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Abstract—We propose a method for accurate estimation of
the User Equipment (UE) position and antenna orientation. For
this, we exploit the sparsity of the mm-wave channel, and employ
a compressive sensing approach with iterative refinement steps
for accurate estimation of the channel parameters, including
the departure and arrival angles as well as the time-of-arrival
for each observed propagation path. Based on the estimated
channel parameters, we formulate an iterative Gibbs sampler
to obtain statistical descriptions for the unknown UE position
and orientation along with the unknown scatterer positions, even
in the absence of a Line-Of-Sight path.

Keywords—Positioning, 5G mobile networks, Mm-wave, MIMO,
Compressed sensing, Gibbs sampler, Joint estimation

I. INTRODUCTION

Millimeter-wave (mm-wave) communications operate in
the spectrum above 28 GHz and are expected to provide fiber-
like data rates for future 5G systems [1], [2]. By utilizing
large antenna arrays and beamforming at both transmitter
and receiver side, high-SNR links with large bandwidths are
created. An important property of mm-wave communication is
channel sparsity: due to the high path loss, limited shadowing
and diffraction, only a limited number of propagation paths
reach from the transmitter to the receiver. This sparsity can be
harnessed for channel estimation [3]–[7] as well as precoding
and combining [8]–[10].

The specific properties of mm-wave communications (large
bandwidth, sparse channel, and large antenna arrays) are of
great interest to the area of radio-based localization. In [11], the
potential of mm-wave 5G positioning system was studied by
exploiting the information on the Non-Line-Of-Sight (NLOS)
paths and channel geometry. Furthermore, the assumption of
channel sparsity has been used for positioning purposes in
[7], [12], [13], where in the latter also the User Equipment
(UE) orientation estimation has been considered. In addition
to these, analytical bounds for the position and orientation
estimation error has been studied in [14].

In this paper, we provide a novel method for joint position
and orientation estimation from a single reference device. Our
approach includes sparsity-based channel estimation method
with an adaptive dictionary [12], followed by a recursive Gibbs
sampler, operating in the joint position and orientation space.
The proposed method has a number of attractive properties: it
does not require prior knowledge on the number of paths, it
does not require a Line-Of-Sight (LOS) path or even knowl-
edge of the existence of a LOS path, it provides a statistical
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Fig. 1. An example scenario of a LOS path and 2 NLOS paths including
the AOD and AOA for each path. The AOAs are affected by the unknown
orientation of the UE.

description of the user’s location and orientation, as well as of
scatterers. As such, the proposed method can be extended to
a Simultaneous Localization and Mapping (SLAM) setting, or
a tracking scenario, including use cases from pedestrian and
vehicular transport to navigation of Unmanned Autonomous
Vehicles (UAV). Also, the proposed algorithm requires only
the connection to one Base Station (BS). From a system level
viewpoint, this feature is the key to overcome limiting factors
of the previous generation of mobile network positioning, such
as synchronization, scheduling and interference management.
In addition, the proposed approach can be straightforwardly
extended to an uplink scenario.

II. SYSTEM MODEL

We study a Multiple-Input Multiple-Output (MIMO) sys-
tem including a BS at a known position pTX ∈ R2 with a
known antenna orientation, and a UE at an unknown position
pRX ∈ R2 with an unknown antenna orientation θ. The BS
transmits a sequence of M Orthogonal Frequency-Division
Multiplexing (OFDM) symbols on N active subcarriers, where
x[m,n] = [x0[m,n], ..., xNb−1[m,n]]T denotes simultane-
ously transmitted subcarrier-wise symbols at nth subcarrier
and mth OFDM symbol with Nb digital paths. To model a
wideband OFDM transmission, we apply a MIMO channel
model described in [15]. Moreover, we assume that the channel
remains constant during the sequence of M transmitted OFDM
symbols. Now, for each subcarrier n the MIMO channel matrix
H[n] ∈ CNR×NT , in which NT and NR are the number of
transmit and receive antennas, is given as

H[n] = AR[n]Γ[n]AH
T [n], where (1)



AT[n] = [aT,n(ϕT,0), ...,aT,n(ϕR,K−1)] and
AR[n] = [aR,n(ϕR,0), ...,aR,n(ϕR,K−1)]

(2)

are steering vector matrices which introduce the Angle-Of-
Departure (AOD) ϕR,k, Angle-Of-Arrival (AOA) ϕT,k, and
Time-Of-Arrival (TOA) τk for each path k = 0, ...,K−1, and
K is the number of observable paths. In case that the LOS
path exists, it is always defined as the first path with k = 0,
as illustrated in the example scenario in Fig. 1. In addition,
Γ[n] = [γ0, ..., γK−1] is a diagonal channel coefficient matrix
whose kth diagonal element is defined as

γk =
√
NTNR

hk√
ηk
e−j2πτk/(NTs). (3)

Here hk, ηk and τk are the complex channel coefficient, the
path loss coefficient and the TOA of the kth path, respectively.
Moreover, Ts = 1/B is the sample duration, where B is
the bandwidth of the OFDM signal passband. In addition,
throughout the paper we consider a uniform linear array an-
tenna structure with antenna separation of dant. Consequently,
the steering vector aT,n(ϕT,0) (and similarly for aR,n(ϕR,0))
is given as

aT,n(ϕT,k) =
1√
NT

[
e−j

NT−1
2 Φ(ϕT,k), ..., ej

NT−1
2 Φ(ϕT,k)

]
(4)

where Φ(ϕT,k) = 2πdant/λn sin (ϕT,k) describes the electrical
angle corresponding to the physical angle ϕT,k, and λn is the
wavelength of the nth subcarrier.

By assuming ideal sampling and cyclic prefix (CP) re-
moval, and after taking the Fast Fourier Transform (FFT), the
received sample of the mth OFDM symbol and nth subcarrier
can be written as

y[m,n] = H[n]F[m,n]x[m,n] + n[m,n], (5)

where n[m,n] is zero mean complex Gaussian noise and
F[m,n] ∈ CNT×Nb is a beamforming matrix, known by the
UE.

III. CHANNEL PARAMETER ESTIMATION

To estimate the channel parameters AOD, AOA and TOA,
we exploit the above discussed sparsity of the mm-wave chan-
nel. For this, we utilize the Distributed Compressed Sensing
- Simultaneous Orthogonal Matching Pursuit (DCS-SOMP)
method presented in [16]. Then, based on the DCS-SOMP
output, we use a novel iterative refinement method to increase
the estimation accuracy up to a desired level with feasible
computational complexity.

A. Sparse beamspace channel representation

The transformation from the conventional MIMO channel
matrix to an angular domain beamspace matrix Hϕ[n] ∈
CNR×NT can be achieved by

Hϕ[n] = UH
R H[n]UT, (6)

where UT and UR are transformation matrices, which are
chosen based on the desired angular space representation.
For example, by considering an Uniform Linear Array (ULA)

antenna model, to span the beamspace with uniformly sampled
angles, UT (and similarly UR) is defined as

UT = [uT(ν0), ...,uT(νNT−1)] , where

uT(νl) =
[
e−j2π

NT−1

2 νl , ..., ej2π
NT−1

2 νl
]T

, and

νl = −NT − 1

2NT
+

l

NT
,

(7)

where the beamspace angles are defined by the beamspace grid
vector ν = [ν0, ...νNT−1]. Based on this, the beamspace angle
resolution for the AOD and AOA are defined as κT = 1/NT
and κR = 1/NR. Now, as indicated in [17], this beamspace is
nearly sparse and it introduces significant energy only in the
neighborhood of the AOD and AOA.

By employing the beamspace representation in (6) the
vectorization of the received samples defined in (5) results in

yϕ[n] = Ω[n]hϕ[n] + nϕ[n], where

Ω[n] = [Ω0,n, ...,ΩM−1,n]
T with

Ωm,n =
(
UH

T F[m,n]x[m,n]
)T ⊗UR, and

hϕ[n] = vec(Hϕ[n]),

(8)

where hϕ[n] is the nearly sparse channel vector, and Ω[n]
is a dictionary (or sensing) matrix whose columns depend
on different combinations of channel AOD and AOA values.
Furthermore, as Ω[n] and hϕ[n] have a common support over
all subcarriers, the channel parameter estimation can be carried
out efficiently via the distributed compressed sensing approach.

B. Estimation of AOA and AOD

In order to estimate the channel parameters ϕT,k, ϕR,k
(and later τk) for k = 0, ...,K − 1, we use the DCS-SOMP
method given in [16]. The steps of the DCS-SOMP algorithm
are described as follows:

1) Initialize by setting the residual vector r−1[n] =
yϕ[n] and the iteration index s = 0.

2) Search for the coarse estimates of AOD ϕ̃T,s and
AOA ϕ̃R,s:

q̃s = arg max
i=0,...,NΩ−1

N−1∑
n=0

|ωHi [n]rs−1[n]|
‖ωi[n]‖

, where (9)

qT,s =

⌈
q̃s
NR

⌉
− 1 and qR,s = mod(q̃s − 1, NR)

(10)
and

ϕ̃T,s = arcsin

(
λc

dantNT

(
qT,s −

NT − 1

2

))
,

ϕ̃R,s = arcsin

(
λc

dantNR

(
qR,s −

NR − 1

2

))
,

(11)

where ωi[n] is the ith column of Ω[n] with i =
0, ..., NΩ − 1, q̃s denotes the column index of the
found path, and qT,s along with qR,s refer to the
corresponding AOD and AOD angle indices in the
used beamspace, respectively.

3) Determine a new basis vector ψs[n] (with assumption
of ψ−1[n] = 0) for the desired sparse representation



by orthogonalizing the found column vector ωq̃s [n]
with respect to the earlier found basis vectors :

ψs[n] = ωq̃s [n]−
s−1∑
s̃=−1

ωHq̃s [n]ψs̃[n]

‖ψs̃[n]‖
ψs̃[n]. (12)

4) Update the residual vector by removing the projection
of ψs[n] from the space spanned by rs−1[n]:

rs[n] = rs−1[n]− βs[n]ψs[n], where (13)

βs[n] =
ψHs [n]rs−1[n]

‖ψs‖2
. (14)

5) Check the validity of the convergence criterion, that
is,
∑N−1
n=0 ‖rs[n] − rs−1[n]‖2 ≤ ε, where ε is a

predetermined threshold value determined based on
the estimated SNR. If not converged, set s = s + 1
and continue from the step 2. Otherwise, stop the
iterations with the K̂ = s+ 1 found paths.

By fixing the number of paths based on the output of the
DCS-SOMP algorithm, we attempt to improve the estimation
accuracy by re-defining the beamspace transformation matrices
UT and UR in (8) with increased angle resolution. Now, for
each found path k = 0, ..., K̂−1, we improve the coarse angle
estimates ϕ̃T,k and ϕ̃R,k by conducting an iterative refinement
algorithm as follows:

1) Initialize by setting the iteration index s = 1, and
define the beamspace AOD and AOA estimates as
ϕ̌

(0)
T,k = νqT,k and ϕ̌(0)

R,k = νqR,k based on (7) and (10).
In addition, define the initial beamspace resolution
for AOD and AOA as κ̃(0)

T = κT and κ̃(0)
R = κR.

2) Re-define the beamspace transformation matrices by
quadrupling the angle resolution by setting κ̃T,s =
κ̃T,s−1/4, and create a new beamspace grid around
the estimated AOD and AOA values as

Ũ
(s)
T,k =

[
uT(ν̃

(s)
0,k), ...,uT(ν̃

(s)
4,k)
]

, where

ν̃
(s)
l,k = ϕ̌

(s−1)
T,k − κ̃

(s−1)
T

2
+ lκ̃

(s)
T ,

(15)

and similarly for Ũ
(s)
R,k.

3) Construct a new dictionary matrix Ω̃
(s)
k [n] based on

(8) by using Ũ
(s)
T,k and Ũ

(s)
R,k.

4) Based on (9), find a new dictionary index q̃
(s)
k for

the corresponding AOD and AOA estimates by using
Ω̃

(s)
k [n] and defining rs−1[n] = yϕ[n]. Now, the new

beamspace AOD and AOA estimates can be obtained
as

ϕ̌
(s)
T,k = ν̃

(s)

q̃
(s)
T,k

and ϕ̌(s)
R,k = ν̃

(s)

q̃
(s)
R,k

, where

q̃
(s)
T,k =

⌈
q̃

(s)
k

5

⌉
− 1 and

q̃
(s)
R,k = mod(q̃

(s)
k − 1, 5).

(16)

In addition, for later use in TOA estimation, we
denote the q̃(s)th

k column vector of Ω̃
(s)
k [n] as ω̂(s)

k [n],
which is maximally aligned with the AOD and AOA
for the kth path.

5) If the desired beamspace resolution (i.e., κ̃(s)
T and

κ̃
(s)
R ) has not yet been reached, repeat from the step

2 by setting s = s + 1. Otherwise, obtain the final
AOD and AOA estimates for the kth path (in radian)
as

ϕ̂T,k = arcsin

(
λc
dant

ϕ̌
(s)
T,k

)
and

ϕ̂R,k = arcsin

(
λc
dant

ϕ̌
(s)
R,k

)
.

(17)

Remark on complexity: This type of iterative refinement
process enables improving the estimation accuracy with a
reasonable complexity when compared to using a very large
dictionary only once. The fundamental problem of using
a large dictionary is that the number of needed dictionary
elements grows exponentially as a function of angle resolution.
For example, with a single large dictionary, in order to achieve
0.1 degree angle resolution, the required number of dictionary
elements for uniformly distributed angles (i.e. the number of
columns in Ω[n]) is (180/0.1)2 = 3240000. On the other
hand, by assuming NT = NR = 32 transmit and receive
antennas with an orthogonal beamspace, the dictionary size
in the DCS-SOMP algorithm is 322 = 1024. After this, by
exploiting the above described iterative search process, the
0.1 degree resolution can be achieved with only 6 iterations
((180/32)/26 ≈ 0.09 [deg]), which results in using dictionary
matrices with only 25 columns by 6 times per each path during
the iterations (e.g., with 3 paths the total number of considered
dictionary elements would be 1024 + 3 × 25 × 6 = 1474 �
3240000).

C. Estimation of TOA

As shown in [13] and [16], the TOA estimate of each
path can be obtained via QR-factorization of the estimated
sparse dictionary matrix Ω̂[n] = [ω̂

(s)
0 [n], ..., ω̂

(s)

K̂−1
[n]], where

the columns have been defined at the step 4 in the iterative
refinement algorithm. Now, based on the QR-factorization
Ω̂[n] = Q[n]R[n], the estimate of the channel vector, incorpo-
rating information on each path k = 0, ..., K̂ − 1 at subcarrier
n, can be obtained as

ĥ[n] = R−1[n]β̃[n], with

β̃[n] = [β̃0[n], ..., β̃K̂−1[n]], and

β̃k[n] =
ω̂

(s)H
k [n]yϕ[n]

‖ω̂(s)
k [n]‖2

,

(18)

where only the first K̂ rows of R[n] (i.e., those with non-
zero values) are taken into account. Furthermore, based on
the channel model described in (1), the Least Squares (LS)
estimate of the TOA for the kth path can be achieved as

τ̂k = arg max
τk

|ζH(τk)
ˆ̃
hk|2, where

ζH(τk) =
[
1, ..., e−j2π(N−1)τk/(NTs)

]T
and

ˆ̃
hk = [ĥk[0], ..., ĥk[N − 1]]T ,

(19)

where ĥk[n] is the kth element of ĥ[n] given in (18). Now, by
using (19), the τ̂k can be estimated by trialling different values



of τk and choosing the one which maximizes the objective
function.

IV. POSITION AND ORIENTATION ESTIMATION

The statistical descriptions of the unknown parameters
(i.e., UE position, scatterer positions and UE orientation) are
essential, for example, to approximate the reliability of the
obtained parameter estimates, as well as to describe likelihood
distributions for Bayesian tracking methods. For this, we
perform a sampling procedure based on the estimated AOD,
AOA and TOA values obtained in section III. We consider
two separate scenarios, where in the first one we assume to
have detected the potentially available LOS path, and in the
second one we assume that the LOS detection is unavailable
with indistinguishable LOS and NLOS paths. Hence, although
we do not consider the detection of the LOS path, we provide
a novel estimation approach, which can be used for all possible
scenarios.

A. Initialization of the positioning process

Since the estimate variances for the AOD, AOA, and TOA
are not naturally provided by the DCS-SOMP, we are obligated
to determine the estimate uncertainties independently. Due
to fairly complicated definitions of estimate variances, we
rely on tabulated SNR-dependent variance estimates, obtained
from pre-run test simulations over the considered positioning
scenario. By using the knowledge of true AOD, AOA and TOA
values for each path, the corresponding estimate variances
σ2
ϕT,k

, σ2
ϕR,k

and σ2
τk

are obtained by computing the variances
of the resultant error distributions. Since the TOA τk is directly
proportional to the path distance dk = cτk, the corresponding
variance of the path distance estimate d̂k can be determined
as σ2

dk
= σ2

τk
c2.

We assume that the distributions of AOD, AOA and TOA
estimates are Gaussian. Due to highly complicated and non-
linear dependencies between the estimated UE position pRX,
UE orientation θ, and scatterer positions pSC,k, we exploit
the Gibbs sampling method [18] for obtaining the estimates
and marginal distributions of the unknown parameters. The
fundamental principle of the Gibbs sampler is to sequentially
sample each estimated parameter by conditioning it by cur-
rently available samples of other parameters. Thus, in order
to start the iterative sampling process over pRX, θ and pSC,k,
initialization for at least two parameter samples are required.

If we have successfully detected a LOS path (k = 0), it is
possible to straightforwardly determine the initial sample for
the UE position and orientation based on the estimated AOD,
AOA and TOA-based distance d̂0 = τ̂0c as

p
(0)
RX =

[
p

(0)
RX,x

p
(0)
RX,y

]
= pTX + d̂0

[
cos(ϕ̂T,0)
sin(ϕ̂T,0)

]
θ(0) = ϕ̂T,0 + ϕ̂R,0,

(20)

where p
(0)
RX,x and p

(0)
RX,y are the x and y coordinate of the initial

UE position sample. Otherwise, without the LOS detection,
we sample the initial UE position and orientation by assuming

uniformly distributed samples given as

p
(0)
RX ∼

[
U(xmin, xmax)
U(ymin, ymax)

]
θ(0) ∼ U(−π/2, π/2),

(21)

where the limits xmin, xmax, ymin, and ymax restrict the potential
area of the UE position (e.g., automatically limited by the path
distance based on the TOA estimate).

B. Iterative sampling process for positioning

The iterative sampling process is performed by sequentially
sampling each estimated parameter while conditioning it with
the currently available samples of other parameters. Hence,
until a desired number of samples is obtained, we sample the
unknown parameters sequentially in the following order:

1) The scatterer positions pSC,k for each NLOS path k
2) The UE position pRX
3) The UE orientation θ

In case that we have observed NLOS paths, or we have
a non-detected LOS path which we are forced to consider
as a NLOS path, the unknown scatter positions need to be
estimated. Thus, we begin the sequential sampling process
by taking the ith sample (i = 1 for the first iteration) of
the scatterer position for each NLOS path. Based on the
Gibbs sampling principle, the scatterer position samples are
conditioned by the previously sampled UE position p

(i−1)
RX and

UE orientation θ(i−1). First, to facilitate the sampling process,
we obtain samples of the AOD, AOA and the path distance
from Gaussian distributions given as

ϕ
(i)
T,k ∼ N (ϕ̂T,k, σ

2
ϕT,k

), ϕ(i)
R,k ∼ N (ϕ̂R,k, σ

2
ϕR,k

),

and d(i)
k ∼ N (d̂k, σ

2
dk

),
(22)

respectively. Now, based on the system geometry and the
path distance sample d(i)

k , the scatterer position can be found
somewhere on the ellipse x2/a2 + y2/b2 = 1 with a center
point at (pTX + p

(i−1)
RX )/2 and a rotation arctan((p

(i−1)
RX,y −

pTX,y)/(p
(i−1)
RX,x − pTX,x)), where

a = d
(i−1)
k /2, and

b =
1

2

√
(d

(i−1)
k )2 + ‖pTX − p

(i−1)
RX ‖2.

(23)

From the ellipse curve, the scatterer position can be determined
in two separate ways. For each NLOS path k, based on the
the AOD sample and BS position, the first scatterer position
candidate p̃

(i)
SCT,k, can be found from the intersection of the el-

lipse and the line going through pTX with the slope tan(ϕ
(i)
T,k).

Moreover, based on the samples of AOA, UE position and UE
orientation, the second scatterer position candidate p̃

(i)
SCR,k can

be found from the intersection of the ellipse and the line going
through p

(i−1)
RX with the slope tan(θ(i−1)−ϕ(i)

R,k). If we assume
these scatterer position candidates as independent Gaussian
variables, the ith scatterer position sample for the kth NLOS
path can be obtained as the mean of the joint distribution given
as

p
(i)
SC,k =

1
σ̃2

SCT,k
p̃

(i)
SCT,k + 1

σ̃2
SCR,k

p̃
(i)
SCR,k

1
σ̃2

SCT,k
+ 1

σ̃2
SCR,k

, (24)
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where σ̃2
SC,T = σ2

dk
+ σ2

ϕT,k
and σ̃2

SC,R = σ2
dk

+ σ2
ϕR,k

are
approximated variances for the candidate scatterer positions.
The approximated variances are based on the sum of variances
of the corresponding path distance and angle estimates used
to determine the candidate scatterer positions.

Next, we proceed to obtain the ith sample of the UE
position, which is now conditioned by the current scatterer
position samples p

(i)
SC,k of all NLOS paths and the previous UE

orientation sample θ(i−1). Again, for each path k, in order to
facilitate the sampling process, we take new samples of AOD,
AOA, and the path distance as described in (22), denoted as
ϕ̃

(i)
T,k, ϕ̃(i)

R,k and d̃(i)
k , respectively.

In case of a detected LOS path, a UE position sample
candidate p̃

(i)
RX,0 can be obtained similarly as done in (20), but

replacing the estimated parameter values d̂0 and ϕ̂T,0 with the
corresponding sample values ϕ̃(i)

T,0 and d̃
(i)
0 . Furthermore, for

each NLOS path, we are able to achieve a UE position sample
candidate as

p̃
(i)
RX,k = p

(i)
SC,k + d̃

(i)
2,k

[
cos(θ(i−1) − ϕ̃(i)

R,k)

sin(θ(i−1) − ϕ̃(i)
R,k)

]
with

d̃
(i)
2,k = d̃

(i)
k − d̃

(i)
1,k,

(25)

where d̃(i)
1,k = ‖pTX−p

(i)
SC,k‖ and d̃(i)

2,k are the samples of partial
path distances (i.e., the distances from BS to scatterer and from
scatterer to UE). Now, similar to (24), the ith UE position
sample is approximated by using a weighted mean as

p
(i)
RX =

K̂−1∑
k̃=0

1

σ̃2
RX,k̃

−1
K̂−1∑
k=0

1

σ̃2
RX,k

p̃
(i)
RX,k (26)

where we approximate σ̃2
RX,k = σ2

dk
+ σ2

ϕR,k
, except for the

possible LOS path σ̃2
RX,0 = σ2

d0
+ σ2

ϕT,0
.

The last unknown to be sampled at the ith iteration is
the UE orientation, which is now conditioned by the current
scatterer position samples p

(i)
SC,k (only for the NLOS paths) and

UE position sample p
(i)
RX. Again, based on (22), we begin by

obtaining samples of the AOD and AOA as ϕ̌(i)
T,k, ϕ̌(i)

R,k. Now,

for a detected LOS path (k = 0), the UE orientation sample
candidate can be obtained as θ̃(i)

k = ϕ̌
(i)
T,0 + ϕ̌

(i)
R,0. Then, for

any NLOS path k the UE orientation sample candidate can be
given as

θ̃
(i)
k = arctan

p
(i)
RX,y − p

(i)
(SC,k),y

p
(i)
RX,x − p

(i)
(SC,k),x

+ ϕ̌
(i)
R,k (27)

where p
(i)
(SC,k),y and p

(i)
(SC,k),y are the x and y coordinate of the

p
(i)
SC,k. Analogously with the scatterer position and UE position

sampling, the UE orientation samples are approximated as a
weighted mean of the sample candidates as

θ(i) =

K̂−1∑
k̃=0

1

σ̃2
θ,k̃

−1
K̂−1∑
k=0

1

σ̃2
θ,k

θ̃
(i)
k (28)

where the approximated sample candidate variances are de-
fined as σ̃2

θ,0 = σ2
ϕT,0

+σ2
ϕR,0

for a LOS path and σ̃2
θ,k = σ2

ϕR,k

for a NLOS path.

After acquiring the ith UE orientation sample, we are able
to proceed to the next sampling iteration (i = i+ 1) to obtain
new samples for the scatterer positions by conditioning with
the updated UE position and UE orientation samples from the
previous iteration round. The process continues until a desired
number of samples has been obtained. After this, the parameter
estimates can be obtained by simply computing the mean of the
corresponding sample distributions. In Fig. 2 we illustrate the
sampled UE and scatterer positions of one arbitrary outcome
of the sampling process with SNR= −8 dB. In this scenario
we consider a LOS path and two NLOS paths with scatterer
positions at pRX = [5, 6]T and pRX = [7,−2]T . Furthermore,
the BS is located at the origin and the UE is found at pRX =
[10, 1]T (m) with the orientation of 25 degrees.

V. POSITIONING AND CHANNEL PARAMETER
ESTIMATION PERFORMANCE

For the simulations we consider two separate path prop-
agation scenarios based on the channel geometry depicted in
Fig. 2. In the first scenario (denoted as “LOS only”), only the
LOS path is considered available, and in the second scenario
(denoted as “LOS+2×NLOS”), the LOS path and both of the 2
NLOS paths are available. For the transmission we use a carrier
frequency of fc = 60 GHz with a bandwidth of B = 200 MHz,
where N = 20 active sub-carriers uniformly distributed to the
band are used for the positioning purposes. The number of
transmit and receive antennas is given as NT = NR = 32 with
the UE antenna orientation of θ = 25 deg. The transmitted
signal includes M = 32 OFDM symbols with Quadrature
Phase Shift Keying (QPSK) modulated subcarriers, and the
beamforming matrix F [m,n] is defined so that during the
M = 32 OFDM symbols, the beam directions are uniformly
distributed from −π/2 to π/2. We do not consider any UE
mobility or UE tracking, and hence, the channel geometry
and path availability are fixed throughout the simulations.
Furthermore, we determine the path loss coefficient based on
the free-space path loss model, and introduce an additional
reflection loss of 6 dB for the NLOS paths.

For the AOD and AOA estimation, we employ uniformly
sampled angles in the DCS-SOMP algorithm. After this, for the
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K̂ found paths, we use 3 iterative refinement steps to improve
the angle estimation accuracy. Moreover, the resolution of the
search grid used in the TOA estimation is 1/6 ns. In the UE
position and orientation estimation, we utilize 10000 samples
with the Gibbs sampler, from where we discard the first 100
samples to avoid dependency on the initialization effects, and
use only every 20th sample in order to minimize the correlation
between adjacent samples. Finally, all the presented results are
averaged over 1000 Monte Carlo realizations.

In Fig. 3, we show and compare the AOD and AOA
estimation Root Mean Square Error (RMSE) as a function of
SNR for each path in the considered LOS and LOS+2×NLOS
scenarios. Here, as well as with the following results, the SNR
is defined as the ratio between the total power of the received
signal (just before the noise addition) and the total power
of the noise. As excepted, the LOS paths provide the best
estimation accuracy, since due to the reflection losses and the
shortest path lengths, they have significantly higher received
power compared to NLOS paths. Moreover, the differences in
estimation accuracy between the AOD and AOA of the same
path are explained by the system geometry and the considered
UE orientation. The corresponding TOA estimation RMSE is
shown in Fig. 4. It can be seen that an error floor, originating
from the used grid-based search method, is reached with high
SNR values. However, from the positioning point of view, the
error floor does not have a large impact on the positioning
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accuracy, until the accuracy of the AOD and AOA estimates
is sufficiently high.

The UE position estimation RMSE for the LOS and
LOS+2×NLOS scenarios are shown in Fig. 5. In addition, for
the latter scenario also the scatterer position estimate RMSE
is provided for both paths. Excluding the LOS only scenario,
we have considered 3 separate approaches for the positioning.
In the first approach we assume a perfect LOS detection and
use both the LOS and NLOS paths in the estimation process.
In the second case, we also assume the LOS detection, but we
completely ignore the NLOS paths in the estimation process.
Finally, in the last approach, we assume that the LOS detection
is unavailable, and therefore we consider each path as a NLOS
path. In the latter case the position of the non-existent scatterer
of the LOS path is likely to be found somewhere on the line
between the BS and UE. From the system geometry point
of view, this is not optimal for the position estimation, as
the covariance of the scatterer position estimate is very large
in direction of the line between the BS and UE. It can be
seen that without the LOS detection, the scatterer position
estimates are within the same level of accuracy with the UE
position estimate. Nonetheless, based on the considered system
configuration, including NLOS paths in the estimation process
seems not to offer any gain to the estimation accuracy. Similar
observations can be achieved by considering the corresponding
results for the UE orientation estimation RMSE, shown in
Fig. 6. It is worth noticing that when using NLOS paths in
the estimation, additional unknown parameters (i.e. scatterer
positions) are introduced, which results in more challenging
estimation task. However, the achievable positioning accuracy
is very high, independently of the considered LOS and NLOS
aspects.

VI. CONCLUSION

In this paper, we presented methods for estimating the
position and orientation of UE in a single BS scenario. Based
on the sparsity of the considered mm-wave channel, we used
compressive sensing approach to obtain coarse AOD, AOA,
and TOA estimates for each observed propagation path without
assuming the knowledge of the number of propagation paths.
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After this, we employed an iterative refinement method, in
which the resolution of the sparse dictionary was increased in
order to improve the accuracy of the coarse estimates. Based
on the obtained channel parameters, we derived an iterative
Gibbs sampler, where we sequentially sampled the unknown
system parameters, including the positions of the UE and
the scatterers, as well as the UE orientation. Moreover, after
drawing a sufficient number of samples, statistical descriptions
and the corresponding estimates of the unknown parameters
were obtained.

The presented results showed that the proposed approach
can facilitate a centimeter-level estimation accuracy for the UE
and scatterer positioning regardless of the available LOS path
or LOS path detection. In addition, the achieved estimation
accuracy of less than 1 degree for the UE orientation was
comparable with the accuracy of the AOD and AOA estimates.
Furthermore, it was observed that using the detected NLOS
paths was not able to improve the positioning performance
when compared to using only the LOS path.

Besides UE positioning, the knowledge of scatterer po-
sitions and their statistical descriptions, can prove to be a
valuable asset in 5G communications when considering mo-
bility and the resulted time-dependent channel conditions. For
example, when the LOS path availability, or the consistency
of the LOS path detection, is compromised, NLOS paths offer
diversity for the communications and positioning. Moreover,
by continuously tracking the scatterer positions, it is possible
to quickly react to changes in LOS availability and LOS
detection, and additionally, to facilitate radio resource man-
agement functionalities, such as location and channel aware
beamforming.
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