-

ment to the template was qualitatively checked to avoid errors

induced by miss-registration. The mean (MEPET), mean abso-

lute (MAEPET) and standard deviation (σ) of the tracer uptake

bias across the entire database were calculated to create atlas

bias maps:

MEPET ¼
∑N

P¼1E
p
i

N
; MAEPET ¼

∑N
P¼1 E

p
ij j

N

σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
P¼1 E

p
i −MEPET ið Þ

2

N−1

s

ð13Þ

where E
p
i stands for the bias in voxel i of the patient p accord-

ing to Eq. (12).

Moreover, MEPET and MAEPET were estimated for bone,

soft-tissue, air and the entire head regions. The correlation

between PETCTAC activity concentration and those generated

by the different AC methods were evaluated using Pearson

correlation analysis. The paired t-test method was used to

calculate the statistical significance of the differences between

the three AC methods. Differences with a p value less than

0.05 were considered statistically significant.

Moreover, the root mean square error (RMSE), peak

signal-to-noise ratio (PSNR) and structural similarity index

(SSIM) metrics were calculated to evaluate the accuracy of

estimated synthetic CT and corresponding attenuation

corrected PET images using MRI-derived attenuation maps.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑V
i¼1 I ref −I test

� �2

V

s

ð14Þ

PSNR ¼ 10log10
Pk2

MSE

� 	

ð15Þ

SSIM ¼
2M refM test þ K1

� �

2δref ;test þ K2

� �

M 2
ref þM2

test þ K1

� �

δ
2
ref þ δ

2
test þ K2

� � ð16Þ

In Eq. (14), V is the total number of voxels in the head

region, Iref is the reference image (ground truth CT or PET-

CT AC), and Itest is the test image (synthetic CT or PET-sCT

AC). In Eq. (15) Pk is the maximum intensity value of Iref or

Itest whereas MSE is the mean squared error. Mref and Mtest in

Eq. (16) denote the mean value of the images Iref and Itest,

respectively. δref,test indicates the covariance of δref and δtest,

which in turn represent the variances of Iref and Itest images,

respectively. The constant parameters K1 and K2 (K1 = 0.01

and K2 = 0.02) aim to avoid a division by very small numbers.

Results

Figure 2 shows the target T1-weighted MRI and reference CT

image of a representative clinical study along with the attenu-

ation maps derived by the commercial segmentation (Segm),

Atlas and DL-AdvSS approaches. The bone tissue maps ex-

tracted from CT images by applying an intensity threshold of
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150 HU are compared to those generated using Atlas and DL-

AdvSS techniques. The Atlas method resulted in realistic but

slightly underestimated bone delineation, whereas the DL-

AdvSS approach led to artifact-like or excessive bone defini-

tion, particularly in the proximity of the air cavities. The visual

inspection of Atlas and DL-AdvSS ACmaps revealed that the

atlas-based method results in less noisy (and/or artifact-free)

and more homogenous tissue definition.

The accuracy of bone extraction using the Atlas and DL-

AdvSS methods was objectively evaluated for the two >150

and > 600 HU threshold levels. Table 1 summarizes the mean

and standard deviation of DSC, RVD and MASD metrics

estimated over the 40 clinical studies. Moreover, mean and

mean absolute errors of CT value estimation are reportedwith-

in bony structures. The quantitative analysis demonstrated

slightly better performance of the Atlas approach exhibiting

more accurate bone delineation as well as less biased CT

values estimation, particularly highlighted by an increase of

the DSC metric from 0.80 to 0.85 for bone (>150 HU)

achieved by DL-AdvSS and Atlas approaches, respectively.

Likewise, Table 2 summarizes the ME and MAE of

the CT value estimation within soft-tissue, air cavities

and the entire head region obtained from the three dif-

ferent approaches. Consistent with Table 1, Atlas and

DL-AdvSS methods exhibited superior performance over

the segmentation-based method, in particular within the

air cavity region.

The quantitative performance of the three different ap-

proaches was further evaluated in terms of SUV bias with-

in each tissue class in comparison with the reference

PETCTAC. Table 3 summarizes mean and mean absolute

PET quantification bias within bones, soft-tissue, air and

a b c d e
Fig. 2 Comparison of three views

of the generated attenuation maps

for a representative patient

showing: a The target MRI, b

Reference CT, c Atlas, d DL-

AdvSS, e Segm. The bone tissue

maps are illustrated in the bottom

part for reference CT, Atlas and

DL-AdvSS images
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the entire head region. Overall, the DL-AdvSS and Atlas

approaches resulted in comparable bias in tracer uptake

quantification. For instance, MAEPET of 6.7 and 6.0%

was achieved in bone tissue when using Atlas and DL-

AdvSS approaches , respec t ive ly. However, the

segmentation-based method exhibited significant bias in

bone and air tissues with MAEPET of 15.5 and 42.6%,

respectively.

Figure 3 compares PET images and SUV bias maps of

the same clinical study shown in Fig. 2 corrected for atten-

uation using the three different techniques. In agreement

with Table 3, Segm method exhibits large SUV bias partic-

ularly in bone and air cavities compared to Atlas and DL-

AdvSS methods.

The quantitative accuracy of the tracer uptake estima-

tion using the different AC methods was further evaluated

using region-wise analysis of PET images mapped to fit

the BRASS template. Figure 4 shows the mean and SD of

quantification bias of Segm, Atlas and DL-AdvSS AC

methods in 63 regions of the brain across the 40 patients.

Likewise, Fig. 5 depicts the mean absolute bias and SD

resulting from the different methods. The results demon-

strate that the Atlas and DL-AdvSS AC approaches led to

a mean positive bias <4% while Segm mostly exhibited up

to −10% negative bias. The absolute mean bias shown in

Fig. 5 showed slightly lower bias induced by the Atlas

method compared to DL-AdvSS; however, both methods

resulted in less than 6% error over the entire brain regions.

It was observed that the Segm method resulted in a total

absolute bias of 7% on average, while Atlas and DL-

AdvSS AC methods led to absolute bias of 4 and 4.5%,

respectively. The average tracer uptake at the right and left

G. occipitalis exhibited relatively increased bias when

using the Segm method. Both sides of this region, located

close to cortical bone in the back head, have inhomoge-

neous activity uptake. Owing to the lack of bone tissue in

Segm AC map, an increased tracer uptake bias was ob-

served in this region. Moreover, this region is relatively

small, hence the average estimated tracer uptake could be

affected by the lack of nearby bone. Template-based VOI

definition is not commonly used for oncologic studies.

However, the exclusion of the two patients with brain

tumors did not alter the final results.

Figure 6 and supplemental figure 1 show the voxel-

wise mean and absolute mean along with the standard

deviation of bias map calculated over the entire 40 pa-

tients. These figures, representing the magnitude and spa-

tial distribution of the SUV bias, further support the find-

ing of Figs. 4 and 5 where Atlas and DL-AdvSS methods

exhibited comparative performance largely outperforming

the Segm method.

The statistical analysis proved that there is a statistically

significant difference between the performance of the Atlas

and DL-AdvSS method against the Segm method over all

brain regions (p < 0.001). However, the difference between

DL-AdvSS and Atlas was only statistically significant for

the left and right Rectus (p < 0.02), Orbitalis (p < 0.02) and

Thalamus (p < 0.02) regions.

Table 1 Quantitative accuracy of

the estimated bone tissues using

the Atlas, DL-AdvSS and Segm

approaches in 40 patients. Bone

extraction was carried out using

two intensity thresholds of >150

HU and > 600 HU

Approach DSC RVD (%) ME (HU) MAE (HU) MASD (mm)

Bone (>150HU)

Atlas 0.85 ± 0.05 27.6 ± 10.0 −18 ± 80 211 ± 70 2.0 ± 0.50

DL-AdvSS 0.80 ± 0.07 45.2 ± 20.1 −46 ± 150 302 ± 79 2.4 ± 0.65

Segm – – −801 ± 90 801 ± 90 –

Bone(>600HU)

Atlas 0.78 ± 0.07 41.4 ± 12.3 5 ± 110 241 ± 100 2.0 ± 0.50

DL-AdvSS 0.77 ± 0.07 46.3 ± 16.3 −10 ± 167 312 ± 101 2.01 ± 0.28

Segm – – −1025 ± 100 1025 ± 100 –

The results are presented as mean ± standard deviation

Table 2 Accuracy of CT values estimation using the Atlas, DL-AdvSS

and Segm attenuation correction approaches within the entire head con-

tour, air and soft-tissue regions

Approach ME (HU) MAE (HU)

Head

Atlas −8 ± 20 103 ± 36

DL-AdvSS −14 ± 18 101 ± 40

Segm −175 ± 34 230 ± 33

Air

Atlas 317 ± 294 459 ± 240

DL-AdvSS 295 ± 282 407 ± 228

Segm 805 ± 47 805 ± 47

Soft-tissue

Atlas 1 ± 5 8 ± 4

DL-AdvSS 2 ± 6 10 ± 5

Segm −2 ± 1 5 ± 2

The results are presented as mean ± standard deviation
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Figure 7 illustrates linear regression plots portraying the

correlation between the tracer uptake of the 63 different

brain regions estimated using the three different AC tech-

niques and the reference CTAC. The scatter and linear re-

gression plots showed that the DL-AdvSS and Atlas

methods are highly correlated to the reference CTAC

(R2 = 0.99). A lower correlation coefficient (R2 = 0.985)

with underestimation of tracer uptake (p value <0.001)

was observed when using the Segm method since the slope

of the regression line (0.87) is less than 1.

Table 3 Mean and mean absolute PET quantification errors in soft-tissue, bone, air within the entire head contour for the different MRI-guided

attenuation correction methods with respect to CTAC used as reference

Approach Soft-tissue

mean ± SD (Abs. mean ± SD)

Bone

mean ± SD (Abs. mean ± SD)

Air cavity

mean ± SD (Abs. mean ± SD)

Head

mean ± SD (Abs. mean ± SD)

Atlas 1.5 ± 9.3 (3.5 ± 8.7) 1.1 ± 9.9 (6.0 ± 8.3) 6.3 ± 13.7 (7.1 ± 12.6) 2.6 ± 2.9 (3.7 ± 8.5)

DL-AdvSS 3.2 ± 13.6 (5.0 ± 13.1) 1.2 ± 13.8 (6.7 ± 12.1) 3.2 ± 13.6 (5.5 ± 13.1) 3.2 ± 3.4 (4.0 ± 8.6)

Segm −1.6 ± 10.2 (5.4 ± 8.8) −14.7 ± 8.9 (15.5 ± 7.3) 40.8 ± 10.6 (42.6 ± 8.8) −5.6 ± 4.1 (7.6 ± 9.5)

Fig. 3 Comparison of PET images corrected for attenuation using the different techniques for the clinical study shown in Fig. 2. a PETCTAC, b PETAtlas, c

PETDL-AdvSS, d PETSegm. Relative SUVerror maps are presented for Atlas, DL-AdvSS and Segm approaches
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Table 4 summarizes the RMSE, PSNR and SSIM metrics

computed separately for PET and CT images. The results in-

dicate that the DL-AdvSS method exhibits slightly better per-

formance with only the differences between Segm and the two

other methods being statistically significant (P value <0.05).

Among the 40 patients, the DL-AdvSS method failed to

generate a proper sCT image only in one case (supplemental

figure 2). For this case, the DL-AdvSS method resulted in sub-

stantial overestimation of the soft-tissue CT value in the brain

and as such, the bone delineation (using a threshold of 150 HU)

as well as PET quantification accuracy were disturbed.

Discussion

Accurate attenuation correction has been a major challenge

facing quantitative PET/MR imaging since its introduction.

As such, considerable efforts have focused on deriving

Fig. 4 Mean relative error of the

PET quantification in 63 brain

regions calculated over 40

patients for the different

attenuation correction methods

with respect to the reference

CTAC
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patient-specific attenuation maps using various approaches.

More advanced methods attempt to account for bone attenua-

tion particularly in PET brain imaging since cortical bone

constitutes a large proportion of the skull [34].We demonstrat-

ed in a previous study that the Atlas approach by far outper-

forms emission-based AC with the current TOF timing reso-

lution of 580 ps [35]. Emission-based methods will be

revisited on future generation TOF PET/MRI scanners with

improved TOF resolution.

The proposed DL-AdvSS method incorporates semantic

structure learning using an adversarial framework into MRI-

to-CT synthesis. The adversarial network used in SynGAN

aimed at enforcing a higher order consistency in the appear-

ance space. Likewise, the adversarial network incorporated in

SegGAN encouraged a higher-order consistency in the se-

mantic structure space. The volumetric evaluation of bony

structures extracted by DL-AdvSS demonstrate the efficacy

of the proposed method. The proposed DL-AdvSS shares

Fig. 5 Mean absolute relative

error of the PET quantification in

63 brain regions calculated over

40 patients for the different

attenuation correction methods

with respect to the reference

CTAC
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some similarities with the work presented by Chartsias et al.

[36] and Huo et al. [37]. Hence, it is worthwhile to clarify the

difference between these works and the DL-AdvSS model.

The proposed CT to MRI synthesis in [36] employs a 2D

CycleGAN [38] functioning in parallel with an independent

2D segmentation network aiming at segmenting the synthe-

sized MRI images. As opposed to the DL-AdvSS model, the

segmentation network is independent and does not regularize

the main synthesis process. Based upon this idea, Huo et al.

[37] proposed joint training of a 2D segmentation network and

the 2D CycleGAN to achieve end-to-end segmentation and

synthesis. Hence, only a multi-class cross entropy loss func-

tion was defined to govern the discrepancy between predicted

and ground truth segmentations. However, SegGAN in the

DL-AdvSS model was designed to reinforce the high-order

consistency not only in the appearance space but also in the

semantic structure space for MRI-to-CT synthesis. The quan-

titative accuracy of the proposed DL-AdvSS method was

compared against the state-of-the-art atlas-based approach

and the commercial segmentation-based method to provide a

clear picture of the performance and robustness of learning

based methods in the context of brain PET/MR imaging.

The proposed DL-AdvSS method resulted in an overall

average ME of −14 HU and MAE of 101 HU for the 40 brain

studies included in this work, which is comparable with re-

sults reported in the literature. The DCNNmodel proposed by

Han [18] achieved an overall average MAE of 84.8 HU on

data from 18 patients in the head region. The fuzzy c-means

clustering method implemented on UTEMR sequences by Su

et al. [39] resulted in a MAE of 130 HU whereas the multi-

atlas method developed byBurgos et al. [13] produced aMAE

of 102 HU on 17 head and neck studies in the context of

radiotherapy planning. The deep neural network based on

Dixon and ZTEMR images built by Gong et al. [40] achieved

a bone extraction accuracy of DSC = 0.76 on 40 clinical stud-

ies (vs. DSC = 0.77 achieved by DL-AdvSS). The data-driven

deep learning approach for PET AC without anatomical im-

aging was developed by Liu et al. [41] to continuously gener-

ate sCT images from uncorrected PET images. This approach

resulted in bone delineation accuracy of DSC = 0.75 and a

MAE of 111 HU on 128 patients.

Liu et al. [42] developed a deep learning approach to generate

PET attenuation maps from T1-weighted MR sequences. They

reported amean PET quantification bias of less than 1% for brain

imaging studies. It should be noted that the evaluation of this

model was performed using segmented CT images into three

classes (bone, air and soft-tissue) as reference versus the three-

class attenuation map generated by the deep learning algorithm.

The different observed PET quantification bias might be partly

due to different validation strategies. Gong et al. [43] reported a

mean PET quantification bias up 3% using a convolutional neu-

ral network trained with Dixon and ZTE MR sequences. The

additional ZTE sequence, providing complementary information

about bone tissue, supports the deep learning network to better

extract the bony tissue. Spuhler et al. [44] developed a uNet deep

learning structure to estimate PET attenuation maps from T1-

weighted MR images in brain imaging. Overall, biases of

−0.49 and 1.52% were reported for static 11C-WAY-100635

and 11C-DASB PET imaging, respectively. However, the train-

ing of neural networks was performed using the transmission

data to avoid the discrepancy between CT-derived and optimal

PET attenuation maps owing to the polyenergetic nature and

lower energy photons of CT acquisition compared to PET.

One of the major advantages of deep learning methods is the

fast computation time, even though the training phase can take

a few days. The training of the model needs to be done only

once and application of the model to generate sCT for new

subjects takes less than a minute. Multi-atlas approaches tend

to be slow, taking a couple of hours to generate a single sCT

image depending on the size of the atlas dataset. The Atlas

approach required 6 h to generate one sCT image considering

an atlas containing 20 MR/CT pairs (or 40 MR/CT pairs under

a two-fold cross validation scheme). Moreover, deep learning

approaches can easily accommodate large training databases

owing to the high model capacity. Since we used a relatively
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Fig. 6 Mean and standard deviation of PET bias maps calculated over 40

patients for the different attenuation correction approaches displayed in

transaxial, coronal and sagittal planes
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large number of training samples (50MR/CT pairs), we believe

that the training of the DL-AdvSS model was good enough and

as such, increasing the number of training data would not sig-

nificantly enhance the performance of the model. For the train-

ing and validation of the proposed method, a two-fold cross-

validation scheme was exploited. Similar studies commonly

use a higher number of data splitting (4-fold to 6-fold). Since

the training dataset in this work was sufficiently large, a two-

fold cross-validation did not lead to substantial over-fitting of

the model and no significant bias and variance was observed.

The burden of increasing the number of training data is only on

the training phase while the size of the final model and compu-

tation time will remain the same. Conversely, increasing the

size of the atlas dataset in multi-atlas approaches proportionally

increases their computation time.

In our previous comparison of MRI-guided sCT generation

methods [30], the DCNN method exhibited promising perfor-

mance when compared to state-of-the-art atlas-based methods.

DCNN led to slightly more accurate derivation of sCT values

compared to the atlas-based approaches. However, the Atlas-

Fig. 7 Scatter plots showing

correlation between activity

concentration in PET images

corrected for attenuation using

reference CT and the different

MRI-guided AC maps: Atlas (a),

DL-AdvSS (b) and Segm (c).

Linear regression results and the

identity line (black) are also

shown
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based method showed higher robustness to outliers as it usually

results in a realistic outcome representing the average of the

atlas dataset. In contrast, the DCNN method failed to identify

bone tissue and appropriate sCT estimation in four out of 39

clinical studies. The sCT generation process failed in only one

case (limited to soft-tissue region) when using the DL-AdvSS

approach (Supplemental figure 2), thus presenting good robust-

ness to MRI intensity variation and minor metal-induced arti-

facts thanks to the adversarial semantic learning framework.

The proposed DL-AdvSS algorithm effectively incorpo-

rates semantic structural features into the synthetic CT gener-

ation process. As a result, the proposed method exhibited ex-

cellent consistency to derive accurate anatomical structures in

the sCT images. To this end, the DL-AdvSS network benefits

from two loss functions governed by binary cross-entropy and

multi-class cross-entropy intended for maximizing structural

feature extraction. However, in practice, these loss functions

introduce a trade-off between the accuracy of anatomical

structures definition and CT intensity estimation. Apart from

the outlier depicted in supplemental figure 2, this method ex-

hibited minor vulnerability to CT intensity variation across

patients. In this regard, the atlas-based method exhibited more

robust performance, resulting in no gross CT intensity fluctu-

ation. In this work focusing on brain imaging, the atlas-based

technique performed sufficiently well compared to the pro-

posed deep learning approach. However, the proposed deep

learning algorithm showed much less vulnerability to outliers

since the CT synthesis process is governed by semantic struc-

ture features. A major finding of this work is that despite the

elaborated design of the proposed algorithm and its promising

potential, deep learning techniques may not be able to

completely outperform advanced atlas-based methods. The

performance of the atlas-based and deep learning techniques

might depend on the selected patient population.

Conclusion

A novel deep learning algorithm was presented and its quan-

titative performance evaluated against the commercial

segmentation-based method and an atlas-based approach.

The proposed DL-AdvSS method is capable of estimating

accurate patient-specific attenuation maps comparable to the

Atlas method, thereby reducing significantly the quantifica-

tion bias in brain PET/MR imaging. The DL-AdvSS tech-

nique also exhibited high robustness to anatomical variation

andMR intensity fluctuation as only one outlier was observed.

Overall, the DL-AdvSS algorithm demonstrated competitive

performance with respect to the state-of-the-art atlas-based

approach achieving clinically tolerable errors, thus

outperforming the commercial segmentation approach used

in the clinic.
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