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Abstract

Background: The 6-minute walk test (6MWT: the maximum distance walked in 6 minutes) is used by rehabilitation

professionals as a measure of exercise capacity. Today’s smartphones contain hardware that can be used for wearable

sensor applications and mobile data analysis. A smartphone application can run the 6MWT and provide typically

unavailable biomechanical information about how the person moves during the test.

Methods: A new algorithm for a calibration-free 6MWT smartphone application was developed that uses the test’s

inherent conditions and smartphone accelerometer-gyroscope data to report the total distance walked, step timing,

gait symmetry, and walking changes over time. This information is not available with a standard 6MWT and could help

with clinical decision-making.

The 6MWT application was evaluated with 15 able-bodied participants. A BlackBerry Z10 smartphone was worn on a

belt at the mid lower back. Audio from the phone instructed the person to start and stop walking. Digital video was

independently recorded during the trial as a gold-standard comparator.

Results: The average difference between smartphone and gold standard foot strike timing was 0.014 ± 0.015 s. The

total distance calculated by the application was within 1 m of the measured distance for all but one participant, which

was more accurate than other smartphone-based studies.

Conclusions: These results demonstrated that clinically relevant 6MWT results can be achieved with typical

smartphone hardware and a novel algorithm.

Keywords: Rehabilitation, Gait, Mobile computing, Smartphone, Accelerometers, Body-worn sensors, Inertial

measurement unit, Application software, Software design

Background
In a healthcare environment, exercise capacity measure-

ment is important for understanding a person’s current

status and evaluating rehabilitation improvement. The

6 minute walk test (6MWT), where the distance walked

in 6 minutes is measured, is a common clinical tool for

this purpose. A smartphone with integrated sensors pro-

vides a viable platform for wearable biomechanical appli-

cations. For the 6MWT, wearable analysis can derive

additional information with minimal additional setup,

providing clinically useful and immediate output for

evaluating physical function and gait characteristics at

the point of patient contact, without the need to pur-

chase specialized medical equipment.

Wearable sensors allow a person to walk freely, at a

self-selected and natural pace that is more representative

of daily living than some laboratory conditions [1]. Many

studies have used accelerometers for gait detection and

to compute gait parameters such as cadence, step tim-

ing, and symmetry [1-3] (Table 1). Accelerometers can

also be used to measure physical activity levels that cor-

relate with 6MWT results [4]. The current paper pre-

sents a novel algorithm that utilizes the 6MWT’s unique

constraints and multiple sensors that are readily avail-

able in smartphone platforms to calculate clinically use-

ful 6MWT outcomes.
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Table 1 Summary of recent accelerometer-based step counting studies

Study Walking conditions Sensor location Equipment (sampling rate) Step detection algorithm Goal Results

Ying (2007) [20] Treadmill Lateral side of
left and right foot

Dual axis
accelerometers (200 Hz)

Pan Tompkins, template,
dual axis peak detection

Accurate step detection Qualitative comparison

Zijlstra (2003) [24] Hallway Trunk Triaxial accelerometer (100 Hz) Peaks preceding sign
change in forward acceleration

Foot strike Within 0.02 s
(SD <0.03)

Huang (2012) [10] Treadmill 5 locations HTC smartphone (10 Hz) Threshold from training period Count steps 93-96% step
count Accuracy

Naqvi (2012) [11] Level
ground

Near centre of
mass (COM)

Smartphone (100 Hz) Adaptable threshold Count steps 1-2 step error
(of 15-40 steps)

Kim (2004) [22] Hallway Ankle MEMS accelerometer,
vertical and forward (100 Hz)

Sequential thresholds to
recognize swing phase,
foot strike

Count steps,
estimate distance

<1% step count
error 5% distance
error

Yang (2012) [3] 25 m, hallway Lower back in belt HTC smartphone (25 Hz) Peaks preceding sign
change in forward
acceleration, manually
verified

Foot strike,
regularity,
symmetry

Visually verified
to 100% accuracy

Ayub (2012) [12] Hallway 3 locations HTC smartphone (25 Hz)
interpolated 50 Hz

Zero crossing and
threshold lengths,
Variance detector

Step count,
stride length

1.5-5% step count error

Derawi (2010) [23] 20 m, level ground Left leg by hip Accelerometer (100 Hz) Neighborhood search
for minimum peaks

Cycle detection,
distance metric

EER = 5.7%

Martin (2011) [25] Varying speeds Varying locations Accelerometer (30 Hz) Continuous wavelet
transform (CWT)

Stride length
(step counting)

Not reported

Kim (2013) [21] Treadmill varying speeds Left waist Triaxial accelerometer (32 Hz) Heuristic, adaptive
threshold, adaptive
locking period

Step count and activity monitoring 97% Recognition rate
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Commercial products are available that count steps,

such as accelerometer-based devices for activity and

sleep monitoring purposes like the Actigraph activity

monitor [5] and StepWatch 3 Activity Monitor (SAM)

[6]. Actigraph counts steps with an error rate of <1% at

normal speeds and approximately 5% at slow speed

(0.83 m/s) [5]. SAM uses a dual axis accelerometer and

microprocessor, worn on the ankle, with a step counting

accuracy of 98-99% [6].

Other commercial products are designed specifically

for medical use. The Actibelt® incorporates a 3D acceler-

ometer into a belt buckle to record accelerations close

to the body’s centre of mass [7]. Several clinical tests

have been programmed for the Actibelt®, including the

6MWT. The Aipermon Medlog 200 also offers a “start

6MWT” button and automatic recording termination

after 6 minutes [8,9]. These products were specifically

designed for medical purposes and require the purchase

of, and familiarization with, specialized commercial

equipment and software. A 6MWT smartphone applica-

tion (app) would provide an affordable and accessible

means of obtaining the same information in the person’s

home or by a healthcare provider at point of patient

contact, without the need for additional data acquisition

hardware. Smartphones also offer multiple additional

sensors, such as gyroscopes, that can be used to improve

6MWT result accuracy.

Various studies have demonstrated the viability of

smartphones for step counting or gait analysis, which

makes them a feasible tool for automating the 6MWT

[3,10-14]. Smartphone accelerometers typically have

slower sampling rates that vary [15], in contrast with

purpose built data collection systems that provide a fixed

and reliable sampling rate. This adds additional signal

processing requirements for valid human activity

analysis.

Annegarn et al. used accelerometers to assess walking

patterns during the 6MWT [16]. Steps were detected as

the peak forward acceleration changed from positive to

negative, identifying foot strike [17]. Annegarn et al. did

not assess the algorithm’s accuracy but used the results

to observe differences between healthy controls and pa-

tients with chronic obstructive pulmonary disease

(COPD). The 6MWT was used as an accelerometer gait

data source, with the first and last five seconds removed

to exclude irregular walking patterns. Participants who

stopped during the test were excluded. The algorithm

did not run the test or estimate the total distance

walked.

Cheng et al. developed a smartphone application

(GaitTrack) that monitored walking patterns using accel-

erometers [18]. Juen et al. [19] used GaitTrack to run

the 6MWT with 30 COPD patients. To our knowledge,

this is the only other smartphone application reported in

the literature to fully run and calculate outcomes for the

6MWT. This research demonstrated that smartphone

sensors can detect steps with comparable accuracy to

commercial medical pedometers. GaitTrack imple-

mented “activity recognition” to differentiate between

walking and non-walking activities, recording only dur-

ing walking. A linear regression model was trained to es-

timate stride length, using eight parameters derived

from the smartphone accelerometer. Stride length was

multiplied by the counted steps to calculate distance

walked. The model was trained and tested using 10-fold

cross validation, which used the same data for training

and testing. The average test distance error was 5.87%.

Using their average total distance of 276.2 m, this per-

cent error corresponded to a distance error of 16.2 m

(i.e., longer than the 15 m trial walkway). This error

could have been reduced by using other phone sensors

to identify turns and differentiate them from walking or

standing, rather than simply dividing the data into

“walking” or “not walking” sections. In this paper, we re-

port on an algorithm that uses the inherent 6MWT con-

straints and multiple smartphone sensors to count the

number of walkways completed and provide a more ac-

curate distance calculation.

The 6MWT is a simple test that requires minimal

equipment and is implemented regularly to evaluate a per-

son’s physical capacity. With the emergence of multiple

sensors in smartphones, these wearable computing plat-

forms can easily and quickly provide additional informa-

tion on how the person moves during a test. However, the

ability to provide clinically acceptable accuracy for 6MWT

distance is needed first to make this a relevant tool (i.e.,

first prove that the 6MWT outcome is viable). This study

developed and evaluated the performance of a custom

6MWT smartphone application developed to run the test,

detect foot strikes, and calculate distance walked with no

calibration required.

Methods
Algorithm and application development

When walking, the acceleration signal’s cyclical nature

permits step identification using the amplitude at each

peak and the time between each peak or zero-crossing.

Some basic algorithms set a minimum amplitude thresh-

old that, when surpassed, identifies a step [10,11,20-22].

This approach can be problematic if acceleration fluctu-

ates throughout the gait cycle, introducing false peaks.

The time between steps is often used to set a “locking

period” during which a second step is not expected

[12,20,21,23]. The locking period method requires accur-

ate peak or zero crossing identification. Marschollek

et al. [2] compared healthy and mobility-impaired partic-

ipants using four step counting algorithms: Pan-

Tompkins, Dual-Axis, Wolf, autocorrelation. Algorithms

Capela et al. Journal of NeuroEngineering and Rehabilitation  (2015) 12:19 Page 3 of 13



that adapted to periodic acceleration patterns, rather

than relying on a-priori knowledge of the gait signals,

were more adaptable to mobility-impaired participants.

Marschollek recommended more complex pattern clas-

sification algorithms to recognize steps in samples with

differing motion characteristics. Annotated sample for-

ward acceleration signals obtained from our data set, as

well as those of Zijlstra et al. [24] and Mellone et al.

[15], are shown in Figure 1. In this figure, the acceler-

ation signal from our data set was inversed to match

the convention of Zijlstra and Mellone [15,24]. As out-

lined with square boxes, signals for some people produce

similar consecutive peaks and zero crossings. Therefore,

a combination of signal processing methods is required

to reliably identify steps. The current work built on

peak detection and locking period methods and imple-

mented an adaptive signal shape recognition algorithm

for reliable step recognition (Section “Processing and

Algorithm”).

Distance traveled can be calculated by double integrat-

ing the acceleration; however, this requires careful cali-

bration, extensive computation, and works best when

the accelerometer is mounted low on the person’s body

(i.e., on the foot) [25]. Distance may also be estimated by

calculating the stride length using empirical relations

with other measurements, including leg length, change

in acceleration, and step frequency. The estimated stride

length is then multiplied by the number of strides to de-

termine the distance traveled, thereby relying on a con-

sistent stride length. The empirical relationships derived

in various studies, such as the Weinberg algorithm, rely

on parameters that must be calibrated to each individual

from experimental walking data [14]. This requires leg

length measurement or participant height for inversed

pendulum models [12,26], or determination of constants

from walking trials [22,25]. Alternatively, mean step

length can be reliably estimated when the distance

walked is known [27]. The 6MWT is typically performed

on a straight track of known length and therefore offers

an ideal opportunity to estimate mean step length for

use in total distance calculations.

Processing and algorithm

Turns Since a person walks back and forth on a prede-

termined straight track during the 6MWT, turns at the

end of the straight track must be identified to accurately
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Figure 1 Forward acceleration with circles identifying foot strikes. (a) Triaxial accelerometer at 100Hz, filtered at 20Hz, with asterisks showing

foot strike (modified from Zijstra [24]); (b) Android smartphone accelerometer downsampled to 50Hz (modified from Mellone [15]); (c) Representative

data sample from the current study showing similar peaks, highlighted by squares, which would produce incorrect step identification without a

locking period. Raw signal is inversed to match convention used by [24] and [15] and asterisks represent foot strike.
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divide the data into lengths. These lengths were analyzed

separately and steps during turns were not counted,

since they did not contribute to the distance walked and

would alter the interpretation of linear walking gait

characteristics.

Turns were identified using the azimuth signal output

from the BlackBerry Z10 smartphone, which was derived

from the gyroscope and magnetometer sensors. For this

application, azimuth was the angle between the device

axis normal to screen and magnetic north. This signal

stayed between 0 and 360°, which caused rapid changes

in magnitude (Figure 2). This was corrected in software

before detecting turns. If a 10° difference between data

points was found, the difference was added or subtracted

from the signal to correct the curve without losing infor-

mation on genuine signal changes. The signal correction

algorithm is shown in Figure 3.

A turn was detected if azimuth changed by more than

100° within a 3 second window. For each detected turn,

turn duration was defined as the azimuth signal section

with a standard deviation greater than 10° per 1 second

timeframe. These were reliable ranges for turn detection

at different speeds.

Step detection and step timing Steps were detected

using the BlackBerry Z10 linear acceleration signal (i.e.,

device acceleration minus acceleration due to gravity).

This signal was filtered using a fourth-order zero-lag

Butterworth low pass filter with a 4Hz cutoff frequency.

A low cutoff frequency was acceptable since the filtered

signal was only used to detect step occurrence and the

raw forward acceleration signal was used to identify foot

strike time. Cutoff frequencies lower than 4 Hz resulted

in missed steps.

A step detection method was developed using a com-

bination of adaptive locking period, similar to [21], peak

detection, as in [3,17,28], and a custom adaptive signal

shape template. First, the locking period was calculated

using a 5 second sample from the filtered vertical accel-

eration signal at the beginning of the 6MWT trial, there-

fore no extra training data were required and the

locking period was specific to the individual’s results. To

establish the locking period, the time was calculated be-

tween consecutive positive zero crossings of the vertical

acceleration signal. This signal did not cross zero on

every step, since the filtered vertical linear acceleration

signal sometimes fluctuated from a zero baseline (i.e.,

the time between zero crossings did not necessarily re-

flect step duration). Therefore, additional procedures

were used to calculate the locking period:

� As default, the locking period was half the

maximum time between zero crossings.

� If the maximum time between zero crossings was

greater than a preset threshold (0.7 s, which is

longer than typical step time), the locking period

was half the mean time between zero crossings.

� If the maximum time between zero crossings was

less than another threshold (0.4 s, which is shorter

than typical step time), the maximum time between

zero crossings was multiplied by 0.6.

The number of changes in direction (positive or negative

peaks) in the 5 second sample was counted for both for-

ward and vertical acceleration signals. The filtered
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Figure 2 Raw and corrected azimuth signals (turn highlighted).
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forward acceleration signal was the default for step de-

tection; however, if the ratio of forward and vertical dir-

ection change-counts was greater than 1.4, vertical

acceleration was used to detect steps. This 1.4 ratio was

determined by observation from a separate data set. In

this way, the more appropriate signal for step detection

was selected, based on the individual’s walking style.

The 5 second calibration sample was also used to cal-

culate individual thresholds to detect the first and last

steps in a walkway, because these steps tended to have

lower peak values since the person was starting up from,

or slowing down for, a stop or turn. These thresholds

were calculated by subtracting the mean filtered forward

acceleration from the maximum in the 5 second sample.

The chosen filtered acceleration signal was searched

using a moving window with the size of the locking

period, shown as a dashed square in Figure 4 (foot strike

was detected from the video recording). In each window,

the maximum peak acceleration was used to detect one

step, shown as a circle in Figure 4. Different people pro-

duced different peak amplitudes, with these peak seg-

ments being sharp and short, rounded and longer, or

asymmetrical, depending on the person’s gait pattern.

Thus, step identification was based on signal shape simi-

larity to other identified steps in the same walk, rather

than pre-assigned thresholds. Within the search window,

differences between a peak and the minima before and

after the peak (Figure 4) were calculated as:

Figure 3 Azimuth correction flowchart. The threshold was 10°.
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Lef tDiff ¼ max locking periodð Þ−min left side of peakð Þ

ð1Þ

RightDiff ¼ max locking periodð Þ−min right side of peakð Þ

ð2Þ

A peak was only identified as a step if the difference

between the peak and the minimum on either side were

both within 35% of the calculated values from the previ-

ous step. This method was reliable when the signal

drifted above or below a zero baseline.

Lef tDiff current stepð Þ

Lef tDiff previous stepð Þ
> 0:35 ð3Þ

RightDiff current stepð Þ

RightDiff previous stepð Þ
> 0:35 ð4Þ

If the duration between 2 consecutive steps was

greater than 1.75 times the previous step, this portion of

the signal was reanalyzed to check for missed steps. For

all peaks in a section, three tests were used to determine

if a step occurred:

1. The difference between the peak and the minimum

on either side was within 30%.

2. The peak matched the timing pattern of previous

step.

3. The acceleration that was not used for step

detection (vertical or forward) passed the initial

thresholds for the first and last steps.

If no missed steps were identified, or if the duration

between identified steps and the next step was still

greater than 1.75 times the previous step, this pause in

steps was considered a stop (i.e., person stopped walking

during the test). This process is depicted in Figure 5.

Once step occurrence was detected, foot strike time

was determined from the maximum peak in the raw for-

ward linear acceleration, within the neighborhood of

each detected step. Since the phone faced backward,

peak forward acceleration corresponded to the max-

imum negative acceleration during foot strike. This was

typically the most prominent signal characteristic for

foot strike identification.

Left and right steps Left and right steps were identified

using the left-right (LR) linear acceleration. This signal

was filtered using a fourth-order zero-lag Butterworth

low pass filter with 1Hz cutoff frequency. At each de-

tected step, the tangent to the filtered LR linear acceler-

ation signal was calculated at 0.25 of step duration, (a),

using the following equation.

y ¼
LRaþ1−LRa−1ð Þ

2
x−að Þ þ b ð5Þ

where x and y are the horizontal and vertical coordinates

in the equation, respectively, of the tangent line; a is the

x-coordinate of the LR acceleration at 0.25 step dur-

ation; and b is the y-coordinate at 0.25 step duration.

LRa+1 and LRa-1 are the values of the filtered LR acceler-

ation at times a + 1 and time a-1, respectively, which are

used to find the average slope of the curve at a. If the y-
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Figure 4 Step detection. The dashed square represents the locking period, the circle is the detected peak and the arrows indicate the difference

between the peak and min on either side. Asterisks represent foot strikes.
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value was greater than the filtered LR linear acceleration

value at times (a-locking period) and (a + locking period),

the person was accelerating to the right. y-values equal

to or less than these values indicated acceleration to the

left (Figure 6). A sequence of left and right steps were

identified and used to fill in the steps that were not iden-

tified using the tangent method, as well as to correct

double counts. This information was used to calculate

the primary outcome measures.

Distance walked The 6MWT consists of a person walk-

ing back and forth along a straight walkway of known

length, as per American Thoracic Society guidelines

[29]. This constraint provides the opportunity to

calculate the distance without the use of additional mea-

surements. Since a 6MWT can be performed on a walk-

way of any length, depending on the space available, the

user must enter their walkway length before the test.

Once turns at the end of the straight portion of the

walkway have been identified and steps counted, the

number of steps for a predetermined distance (walkway

length) is known and the mean step length can be found

for each walkway. The distance walked on the last walk-

way was calculated using the number of steps multiplied

by the average step length of the previous walkway. If a

stop was detected in the previous walkway, the walkway

with no stops, prior to the walkway when the stop oc-

curred, was used to calculate average step length. If the

Figure 5 Flowchart for detecting missed steps.
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ratio of mean step duration in the last walkway to step

duration in the walkway before was less than 0.9 (i.e.,

more than 10% increase in the mean time of each step),

the average step length was multiplied by this ratio be-

fore calculating the total distance.

The total distance walked is calculated as the number

of full walkways completed multiplied by the known

walkway length, in addition to the distance walked in the

last (partial) walkway. With this approach, the step

length error is not compounded across all walkway

lengths. Since a delay was anticipated between the tone

that signals the end of data collection and the person

stopping, video was used to verify the actual distance

traveled by the person in 6 minutes (i.e., video was used

to identify the body location at 6 minutes and then dir-

ect measurement of the distance to this location).

Evaluation

Participants

A convenience sample of 15 able-bodied staff and stu-

dents was recruited from The Ottawa Hospital Rehabili-

tation Centre (TOHRC). Able-bodied participants are a

viable proxy for patients with chronic obstructive pul-

monary disease, a population that commonly use the

6MWT, since previous research found no significant dif-

ferences for walking distance, intensity, and cadence

[16]. The sample consisted of 10 males (Age = 40.6 ±

15.9 years, Mass = 78.5 ± 12.1 kg, Height = 177.5 ±

5.8 cm) and 5 females (Age = 38.8 ± 9.7 years, Mass =

64.5 ± 10.5 kg, Height = 165.2 ± 4.8 cm). Written, in-

formed consent was obtained from each person before

starting data collection. The study was approved by the

Ottawa Health Science Network Research Ethics Board.

Protocol

After completing the consent form, participant age,

height, sex, weight, waist size, and leg length were re-

corded. Before testing, a belt was secured around the

person’s waist, with a rear pocket at the centre of their

lower back. The app was started on a BlackBerry Z10

smartphone and the 25 m track length was entered into

a text box. The 6MWT was selected from a drop down

menu, from the choice of 2 or 6 minutes tests. The 6 mi-

nute test was chosen for evaluation to ensure that the al-

gorithm worked for the longer test, and because the

6MWT is more commonly used in clinical practice. The

smartphone was placed upright in the rear pocket, facing

outward (therefore backwards). Smartphone audio

instructed the participant to begin walking and stop

walking when they hear a tone. Participants walked back

and forth along a 25 m section of a straight hallway, cov-

ering as much distance as possible in 6 minutes. Accel-

erometer, gyroscope, and magnetometer data were

sampled on the Z10 at approximately 50Hz. Smart-

phones can have a variable sampling rate [15], and the

Z10 sensor sample rate varied with a mean standard de-

viation of 3.84 Hz for all subjects. For every trial, the

person was video recorded using a separate and inde-

pendent BlackBerry 9900 smartphone. At the end of the

test, the distance walked on the last length was mea-

sured with a measuring tape and recorded on a data

sheet as a comparator.
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Outcome measures

Foot strike timing, number of steps, turns, and context-

ual information were extracted from the digital video as

a gold-standard comparator. The gold standard time was

synchronized with smartphone output by the first identi-

fied foot strike event, thereby providing a recognizable

accelerometer signal and video event. The 6MWT algo-

rithm was initially developed as a custom Matlab pro-

gram that was then converted into a BlackBerry 10 app

that runs entirely on the phone. The algorithm can be

written to run on any commercial smartphone with an

accelerometer and gyroscope. The app calculates and

saves outcome data as a comma separated value (CSV)

file, as well as saving a raw sensor data text file if de-

sired. The outcome data file includes information that

would be useful to clinicians; such as, average step

length, step time, cadence over time, and cadence per

walkway. The app also displays the total distance walked

on the phone upon test completion. Individual foot con-

tact times, which are used to calculate the outcomes but

are not useful to clinicians on their own, are not in-

cluded in the output text file. Therefore, to facilitate the

evaluation of foot contact identification, a custom

Matlab program was used to import the raw data text

file, calculate outcomes, and compare results with gold

standard outcomes.

The following information was calculated from sensor

data: total distance walked, total number of steps, num-

ber of steps per walkway length, cadence average (AVG)

and standard deviation (SD), step time AVG and SD (left

and right steps), stride time AVG and SD, step time

symmetry (left and right steps).

Results
The measured distance and the total distance calculated

by the algorithm for each participant are shown in

Table 2. Total distance calculated was within 1 m of the

measured distance in all trials except for Participant 11

(2.1 m error). The average error in calculated distance

was 0.12%, markedly better than the average error of

5.87% reported in a recent 6MWT algorithm for smart-

phones [19].

The time difference between foot strikes detected by the

algorithm and foot strikes identified in the video are sum-

marized in Table 3, as well as the total steps counted. For

all participants except participant 6, forward acceleration

was selected for analysis. One step was not counted for

participant 6 (99.85% accuracy), and 4 steps were not

counted for participant 3 (99.38% accuracy). All other

steps were counted with 100% accuracy.

A sample of additional information calculated from

these outcomes is shown in Additional file 1: Table S1;

including, average walking speed, cadence, asymmetry,

and step length throughout the 6MWT.

Discussion
The 6MWT app accomplished the objectives of appro-

priately instructing the participant to start and stop

walking, providing the distance walked within an accept-

able accuracy, and accurately identify foot strike times.

This supports the use of sensor-equipped smartphones

for this physical rehabilitation application.

The most important output from the 6MWT is the

total distance walked, since this is the measure of exer-

cise capacity. When calculating distance walked from

accelerometer signals, previous studies have used algo-

rithms that require additional measurements from the

participant, such as height or leg length [12,26] . Other

formulas required experimental walking data to deter-

mine mathematical constants before distance could be

accurately calculated [22,25]. The 6MWT is performed

on track of known length, which in our application

allowed the calculation of total distance based on the de-

tection of turns and the calculation of average step

length from the number of steps per length. This re-

moved the necessity of additional measurements or

complex algorithms to estimate the distance within a

clinically-acceptable range. Our algorithm resulted in

more accurate distance calculation than previous algo-

rithms, based on appropriate turn detection and the

6MWT constraints. Accurate foot strike timing is not

needed for the distance calculation, which uses number

of steps and walkway length, but accurate foot strike

timing can be used to calculate stride parameters as out-

come measures in rehabilitation.

Table 2 Distance walked

Participant Total Distance (m)

Measured Calculated Difference

1 554.50 554.55 0.05

2 511.29 511.36 0.07

3 457.28 456.94 0.34

4 673.17 674.04 0.87

5 493.83 493.18 0.65

6 536.70 535.94 0.76

7 601.10 601.61 0.51

8 542.00 541.18 0.82

9 667.00 666.07 0.93

10 486.14 485.29 0.85

11 552.10 550.00 2.10

12 468.90 468.18 0.72

13 503.66 503.13 0.54

14 542.68 541.94 0.74

15 553.00 552.94 0.06

Average 542.89 542.42 0.67

Standard deviation 63.86 64.08 0.50
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The one case where calculated distance error was

greater than 1 m occurred when the trial ended shortly

after a turn (i.e., 6 minutes elapsed just after completing

a turn). The algorithm determined that the person was

still turning and did not detect the 2 steps out of the

turn, which covered 2.1 m. Physiotherapists consulted

for this study indicated that a uncertainty of 1-2 m in a

6MWT is not clinically significant. The clinical minimal

detectable change for the 6MWT varies by population,

and ranges from 34 m [30] to 82 m [31].

Video verification revealed that participants usually

took an extra step or two after data collection had

stopped, due to their delayed response to the tone sig-

naling the end of the trial. Using a smartphone for tim-

ing and to signal the start and end of the 6 minutes

removes some variability from the traditional method of

using a stopwatch and telling the person to stop when

6 minutes is reached; however, therapists also compen-

sate for this variability by following the person and drop-

ping a marker on the floor when 6 minutes are

completed. An advantage of the smartphone approach

would be for 6MWT testing in the community or in

other cases where a therapist is not available to ensure

appropriate end-of-test distance identification.

Our study showed that a peak detection algorithm that

implements locking periods and compares the similarity

of each peak to previous steps, rather than to a thresh-

old, can produce accurate foot strike detection with a

variable 50Hz sampling rate on a smartphone. Turns

were identified by pelvis rotation. Steps at the beginning

or end of a walkway, where the person’s pelvis was

turned, were not counted or used to calculate gait

characteristics. Thus, steps were counted when the trunk

faced forward and the participant walked in their normal

manner. The gold-standard video was recorded at ap-

proximately 30 frames per second. Since the real foot

strike could have occurred one frame before or after the

closest frame captured by the camera, a tolerance of 2

frames (0.07 seconds) was allowed for assessing foot

strike accuracy. Of the 10225 foot strikes identified by

the algorithm for all 15 participants, only 35 were not

identified within this 0.07 s tolerance (99.66% accuracy),

and 30 of those were from participant 6. These 35 steps

were all identified within 0.3 s of the gold standard. All

but one participant had average foot strike time differ-

ences less than 0.02 s, which were less than the gold-

standard comparator tolerance.

Participant 6 was the only participant where the algo-

rithm selected vertical acceleration as the primary signal

for step detection. When the forward accelerometer sig-

nal does not contain identifiable foot strike peaks due to

multiple peaks related to an atypical walking pattern, the

vertical acceleration signal often provides viable peaks

for step detection. To help understand these signal ef-

fects, the algorithm was re-run for participant 6 using

the forward acceleration as the primary signal for com-

parison. Fluctuations in the forward acceleration signal

caused 17 false step identifications, thus, the algorithm

appropriately selected vertical acceleration. The max-

imum time difference between video and algorithm foot

strike events was 0.3 seconds, occurring at the first step

out of a turn. The actual foot strike event occurred while

the person’s pelvis was still rotating (i.e., during a turn)

so this step would not have been included if forward

Table 3 Foot strike identification

Participant Primary acceleration # Steps from video # Steps by algorithm Accuracy Time difference of foot
strikes from video (s)

1 Forward 716 716 100.0% 0.02 ± 0.026

2 Forward 695 695 100.0% 0.02 ± 0.012

3 Forward 650 646 99.4% 0.02 ± 0.052

4 Forward 716 716 100.0% 0.01 ± 0.007

5 Forward 650 650 100.0% 0.02 ± 0.011

6 Vertical 663 662 99.9% 0.03 ± 0.030

7 Forward 758 758 100.0% 0.01 ± 0.007

8 Forward 726 726 100.0% 0.01 ± 0.006

9 Forward 752 752 100.0% 0.01 ± 0.011

10 Forward 635 635 100.0% 0.01 ± 0.009

11 Forward 647 647 100.0% 0.01 ± 0.012

12 Forward 607 607 100.0% 0.01 ± 0.008

13 Forward 617 617 100.0% 0.01 ± 0.008

14 Forward 652 652 100.0% 0.01 ± 0.010

15 Forward 746 746 100.0% 0.02 ± 0.020

Time difference is the average and standard deviation across all steps.
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acceleration was used to detect steps. Since the vertical

acceleration peak occurs after foot strike, the peak oc-

curred after the turn and was detected using the vertical

signal. The turn is not considered when identifying foot

strike time, therefore the time was identified slightly

after the actual foot strike, when the pelvis was no lon-

ger turning. Also, one step was not identified for partici-

pant 6. Future work could improve the results when the

step detection algorithm selects the vertical acceleration

signal. While the vertical signal peaks do not correspond

with foot strike, they can be used to determine the time

between two consecutive steps. In future work, this may

be useful as a correction factor. When the forward signal

was used to detect steps (i.e., default setting), the max-

imum time difference to the gold standard was 0.1 s.

During data collection for participant 3, the acceler-

ation signals became disrupted and nearly flat for ap-

proximately 2.5 seconds, for unknown reasons. The

algorithm identified this as a stop in the walkway and

did not include this section when calculating the average

step time and cadence. Thus, while 4 steps were not

counted, calculation of gait characteristics and total dis-

tance walked was not negatively affected. This demon-

strates that a smartphone may have some weaknesses

when used as a sensor but the occurrence of a stop can

easily be disproved or verified by the clinician running

the test and the algorithm can still provide accurate gait

information despite the disruption. Left and right steps

were correctly identified for all participants when com-

pared to video recordings.

While the algorithm was effective for the able-bodied

test population, limitations include use with populations

that do not have distinct foot strikes (i.e., shuffle gait

with stroke or elderly) since steps would be missed, pos-

sibly resulting in an inaccurate distance estimate. Severe

gait asymmetry could also adversely affect identification

of left and right steps. Error could also be introduced for

populations that cannot wear a belt that positions the

phone appropriately throughout the test (i.e., belt slip-

ping due to waist girth, etc.). The current algorithm only

works with a straight walkway, although this is the typ-

ical method for executing the 6MWT [29].

Conclusion
A novel algorithm was designed that uses a smartphone

to run the 6MWT, accurately detect foot strike, and cal-

culate the total distance walked during the test. The al-

gorithm was validated on a sample of 15 able-bodied

participants, generating superior distance calculation re-

sults compared with previous methods. This demon-

strated that accurate foot strike and turn detection can

be obtained using a smartphone platform, rather than a

dedicated device, to provide clinically relevant outcome

measures from the 6MWT. Clinicians can easily and

affordably obtain the application for use in clinic and po-

tentially have their patients administer their own 6MWT

at home and send the results to the healthcare provider.

The additional information derived from the 6MWT on

gait symmetry, walking changes over time, and walking

patterns could help with clinical decision-making.

Future work will validate the algorithm with patients

receiving stroke or musculoskeletal rehabilitation, to as-

sess the adaptive capabilities of the algorithm when used

on a population with excessive gait asymmetry or irregu-

lar gait patterns.

Additional file

Additional file 1: Table S1. Information derived from foot strike timing.

Each row is one walkway length. Asymmetry is the difference between

consecutive left and right step times, divided by the bilateral average.
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