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Abstract

Background: African Americans (AAs) experience premature chronic health outcomes and longevity disparities

consistent with an accelerated aging phenotype. DNA methylation (DNAm) levels at specific CpG positions are

hallmarks of aging evidenced by the presence of age-associated differentially methylated CpG positions (aDMPs)

that are the basis for the epigenetic clock for measuring biological age acceleration. Since DNAm has not been

widely studied among non-European populations, we examined the association between DNAm and chronological

age in AAs and whites, and the association between race, poverty, sex, and epigenetic age acceleration.

Results: We measured genome-wide DNA methylation (866,836 CpGs) using the Illumina MethylationEPIC BeadChip in

blood DNA extracted from 487 middle-aged AA (N = 244) and white (N = 243), men (N = 248), and women (N = 239).

The mean (sd) age was 48.4 (8.8) in AA and 49.0 (8.7) in whites (p = 0.48). We identified 4930 significantly associated

aDMPs in AAs and 469 in whites. Of these, 75.6% and 53.1% were novel, largely driven by the increased number of

measured CpGs in the EPIC array, in AA and whites, respectively. AAs had more age-associated DNAm changes than

whites in genes implicated in age-related diseases and cellular pathways involved in growth and development. We

assessed three epigenetic age acceleration measures (universal, intrinsic, and extrinsic). AAs had a significantly slower

extrinsic aging compared to whites. Furthermore, compared to AA women, both AA and white men had faster aging

in the universal age acceleration measure (+ 2.04 and + 1.24 years, respectively, p < 0.05).

Conclusions: AAs have more wide-spread methylation changes than whites. Race and sex interact to underlie biological

age acceleration suggesting altered DNA methylation patterns may be important in age-associated health disparities.

Keywords: DNA methylation, Epigenetics, Epigenetic clock, Biological age, Aging, Health disparities, Race, European

ancestry, African Americans, Epigenome-wide association study

Background

Health disparities are marked differences or inequalities

in health measures and indicators, such as morbidity

and mortality, between two or more population groups.

Health disparities disproportionately affect African

Americans (AAs), other racial minorities, and the socio-

economically disadvantaged. The disparities for overall

longevity as measured by life expectancy are particularly

compelling in the USA where the most pronounced life

expectancy gap for AA men who experienced a 20.7-year

life expectancy gap when compared to Asian women

who had the best overall survival [1]. Nearly two decades

later, this troubling trend of lower life expectancy still

continues to persist [2]. AAs manifest age-related

phenotypes and develop chronic diseases such as cardio-

vascular diseases, diabetes, and cognitive disorders at

younger ages than other demographic groups. This sug-

gests that AAs experience significant rates of premature

biological aging. A study conducted in participants of

the National Health and Nutrition Examination Survey
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found that AAs age significantly faster than whites and

that biological aging was associated with all-cause mor-

tality rates [3].

The causes of health disparities and its premature aging

phenotype are multifactorial and include but are not lim-

ited to socioeconomic status, psychosocial stress, genetics,

poor access to health care, education, and toxic environ-

mental exposures. However, it has never been fully

explained how social determinants of health result in the

premature aging phenotype, poor health outcomes, and

reduced overall survival. The transduction of a social de-

terminant of health may involve genomic and epigenomic

processes that are indeterminate at this time. Among the

various epigenetic processes, DNA methylation could be

one potential mechanism that may mediate this observed

disparity given that DNA methylation is influenced by age,

lifestyle, environmental, and host factors [4, 5]. There is

evidence from targeted methylation studies that DNA

methylation changes are associated with socioeconomic

status and age-related diseases [6, 7].

DNA methylation regulates gene expression and main-

tains genome stability. It is a dynamic process that

changes over an individual’s lifespan and is influenced

by age and environmental and genetic factors [4]. Fur-

ther, altered patterns of DNA methylation have been

considered as one of the hallmarks of aging and lifespan

[8]. Identification of age-associated DNA methylation

changes among diverse population groups could provide

clues on the epigenetic basis of aging and age-related

health disparities among population groups. However,

AAs and other racial minorities are underrepresented in

epigenetic studies of age-related diseases. Previous stud-

ies have identified several age-associated differentially

methylated CpG positions (aDMPs) located in genes

implicated in chronic diseases and aging [9–28]. How-

ever, the majority of these studies were limited by their

low genome-wide coverage of CpG sites and also were

mostly comprised of populations of European ancestry,

therefore precluding the study of the role of DNA

methylation in the biology of age-related health dispar-

ities among minority populations. The recent develop-

ment of biological age prediction algorithms based on

methylation levels of genome-wide selected CpG sites using

elastic net regularized regression methods referred to as

DNA methylation age (DNAm age) also known as epigen-

etic age or the “epigenetic clock,” and the demonstration of

robust correlations between DNAm age (epigenetic age)

and chronological age provides a valuable research tool to

study the social determinants of biological age acceleration

[24, 25]. Epigenetic age acceleration has been associated

with overall and cause-specific mortality, physical and cog-

nitive function decline, and other aging-related diseases;

thus, epigenetic age has been suggested to be a marker of

biological age [29–33]. Although sociodemographic and

lifestyle factors were shown to accelerate epigenetic aging

[32, 34, 35], the interplay between these factors is poorly

understood. Specifically, whether race, socioeconomic sta-

tus, and sex interact with each other to influence acceler-

ated epigenetic age is not known.

The objectives of the present study were (1) to identify

novel aDMPs among AAs and whites and (2) to assess the

association between race, sex, and poverty status and their

interaction on epigenetic age acceleration. We conducted

the present study in samples drawn from the Healthy Aging

in Neighborhoods of Diversity across the Life Span

(HANDLS) study [36]. HANDLS is a population-based lon-

gitudinal study of community-dwelling urban AAs and

whites aged 30–65 years. Using the Illumina Infinium

MethylationEPIC BeadChip, we quantified genome-wide

DNA methylation levels at single-CpG dinucleotide resolu-

tions in blood DNA collected from AA and white men and

women above and below poverty status. We performed epi-

genome-wide association analysis of chronological age. We

also assessed main effects and interactions between sex,

race, and poverty status on epigenetic age acceleration mea-

sures. We found that chronological age was associated with

widespread DNA methylation changes in various CpG posi-

tions and that AAs compared to whites had more aDMPs.

These aDMPs were enriched for important genetic regula-

tory regions, cellular pathways involved in growth and

development, and age-related chronic disease susceptibility

loci identified by genome-wide association analyses. We

also found that AA men had a faster aging corroborating

the epidemiologic observations that AA men have a shorter

life expectancy.

Results

MethylationEPIC array methylation data preprocessing

and normalization

We measured DNA methylation using the Illumina Infi-

nium MethylationEPIC BeadChip in blood DNA of 487

participants (244 AAs, 243 whites, 248 men, and 239

women) and 12 technical replicates for quality control.

Four hundred seventy participants (50.4% AAs, 50.6%

men, and 49.8% above poverty status) passed quality

control (Table 1). The age range of the total study partici-

pants was 30.2–65.2 years with mean age of 48.7 (standard

deviation (sd) = 8.7). The mean (sd) age was 48.4 (8.8) in

Table 1 Demographic characteristics of the HANDLS study

participants with complete DNA methylation data

Characteristics AAs, N = 237 Whites, N = 233 P

Age, years (sd) 48.4 (8.8) 49.0 (8.7) 0.48

Sex Men 120 118 1.0

Women 117 115

Poverty status Above 120 114 0.78

AAs African Americans, sd standard deviation
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AAs and 49.0 (8.7) in whites (p value = 0.48) indicating no

difference in age distributions. Because the EPIC array is a

new technology, we compared the performance of differ-

ent methylation data normalization and preprocessing ap-

proaches using methylation levels of technical replicates

to identify an optimal method for data preprocessing.

After excluding probes with detection p value ≥ 0.01,

cross-hybridizing probes, and probes containing single nu-

cleotide polymorphisms (minor allele frequency cutoff

= 0.05) available in the DMRcate package [37], we calcu-

lated correlation and probe variance of methylation beta

values between technical replicates. Additional file 1: Fig-

ure S1a and S1b show the relative performance (correl-

ation and probe variance) of the different methylation

data normalization and preprocessing methods: Illumina

Genome Studio (Illumina), normal-exponential out-of-

band (NOOB), stratified quantile normalization (quantile),

subset-quantile within array normalization (SWAN), and

no normalization (raw). We found that the NOOB

method yielded a higher correlation between technical

replicates compared to the other methods.

Identification of age-associated differentially methylated

CpG positions in African Americans and whites

We hypothesized that there would be differences in gen-

ome-wide age-associated DNA methylation changes

between AAs and whites. To identify age-associated

differentially methylated CpG positions (aDMPs), we per-

formed epigenome-wide association analysis of chrono-

logical age. We examined the association of baseline

chronological age with each of the 765,808 CpG positions

that passed quality control separately for AAs (N = 237)

and whites (N = 233). Linear regression models were ad-

justed for sex, race, poverty status, estimated white blood

cell compositions (granulocytes, monocytes, natural killer

cells, B cells, CD4+, and CD8+ T cells), and the first two

principal components to account for population stratifica-

tion. Using a stringent Bonferroni corrected significance

threshold and excluding CpGs with effect size between −

0.01 and 0.01, we found significant associations with

chronological age for 4930 aDMPs in AAs and 469 aDMPs

in whites with effect sizes ranging from − 0.039 to 0.051 in

AAs and − 0.050 to 0.047 in whites. Figure 1a and b show

the distributions of p values of the association between indi-

vidual CpG positions and chronological age in AAs and

whites, respectively. Of these significantly associated

aDMPs, 4343 in AAs and 166 in whites gained methyla-

tion (hypermethylated) with age (Fig. 1c, d). Although

there was substantial overlap of significantly associated

aDMPs between AAs and whites, there were more wide-

spread age-associated changes (hyper- and hypomethy-

lated) in AAs compared to whites (Fig. 2a, b and c).

Thus far, studies of DNA methylation with chrono-

logical age have identified 5321 unique aDMPs in blood-

Fig. 1 Distribution of age-associated differentially methylated CpG positions (aDMPs) with their effect size in beta values and significance p value

in the African American (AA) and white participants of the HANDLS study: a Manhattan plot in AAs, b Manhattan plot in whites, c volcano plot in

AAs, and d volcano plot in whites
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derived DNA using the previous 27K and 450K methyla-

tion BeadChips [10, 12–14, 17, 19, 21, 22, 25, 27, 28].

We replicated a number of these previously reported

aDMPs in either AAs (1204 aDMPs) or whites (220

aDMPs) with p value < 6.53E−08. The list of previously

reported aDMPs replicated in our study is shown in

Additional file 2: Table S1. Of these previously reported

aDMPs, 174 CpG positions including those located in

ELOVL2 replicated in both AAs and whites in the

HANDLS study. Previous studies of DNAm and age

were conducted in predominantly European ancestry

samples and were limited by the number of genome-

wide CpG coverage. Using the EPIC array and a bal-

anced sample size of AAs and whites, we found novel

aDMPs in both AAs and whites. Of the 4930 aDMPs

identified in AAs, 3726 (75.6%) were novel compared

with 249 (53.1%) of the 469 aDMPs identified in whites.

Table 2 shows the top 50 aDMPs that have not been

previously reported. The beta coefficients of these top-

ranking aDMPs ranged from − 0.030 to 0.041 in AAs

and from − 0.034 to 0.044 in whites. Additional file 3:

Figure S2a and b show scatter plots of top ten aDMPs

and their corresponding Pearsons’s correlation coeffi-

cient with age in AAs and whites, respectively. Some of

the top novel age-methylation associations identified in

both AAs and whites include CpG positions located in

FGF14, FHL2, C1QC, CELF6, NEFM, and LHFPL4. The

top unique age-methylation association in AAs were

C21orf91, JAZF1, NEURL1, and ADGRB2, and in whites

were SLC25A21, CPED1, NRXN3, and OTUD7A (Table 2).

Genomic feature enrichment and functional annotations

We then characterized each of the significant aDMPs for

enrichment across various regulatory regions of the

genome as determined by the ENCODE and FANTOM

projects using Fisher’s exact test. Enrichment analysis

was performed separately for aDMPs that showed gain

(hypermethylated) and loss of methylation (hypomethy-

lated) with chronological age. As expected, aDMPs that

gained methylation with age were enriched at CpG

islands (Additional file 4: Table S2). Hypermethylated

aDMPs were also enriched at 5′ UTR, DNase I hypersensi-

tivity sites (DHS), first exon regions, and reprogramming-

specific genomic regions (Additional file 4: Table S2).

Hypomethylated aDMPs were enriched at Open Sea

regions, transcription factor binding sites, CpG island shore

regions, and open chromatin regions (Additional file 5:

Table S3).

To further understand the functional significance of

aDMPs and to identify canonical pathways overrepre-

sented among aDMPs, we performed gene ontology

(GO) enrichment and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analysis while accounting for

the differences in the number of CpG positions present

in each gene in the MethylationEPIC BeadChip. aDMPs

in both AAs and whites were enriched for gene ontology

terms related to system and organismal development

and morphogenesis. These top terms include central

nervous system development, multicellular organism

development, and cell-cell signaling (Additional file 6:

Table S4 and Additional file 7: Table S5). These results

suggest that aging may affect the methylation status of

genes and pathways that are important for growth and

development in the nervous system and other organ

systems.

Age-related disease gene enrichment analysis

To characterize the significance of hyper- and hypo-

methylated aDMPs in age-related diseases and pheno-

types, we performed enrichment analysis using genes

identified by genome-wide association studies (GWAS).

We focused on GWAS-identified genes implicated in

age-related diseases and quantitative traits and longev-

ity and survival (overall and disease-specific) [38]. After

accounting for multiple testing, we found that genes

containing hypermethylated aDMPs were enriched for

genes linked with visceral fat distribution, lung func-

tion, cognitive ability, blood pressure, and IgG glycosyl-

ation (Additional file 8: Table S6). Hypomethylated

aDMPs were enriched for iron homeostasis and breast

cancer (Additional file 9: Table S7).

Assessment of DNA methylation age using the epigenetic

clock

We calculated DNA methylation age (DNAm age) for

each of the participants using the Horvath [24] and

Fig. 2 Venn diagrams of significantly age-associated differentially methylated CpG positions (aDMPs) in African Americans (AAs) and whites: a

overlap of aDMPs between AAs and whites, b overlap of aDMPs that were hypermethylated with age, and c overlap of aDMPs that were

hypomethylated with age
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Hannum algorithms [25] implemented in the online

DNAm age calculator [24]. DNAm age predicted by

both the Horvath and the Hannum clock was strongly

correlated with chronological age (Pearson’s r = 0.85)

(Fig. 3). In subgroup correlation analysis stratified by sex,

race, and poverty status, similar strong correlations be-

tween chronological age and DNAm age were observed

(Pearson’s r range 0.83–0.89) indicating that the epigenetic

clocks are robust estimator of chronological age and that

the prediction algorithms performed well in our cohort.

Determinants of epigenetic age acceleration

Epigenetic age acceleration, generally defined as the dif-

ference between DNAm age and chronological age, has

been suggested as a promising marker of biological age

[31]. We hypothesized that there would be population

differences in biological age such that men compared to

women, AAs compared to whites, and individuals below

poverty status compared to those above would be fast

agers. To test our hypothesis, we first computed a

universal measure of age acceleration (AgeAccel) as the

residuals of regressing DNAm age predicted by the Hor-

vath method, which is independent of cell and tissue

types, over chronological age. The absolute mean (±

standard error) AgeAccel (in years) was − 1.03 (± 0.47)

in AA women, + 1.01 (± 0.40) in AA men, − 0.20 (±

0.19) in white women, and + 0.19 (± 0.43) in white men.

Positive residual values of AgeAccel indicate faster aging

based on chronological age, and negative residual values

indicate slower aging. Two additional measures of epi-

genetic age acceleration were derived: intrinsic epigen-

etic age acceleration (IEAA) and extrinsic epigenetic

age acceleration (EEAA). IEAA is meant to capture cell-

intrinsic properties of the aging process, which is inde-

pendent of estimated white blood cell type proportions,

while the EEAA measure is enhanced by white blood cell

estimates and may further capture age of the immune sys-

tem cells (immunosenescence) [31]. We found that men

compared to women were fast agers in AgeAccel and

EEAA (Fig. 4a). No differences between AAs and whites

were observed in AgeAccel and IEAA measures, but sig-

nificant differences in EEAA were observed by race (p =

4.8E−17) (Fig. 4b). Poverty status was not associated with

any of the epigenetic age acceleration measures (Fig. 4c).

We used linear regression models to assess two-way

interactions between sex, race, and poverty status on the

three epigenetic age acceleration measures. A nominally

significant p value between sex and race for AgeAccel

(pinteraction-term = 0.049) was observed but not for IEAA

(pinteraction-term = 0.058) or EEAA (pinteraction-term = 0.6).

Specifically, AA men by + 2.04 years (p = 6.07E−04) and

white men by + 1.24 years (p = 0.038) were fast agers

using AgeAccel compared to AA women (Table 3).

However, if we were to account for multiple testing

(nine tests: three age acceleration measures and three

two-way interaction terms), the results become non-sig-

nificant. Figure 5a–c shows interaction plots of the

association between sex, race, and AgeAccel, IEEA, and

EEAA and highlights the AgeAccel differences between

AA women, AA men, and white men.

Discussion

To the best of our knowledge, this is the first study to

apply the MethylationEPIC BeadChip with its enhanced

Fig. 3 Correlation between DNA methylation-predicted age based on the Horvath and the Hannum clocks, and chronological age in the

HANDLS study. Abbreviation: AAs: African Americans

Tajuddin et al. Clinical Epigenetics          (2019) 11:119 Page 7 of 16



and expanded genome-wide CpG coverage to assess the

genome-wide distribution of age-associated DNA methy-

lation changes and to perform comparative analysis of

aDMPs among socioeconomically diverse urban commu-

nity-dwelling AAs and whites. We replicated several

aDMPs previously discovered in blood DNA using the

27K and 450K arrays. However, we identified novel

CpGs (75.6% of significant aDMPs in AAs and 53.1% of

significant aDMPs in whites) with small effect sizes that

were either hyper- or hypomethylated with age using

stringent significance threshold criteria. Interestingly, we

found that compared to whites, AAs display more

widespread DNA methylation changes. Our results also

indicate that, compared to AA women, white men and

AA men are found to be fast agers as indicated by

AgeAccel and IEAA measures. On the other hand, AA

women have a slower age of the immune system cells as

indicated by EEAA. Contrary to our hypothesis, there is

no association between poverty status and any of the

epigenetic age acceleration measures.

Age and the social determinants of health (sociodemo-

graphic characteristics, lifestyle, and environmental fac-

tors) are important risk factors of most chronic diseases.

In many ways, these risk factors disproportionately affect

Fig. 4 Associations between epigenetic age acceleration measures and sex, race, and poverty status. a Sex, b race, and c poverty status.

Abbreviations: AAs: African Americans; AgeAccel: universal age acceleration measures; IEAA: intrinsic epigenetic age acceleration; and EEAA:

extrinsic epigenetic age acceleration

Table 3 Association between sex, race, poverty status, and measures of epigenetic age acceleration

Parameters N AgeAccel IEAA EEAA

Beta SE P Beta SE P Beta SE P

Race, sex

African American, women 117 Ref. Ref. Ref.

African American, men 120 2.04 0.59 6.07E−04 1.47 0.58 0.011 2.39 0.74 1.25E−03

White, women 115 0.84 0.60 0.16 0.76 0.58 0.2 4.72 0.75 5.48E−10

White, men 118 1.24 0.59 0.038 0.69 0.58 0.2 6.64 0.74 7.48E−18

P interaction 0.049 0.058 0.6

Sex, poverty status

Women, above poverty 117 Ref. Ref. Ref.

Women, below poverty 115 − 0.52 0.60 0.4 − 0.51 0.58 0.4 − 0.42 0.74 0.6

Men, above poverty 117 1.21 0.60 0.04 0.76 0.58 0.2 1.69 0.74 0.02

Men, below poverty 121 0.73 0.59 0.2 0.14 0.58 0.8 2.20 0.73 0.003

P interaction 0.97 0.9 0.4

Race, poverty status

African American, above 120 Ref. Ref. Ref.

African American, below 117 − 0.81 0.59 0.2 − 0.90 0.58 0.1 − 0.42 0.74 0.6

White, above 114 − 0.31 0.60 0.6 − 0.36 0.58 0.5 4.00 0.74 1.11E−07

White, below 119 − 0.50 0.59 0.4 − 0.58 0.57 0.3 4.54 0.73 1.34E−09

P interaction 0.5 0.4 0.4

AgeAccel universal epigenetic age acceleration, EEAA extrinsic epigenetic age acceleration, IEAA intrinsic epigenetic age acceleration, SE standard error
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racial minorities, socioeconomically disadvantaged, and

marginalized population groups. There is ample evidence

in the literature that supports the notion of premature

aging or “weathering” among AAs in particular [39]. How

these social determinants of health bring about the mo-

lecular and cellular changes that lead to chronic disease

and aging-related health disparities is poorly understood.

DNAm is one of the epigenetic modifications that plays

an important role in the regulation of various cellular pro-

cesses including developmental processes and imprinting,

gene expression, and maintenance of genome stability [4].

DNAm, which is a dynamic process that is continuously

added and removed from the genome during the lifespan

of an individual, is affected by both environmental expo-

sures and external stresses. Therefore, it could play a role

in age-related health disparities. Aging is generally charac-

terized by DNAm changes specifically a gain of methyla-

tion in CpG islands, bivalent chromatin domains [21], and

polycomb-group target genes [22], and loss of methylation

predominantly in non-CpG island regions and in the

active chromatin mark H3K4me1 [11]. In regard to CpGs

used in the epigenetic clocks, there is evidence in AAs in-

dicating that a third of the CpGs in the Horvath’s epigen-

etic clock respond to glucocorticoid receptor activation

and influence the gene expression of stress-responsive

genes which are enriched for association with aging-re-

lated diseases [40]. Further, some of the CpGs found in

the epigenetic clock of mice have been shown to be

involved in the development, differentiation, and tissue

morphogenesis consistent with a program-like behavior

[41]. Although the exact mechanisms that drive changes

in DNAm during aging are not fully understood, by the

virtue of its link with age-related diseases and risk factors,

DNAm is a promising molecular factor that could link

health disparities and its risk factors. Therefore, under-

standing age-related DNAm changes and identification of

differential association among racial groups could shed

light on aging and aging-related health disparities.

Our findings of aDMPs and their enrichment for gen-

omic regulatory elements, developmental, and morpho-

genesis processes are broadly consistent with previously

published epigenetic association studies of chronological

age showing that age is associated with extensive DNA

methylation changes (both hyper- and hypomethylation)

that overlapped with functional genomic regulatory re-

gions [11, 21, 22]. We observed that genes containing

aDMPs overlap with genes implicated in several age-

related diseases and traits in genome-wide studies [38].

This overlap between genes containing aDMPs and age-

related disease genes and traits implies there are common

factors and underlying mechanisms that generally control

changes in DNAm with age and the development of

age-related diseases. Understanding these factors and the

underlying molecular mechanisms will have implications

in the effort to narrow down the age-related disease

disparity gap between population groups. We replicated

several aDMPs including those located in ELOVL2, PENK,

KLF14, and SLC12A5. Interestingly, methylation changes

Fig. 5 Interaction plots of the association between sex, race, and three measures of epigenetic age acceleration. a AgeAccel, b IEAA, and c EEAA.

Abbreviations: AAs: African Americans; AgeAccel: universal age acceleration measures; IEAA: intrinsic epigenetic age acceleration; and EEAA:

extrinsic epigenetic age acceleration
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in ELOVL2 and PENK are associated with age in various

tissues in addition to DNA derived from blood [25, 27]

suggesting that some age-associated methylation changes

are tissue independent and that blood DNA could be used

to further investigate the underlying biological mecha-

nisms and downstream functional alterations in large

population-based studies where blood is the most feasible

source of DNA for methylation profiling. ELOVL2 has

been linked to changes in human plasma metabolite levels

such as glycerophospholipids [42], and photoaging

response in epidermis [43]. It remains to be seen how

age-associated DNAm changes in ELOVL2 and the other

consistently replicated genes mechanistically contribute to

aging-related disease development and accelerated bio-

logical aging phenotypes. The epigenome-wide association

analysis results of methylation M values are reported here

(Additional file 11: Figure S4).

The aDMPs we identified, similar to previous studies,

have small beta coefficients, consistent with previous

observations with other traits and exposures. What is the

biological meaning of these large numbers of aDMPs with

small effect sizes? First, one of the functions of DNA

methylation is regulation and fine tuning of transcription

by transducing external and internal cues, and hence, large

effects may not be observed. Second, age-related common

diseases are multifactorial in origin and include genetic and

epigenetics factors which act in concert with each other or

other risk factors. Therefore, it is possible that there could

be interactions between significantly associated aDMPs and

acting in synergy (between themselves or with other

epigenetic modifications such as histone acetylation and

methylation); they could bring about changes in transcrip-

tion thereby contributing multiplicatively to age-related

disease risk. Third, accumulating evidence indicates that

these age-related chronic diseases have been shown to be

associated with a large number of genetic sites mostly with

small effects. Epigenetics and epigenetic inheritance have

been put forward as a potential explanation for missing her-

itability of complex diseases, i.e., inherited risk factors of

common complex diseases and traits that are yet to be

identified [44]. Therefore, CpGs with small effect sizes

would be consistent with the observations that common

complex age-related diseases are associated with a large

number of sites with small effect sizes that could have

cumulative effect on disease risk. Finally, analogous to the

variety of different molecular and cellular changes such as

mutations that accrue over the life course of an individual,

it is possible that not all the DNA methylation changes

linked with age may have discernable biological conse-

quences, and they might be “passengers” rather than key

“drivers” DNA methylation changes that could lead to the

expression a certain aging-related trait or disorder [45].

While these explanations require empirical data, it is im-

portant to note that large numbers of CpGs with small

effect sizes linked with age, several environmental expo-

sures, and other traits have been reported in diverse study

designs and settings and were consistently replicated sug-

gesting that these seemingly small effect size associations

are robust and could have true biological significances [46].

Our findings that men are generally fast agers as indi-

cated by AgeAccel and EEAA measures are consistent

with previous studies of age acceleration studies using

DNA extracted from blood, brain, and saliva [34, 35, 47].

This biological age acceleration difference between men

and women has been postulated to explain the sex mor-

bidity-mortality paradox. Several factors have been put

forward to explain this observed difference including dif-

ferences in health seeking behavior and lifestyle factors

[34]. The slower immune system cell age seen in AAs

compared to whites is consistent with studies that re-

ported longer leukocyte telomere length in AAs com-

pared to whites [48, 49].

It should be noted that not all aging-related diseases

are associated with the premature aging phenotype. For

example, cancer tissues have been shown to display in-

consistent patterns of aging rate which is dependent on

the site of cancer origin, cancer stage/histology, and type

and the number of driver somatic mutations. Compared

to adjacent normal tissue, slower epigenetic age was ob-

served in basal-like breast cancer and glioblastoma mul-

tiforme with H3F3A mutations [24]. On the one hand,

faster epigenetic age was observed in tumors carrying a

smaller number of somatic mutations, tumors with TP53

mutations, acute myeloid leukemia, hormone receptor-

positive (luminal type) breast cancer, and BRAF-positive

colorectal cancer [24, 50]. In addition, faster epigenetic

age in various cancer tissue samples (lung, skin, breast,

and kidney), compared to matched normal tissue sam-

ples, has also been reported [25].

The observation of a faster epigenetic aging in AA men

is consistent with the epidemiologic literature reporting

higher chronic disease risk earlier in the life course of AA

men and premature mortality rates [1, 2, 51]. This finding

implies that the biological aging rate of AA men ticks

faster before they succumb to age-related diseases. What

is driving this observed age acceleration in AA men?

Stressors (psychosocial and socioeconomic stress and their

correlates) could be one potential explanation. Although

we did not observe in our study differential association be-

tween poverty status and any of the epigenetic age acceler-

ation measures, cumulative lifetime stress has been shown

to cause epigenetic age acceleration in AAs possibly

through glucocorticoid-induced epigenetic changes [40].

The implication of our study is that some of aDMPs and

the epigenetic clock could be utilized for the identification

of at-risk groups or to determine the efficacy of clinical

and public health interventions to extend lifespan and

reverse the accelerated aging process. Recent studies
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conducted in animal models provide a potential usefulness

of these age-associated DNAm changes in identifying

interventions to extend longevity. Using mouse models

and non-human primate studies, Maegawa et al. showed

that age-associated DNAm changes are amenable to lon-

gevity intervention. Specifically, they found that mice and

rhesus monkeys exposed to caloric restriction showed

attenuation of age-associated methylation changes com-

pared to ad libitum-fed controls such that their blood

DNAm age appeared younger than their chronologic age,

and these effects were detectable across different tissues

[52]. Another study by Petkovich et al. conducted in

mouse models showed that the epigenetic clock accurately

estimates biological age of various mouse models, and it

could be used to evaluate the longevity effects of caloric

restriction, pharmacological interventions, and genetic

intervention of longevity such as growth hormone recep-

tor knockout [41]. These results suggest that anti-aging

interventions can affect the epigenetic clock in mouse and

in non-human primates, and future research lies in deter-

mining whether these findings translate to humans.

Our study has a number of strengths: (1) large sample

size, (2) use of MethylationEPIC array that doubled the

number of genome-wide CpG sites to interrogate and

improve one of the limitations of previous epigenome-

wide association studies of age, and (3) study partici-

pants with diverse characteristics and balanced sample

size. The limitations of our study include the use of

DNA derived from mixed peripheral blood cells, which

could confound the observed association between CpG

positions and chronological age. To address the issue of

confounding due to cellular heterogeneity, we included

white blood cell estimates based on DNAm in our re-

gression models. While studying DNAm changes in

DNA derived from sorted white blood cells is ideal, it is

not scalable in large population-based studies like ours.

Other limitations include the use of cross-sectional data

and lack of validation sample to confirm our race-spe-

cific aDMPs. Because of the cross-sectional nature of

our study, it is impossible in this design to determine

whether all the reported aDMPs in our study were dir-

ectly driven by age. In addition, it must be considered

that it is possible that the high number of significant sites

could also be influenced by population sub-stratification

and other unmeasured covariates. Functional studies in

experimental model systems of aging and age-related

diseases could provide further biological insight and help

interpret these results.

Conclusions

In summary, we found that age differences are associ-

ated with DNAm changes at several genes enriched for

predicted functional genomic regulatory regions and that

AAs compared to whites have more aDMPs, majority of

which are novel CpG sites. The identification of novel

aDMPs has the potential to expand our knowledge of

the effect of age on DNAm and its differential effect

among racial groups. Our study also shows that there is

an interaction between sex and race in influencing epigen-

etic age acceleration among population groups. These

age-associated genes could provide insight in the epigen-

etic bases of aging and age-related health disparities and

could explain the observed differences in disease incidence

and lifespan between AAs and whites. Future larger stud-

ies with longitudinal data are required to replicate our

findings. The results generated in the present study also

provide a valuable resource to the study and prioritization

of genes and gene networks that might be implicated in

aging and age-related diseases, and to advance the nascent

field of the epigenetics of health disparities.

Methods

Study aim, design, and population

Participants were drawn from the HANDLS study

(https://handls.nih.gov/) [36], a large population-based

prospective longitudinal study of middle-aged AA and

white men and women above and below poverty status

being conducted in Baltimore, Maryland. HANDLS was

designed to explore the interplay among sex, race, pov-

erty status, and biological and environmental factors in

the development of aging-related diseases and health

disparities in community-dwelling adults vulnerable for

health disparities. Participants eligible for this study had

DNA samples isolated from blood at their enrollment.

We randomly sampled 508 participants using a factorial

design across sex, race, and poverty status, oversampling

AA men below poverty status, to test for interactions

among these sociodemographic factors. From these sam-

ples, 487 had DNA methylation measures. The age range

at baseline was 30.2 to 65.2 years [mean age (standard

deviation) = 47.8 (8.7)]. Poverty status in the HANDLS

study was defined as a household income above or below

125% of the 2004 US Federal Poverty Guidelines, and

race was self-identified. We used blood DNA and socio-

demographic data collected during the enrollment period,

from 2004 to 2009. DNA was extracted from peripheral

blood mononuclear cells using standard methods.

Bisulfite treatment and DNA methylation quantification

using the EPIC BeadChip

Two hundred fifty nanograms of DNA was treated with

sodium bisulfite using Zymo EZ-96 DNA Methylation

kit as per the manufacturer’s protocol (Zymo Research,

Orange, CA, USA). Following bisulfite treatment, we

then measured genome-wide DNAm using the latest

Illumina Infinium MethylationEPIC BeadChip, which

contains 866,836 CpG sites, of these, 142,262 (16.4%)

were assayed in type I probes and the rest in type II
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probes. This new EPIC array has similar Infinium assay

design chemistry as the previous 450K array, except that

it has twice as much coverage of CpG sites that are par-

ticularly enriched for promoter and enhancer regulatory

regions [53], providing increased power and genome

coverage to identify novel loci relevant for aging and

health disparities. The EPIC array contains 92% and 94%

of CpG sites found in the 27K and 450K arrays, respect-

ively. We included 12 technical replicates (two per plate)

for quality control.

Quality control and preprocessing of the DNA

methylation data

We performed extensive quality control of the DNAm

data at sample and probe levels to ensure high-quality

methylation data. Given the EPIC array is a new technol-

ogy, we assessed the performance of different data

normalization and preprocessing algorithms in reducing

technical variations using DNA methylation measured in

technical replicates to identify a suitable method. The

methods we compared were Illumina Genome Studio,

normal-exponential out-of-band (NOOB) [54], stratified

quantile normalization (quantile) [55], and subset-quan-

tile within array normalization (SWAN) [56]. At the

sample level, we excluded 17 samples which were multi-

dimensional scaling outliers, low-quality methylation

values as indicated by a mean detection p value ≥ 0.01

and have evidence of sex mismatch between self-

reported sex and methylation predicted sex. At the probe

level, we excluded low-quality probes (mean detection

p value ≥ 0.01), probes with overlapping single-nucleotide

polymorphisms (SNPs) (minor allele frequency cutoff =

0.05), cross-hybridizing probes [37], and probes mapping

to the sex chromosomes leaving 765,808 CpG positions

for the current analysis.

To identify an optimal method for normalization, we

compared the performance of the above methods using

correlations and probe variances of methylation beta

values of technical replicates. We found the NOOB

method yielded the lowest variance and highest correl-

ation between technical replicates. Therefore, this method

was used to normalize the EPIC methylation data in our

cohort. Regression on correlated probes (RCP) method

was used to correct for type I and type II probe design

biases [57]. We performed principal component analysis

to identify the presence of experimental batch effect and

beadchip position. We then applied the ComBat method

to adjust for batch effect [58]. We estimated white blood

cell proportions based on DNAm data using the House-

man and the Horvath methods [24, 59]. The Houseman

method estimated the proportion of CD8+ and CD4+ T

lymphocytes, natural killer cells, B lymphocytes, mono-

cytes, and granulocytes. The Horvath method was used to

estimate the percentage of exhausted CD8+ T cells

(CD8+CD28−CD45RA−), plasmablasts, and the number of

naïve CD8+ T cells (CD8+CD45RA+CCR7+).

Principal component analysis and control for population

stratification

To correct for population stratification, we calculated

methylation-based principal components. Barfield et al.

showed that principal components calculated based on

CpG positions that overlap with SNPs serve as proxy

and provide powerful and computationally efficient

approach to account for population stratification in the

absence of genetic data [60]. We used the methylation

level of 7905 CpG positions that passed quality control

and overlapped with SNPs to calculate principal com-

ponents. The first two principal components were then

in the regression models to control for population

stratification. Once these CpG positions were used for

the calculation of principal components, they were

dropped before downstream analysis.

DNA methylation age prediction and epigenetic age

acceleration measures

DNAm age was calculated using the Horvath and the

Hannum methods based on the methylation levels of

353 and 71 CpG sites, respectively, using the epigen-

etic clock algorithm. The algorithms were trained and

validated on participants from varied genetic ances-

tries and using DNA derived from various tissues

including blood DNA. A detailed description of esti-

mation of DNAm age and epigenetic age acceleration

can be found here: (https://labs.genetics.ucla.edu/hor-

vath/dnamage/). Briefly, the Horvath method predicts

age irrespective of the tissue or cell source of DNA,

and hence, it is tissue and cell type agnostic. On the

other hand, the Hannum method was developed

based on blood DNAm. Universal epigenetic age ac-

celeration (AgeAccel) is defined as the residuals after

regressing DNAm age predicted by the Horvath algo-

rithm over chronological age. A positive residual

value suggests a faster aging, and a negative value

suggests a slower aging. In addition to the AgeAccel

measure, we used two additional epigenetic age accel-

eration measures that reflect intrinsic and extrinsic

epigenetic age acceleration—IEAA and EEAA, respect-

ively. IEAA is thought to measure a cell’s epigenetic

age acceleration, independent of estimated white

blood cell type proportions. It is defined as the resid-

uals after regressing DNAm age (predicted by the

Horvath over chronological age and white blood cell

proportions (naive CD8+ T cells, exhausted CD8+ T

cells, plasmablasts, CD4+ T cells, natural killer cells,

monocytes, and granulocytes). EEAA, which is based

on the DNAm age (predicted by the Hannum

algorithm), is thought to measure epigenetic age
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acceleration in addition to changes in white blood cell

proportions, and it might be indicative of immune

system cell aging (immunosenescence) [31]. Chen et

al. showed that EEAA strongly predicts mortality bet-

ter than the other measures of epigenetic age acceler-

ation [31].

Epigenome-wide association study of age

To identify CpG positions associated with chronological

age in AAs and whites, we fitted linear regression

models adjusted for sex, race, poverty status, white blood

cell compositions (granulocytes, monocytes, natural

killer cells, B lymphocytes, CD4+, and CD8+ T lympho-

cytes), and principal components to account for popula-

tion stratification. The resulting epigenome-wide results

were adjusted using estimated empirical null distribution

method, a recently described method for controlling

genomic inflation and bias in epigenome-wide associ-

ation studies [61].

The quantile-quantile plots, histogram and density

plots of p values, and corresponding inflation measures

before (AAinflation = 1.040 and whitesinflation = 1.263) and

after (AAinflation = 0.998 and whitesinflation = 0.807) cor-

rection for inflation in both AAs and whites are shown

in Additional file 10: Figure S3. In order to confirm the

approximately 5000 differences found after correcting

for genomic inflation were valid, we performed a sensi-

tivity analyses by testing associations based on winsor-

ized DNA methylation data. To increase the power

estimation, we performed the winsorization for the ex-

treme values over 3*IQR.

The inflation correction was performed using an R/

Bioconductor package BACON [61], which constructs

an empirical null distribution using a Gibbs Sampling

algorithm by fitting a three-component normal mix-

ture on z-scores. Respective genomic inflation factor

(lambda) values before and after the correction were pro-

vided in the Additional file 12: Table S8. We used the

DNAm beta (β) and M values of 765,808 CpG positions

that passed quality control in the regression analysis. The

DNAm β values were calculated as the ratio of the methyl-

ated (M) and unmethylated (U) fluorescent intensity sig-

nals, i.e., β = M/[M + U + 100], where 0 indicates

unmethylated and 1 indicates fully methylated status. The

methylation M value was defined as M = logit(β) and was

shown to approximate a normal distribution and provide

good model fit [62]. A Bonferroni corrected p value of

6.53E–08 was used as a significance threshold. We ex-

cluded CpG with effect size between − 0.01 and 0.01. The

summary statistics are available at the HANDLS study

website (https://handls.nih.gov/). The lambda estimates

for M values after the inflation correction for AAs ranged

from 0.99 to 1.39, whereas for whites, it ranged from 0.80

to 1.21 (Additional file 12: Table S8).

Genomic feature enrichment and functional annotations

Genomic regulatory feature enrichment was performed

on significant aDMPs using one-sided Fisher’s exact test.

The genomic regulatory regions compared for enrichment

analysis included CpG islands, shelves, shores, DNase I

hypersensitivity sites, open chromatin states, exon bound-

aries, transcription factor binding sites, and Phantom en-

hancer regions. Functional characterization through gene

ontology and canonical pathway analysis was performed

by accounting for the differing number of methylation

probes found in each gene in the EPIC array given the evi-

dence that a severe bias exists when performing gene set

analysis for genome-wide methylation data that occurs

due to the differing numbers of CpG sites profiled for

each gene [63].

Age-related disease gene enrichment analysis

To assess enrichment of genes containing aDMPs for

various age-related diseases and quantitative phenotypes,

we leveraged the genome-wide association study (GWAS)

summary association statistics catalog of various age-re-

lated diseases and traits available at the National Human

Genome Research Institute (NHGRI) and the European

Molecular Biology Laboratory (EMBL) [38]. Using the

summary statistics catalog (accessed on July 17, 2018,

https://www.ebi.ac.uk/gwas/) that included gene names,

ontology annotations, and diseases/traits, we investigated

whether genes containing aDMPs were overrepresented in

GWAS-identified age-related diseases genes. While age is

associated with many diseases and their risk factors and

quantitative traits, the enrichment analysis was focused on

GWAS-identified genes implicated in age-related diseases

and traits, longevity, and survival (overall and disease-spe-

cific). Enrichment analysis was performed separately for

hyper- and hypomethylated aDMPs using one-sided Fish-

er’s exact test.

Association between epigenetic age acceleration and

demographic characteristics

Linear regression models adjusted for sex, race, and pov-

erty status were used to identify associations between the

epigenetic age acceleration measures (AgeAccel, IEAA,

and EEAA) and these factors. We also assessed all two-

way interactions among sex, race, and poverty status on

the epigenetic age acceleration measures. Data quality

control, preprocessing, and data analyses were conducted

using the R/Bioconductor packages minfi, enmix, dmrcate,

sva, and missmethyl (https://www.bioconductor.org/).
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methods: (a) correlation between technical replicates; (b) probe variance

between technical replicates. (PPTX 100 kb)

Additional file 2: Table S1. List of previously discovered age-associated

differentially methylated CpG positions (aDMPs) replicated in the HANDLS

study. (XLSX 135 kb)

Additional file 3: Figure S2. Scatter plots and Pearson’s correlation

coefficients of methylation M values of top ten age-associated differentially

methylated CpG positions (aDMPs) and chronological age in (a) African

Americans and (b) whites. (PPTX 121 kb)

Additional file 4: Table S2. Genomic feature enrichment of significantly

age-associated differentially methylated CpG positions

(aDMPs)—hypermethylated. (XLSX 10 kb)

Additional file 5: Table S3. Genomic feature enrichment of significantly

age-associated differentially methylated CpG positions

(aDMPs)—hypomethylated. (XLSX 10 kb)

Additional file 6: Table S4. Gene-set enrichment analysis of age-

associated differentially methylated CpG positions (aDMPs). (XLSX 11 kb)

Additional file 7: Table S5. KEGG pathway analysis of age-associated

differentially methylated CpG positions (aDMPs). (XLSX 11 kb)

Additional file 8: Table S6. Top enrichment results of age-associated

differentially hypermethylated CpG positions (aDMPs) for age-related

diseases and quantitative traits. (XLSX 12 kb)

Additional file 9: Table S7. Top enrichment results of age-associated

differentially hypomethylated CpG positions (aDMPs) for age-related

diseases and quantitative traits. (XLSX 8 kb)

Additional file 10: Figure S3. Quantile-quantile plots of expected and

observed p values of the association between DNA methylation and

chronological age in African Americans (green) and whites (magenta) A)

uncorrected and B) corrected using empirical null distribution. Genomic

inflation measures are shown in parentheses. Histogram of test statistic

expected (green) and observed (red) p values of the association between

DNA methylation and chronological age in African Americans and whites

C) uncorrected and D) corrected using empirical null distribution. Density

plot of expected (black) and observed (red) p values of the association

between DNA methylation and chronological age in African Americans

and whites E) uncorrected and F) corrected using empirical null

distribution. (PPTX 234 kb)

Additional file 11: Figure S4. Volcano plots showing the distribution of

age-associated differentially methylated CpG positions (aDMPs) with their

effect size in M values and significance p value in the a) African American

(AA) and b) white participants of the HANDLS study. (PPTX 197 kb)

Additional file 12: Table S8. List of genomic inflation factor lambda values

calculated for African American (AA) and white population. (XLSX 10 kb)
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