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IMPORTANCE Compared with non-Hispanic White individuals, African American individuals
from the same community are approximately twice as likely to develop Alzheimer disease.
Despite this disparity, the largest Alzheimer disease genome-wide association studies to date
have been conducted in non-Hispanic White individuals. In the largest association analyses of
Alzheimer disease in African American individuals, ABCA7, TREM2, and an intergenic locus at
5q35 were previously implicated.

OBJECTIVE To identify additional risk loci in African American individuals by increasing the
sample size and using the African Genome Resource panel.

DESIGN, SETTING, AND PARTICIPANTS This genome-wide association meta-analysis used
case-control and family-based data sets from the Alzheimer Disease Genetics Consortium.
There were multiple recruitment sites throughout the United States that included individuals
with Alzheimer disease and controls of African American ancestry. Analysis began October
2018 and ended September 2019.

MAIN OUTCOMES AND MEASURES Diagnosis of Alzheimer disease.

RESULTS A total of 2784 individuals with Alzheimer disease (1944 female [69.8%]) and 5222
controls (3743 female [71.7%]) were analyzed (mean [SD] age at last evaluation, 74.2 [13.6]
years). Associations with 4 novel common loci centered near the intracellular glycoprotein
trafficking gene EDEM1 (3p26; P = 8.9 × 10−7), near the immune response gene ALCAM (3q13;
P = 9.3 × 10−7), within GPC6 (13q31; P = 4.1 × 10−7), a gene critical for recruitment of
glutamatergic receptors to the neuronal membrane, and within VRK3 (19q13.33;
P = 3.5 × 10−7), a gene involved in glutamate neurotoxicity, were identified. In addition,
several loci associated with rare variants, including a genome-wide significant intergenic locus
near IGF1R at 15q26 (P = 1.7 × 10−9) and 6 additional loci with suggestive significance
(P � 5 × 10−7) such as API5 at 11p12 (P = 8.8 × 10−8) and RBFOX1 at 16p13 (P = 5.4 × 10−7)
were identified. Gene expression data from brain tissue demonstrate association of ALCAM,
ARAP1, GPC6, and RBFOX1 with brain β-amyloid load. Of 25 known loci associated with
Alzheimer disease in non-Hispanic White individuals, only APOE, ABCA7, TREM2, BIN1,
CD2AP, FERMT2, and WWOX were implicated at a nominal significance level or stronger in
African American individuals. Pathway analyses strongly support the notion that immunity,
lipid processing, and intracellular trafficking pathways underlying Alzheimer disease in African
American individuals overlap with those observed in non-Hispanic White individuals. A new
pathway emerging from these analyses is the kidney system, suggesting a novel mechanism
for Alzheimer disease that needs further exploration.

CONCLUSIONS AND RELEVANCE While the major pathways involved in Alzheimer disease
etiology in African American individuals are similar to those in non-Hispanic White individuals,
the disease-associated loci within these pathways differ.
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L arge-scale genomic studies identified more than 20 mod-
est-effect Alzheimer disease (AD) risk loci besides the
APOE gene.1-8 However, these studies were predomi-

nantly conducted in individuals of non-Hispanic White ances-
try and, taken together, the identified loci explain only 30% to
40% of the genetic contribution to AD,9,10 substantially less than
the heritability estimates from twin studies ranging from 60%
to 80%.11 Compared with non-Hispanic White individuals, Afri-
can American individuals from the same community are twice
as likely to develop AD.12 Supporting the notion that there are
many genetic loci with small effect sizes contributing to these
observed ancestral differences in disease risk, we recently dem-
onstrated that AD cases in African American individuals show
higher levels of African ancestry than unaffected individuals,
both globally and locally at AD-relevant loci.13

Various additional observations provide support for the ge-
netic architecture of AD being partially ancestry-specific. In the
largest genome-wide association study conducted to date and to
our knowledge in African American individuals comprising 5896
participants from the Alzheimer Disease Genetics Consortium,
wepreviouslyconfirmedABCA7andAPOE,notablywithsubstan-
tial differences in odds ratios compared with non-Hispanic White
individuals, and identified a novel intergenic locus at 5q35.14 Of
the additional common loci originally discovered in data sets of
non-HispanicWhiteindividuals,onlyasubset(CR1,BIN1,EPHA1,
CD33, TREM2) replicated with nominal significance.14,15 Impor-
tantly, the population differences in the effect of APOE ε4 appear
to be explained by the ancestral background on which the allele
lies, as we have recently shown that APOE ε4 alleles on an Afri-
can background confer lower risk than those on a non-Hispanic
White background.16 Population-specific associations with AD in
rare or low-frequency variants also have been identified. Several
rare risk variants found in non-Hispanic White individuals
do not show association with risk in African American individu-
als, possibly because they are extremely rare in African Ameri-
can individuals.15,17 In a recent targeted sequencing study of
ABCA7, we identified a novel 44 base pair frameshift deletion
(rs142076058)inABCA7 inthesamelinkagedisequilibriumblock
as the African American individuals’ variant (rs115550680) iden-
tified by our previous genome-wide association study (GWAS)18

that is common and associated with disease in African American
individuals but present in very few non-Hispanic White individu-
als (minor allele frequency [MAF] = 0.12%). Two additional mis-
sense variants in ABCA7 have been associated with AD in a sepa-
rate African American population.19 Finally, separate association
studiesofADinAfricanAmericanindividualsidentifiednovelrare
andlow-frequencyassociationsinAKAP9,20COBL,andSLC10A221

thatappearspecifictoAfricanAmericanindividuals.Neuropatho-
logic differences in AD between populations22-26 may also point
toward population-specific risk loci for AD. The aim of the pre-
sent analyses is to identify additional loci modulating risk in
African American individuals.

Methods
To identify additional AD risk loci in African American indi-
viduals, we conducted a GWAS meta-analysis with a 37% in-

creased sample size including individuals with AD and con-
trols recruited from several case-control and family-based
studies of African American individuals. A detailed descrip-
tion of the original cohorts and summary demographics of all
samples included in this analysis are provided in the eAppen-
dix and eTables 1-3 in Supplement 1. Written informed con-
sent was obtained from all participants, and all study proto-
cols were approved by the respective institutional review
boards. Imputation was performed with the African Genome
Resources panel,27 which contains all African and non-
African populations from 1000 Genomes phase 3 and more
than 2000 individuals from various African regions, provid-
ing better coverage of ancestral haplotypes than the 1000 Ge-
nomes–based reference panels used in previous studies. In line
with this notion, comparison of imputation quality of 1000 Ge-
nomes and African Genome Resources vs available whole-
exome sequencing data in 800 participants demonstrated
higher accuracy in the African Genome Resources (eTable 2 in
Supplement 1). The final single-nucleotide variant set for analy-
sis included 29 610 185 genotyped and imputed variants, more
than doubling the number of variants from our previous
analysis.14 Genotype dosages were analyzed within each data
set and subsequently meta-analyzed, adjusting for age, sex,
and PCs for population substructure (model 1), and subse-
quently in addition for APOE genotype (model 2). Additional
details on these analyses and the methods for gene, pathway,
and expression association analyses can be found in the
eMethods in Supplement 1. P values were 2-sided, and the stan-
dard GWAS threshold of 5 × 10−8 was used to define genome-
wide significance. Analysis started October 2018 and ended
September 2019.

Results
A total of 2784 individuals (1944 female [69.8%]) with AD and
5222 (3743 female [71.7%]) were analyzed (mean [SD] age at last
evaluation, 74.2 [13.6] years). Single-variant meta-analyses rep-
licated the APOE locus and both African American individuals’
risk loci (rs115550680 [ABCA7] and rs145848414 [5q35]) from our
previous analyses at P < 5 × 10−6 (Table 1 and Figure).14 In addi-
tion, single-marker meta-analyses yielded 1 novel genome-
wide significant (P ≤ 5 × 10−8) disease locus associated with rare

Key Points
Question What genetic variants, genes, and pathways increase or
decrease risk of Alzheimer disease in African American individuals?

Findings In this genome-wide association meta-analysis of 2748
individuals with Alzheimer disease and 5222 controls, several
novel genetic loci and pathways associated with Alzheimer disease
in African American individuals were identified.

Meaning While the major pathways involved in Alzheimer disease
etiology in African American individuals are largely similar to those
in non-Hispanic White individuals, many of the disease-associated
loci within these pathways differ.
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variants and 10 novel disease-associated loci (4 common vari-
antloci,6rarevariantloci)associatedatP ≤ 5 × 10−7 (Table1;eFig-
ures 1-2 in Supplement 1). There was no evidence for genomic
inflation (model 1: λ = 0.94; model 2: λ = 0.96); see eFigure 3 in
Supplement 1 for QQ plots). The 4 common loci were centered
at (1) EDEM1 on chromosome 3p26 (rs168193; MAF = 0.25;
P = 8.9 × 10−7), a known linkage region for AD,28 (2) ALCAM on
chromosome 3q13 (rs2633682; MAF = 0.33; P = 9.3 × 10−7), (3)
within GPC6 on chromosome 13q31 (rs9516245; MAF = 0.04;
P = 4.1 × 10−7), and (4) within VRK3 on chromosome 19q13.33

(rs3745495; MAF = 0.10; P = 3.5 × 10−7). Three of 4 loci have
strong regional support by variants in linkage disequilibrium
(eFigure 1A in Supplement 1), and all 4 have consistent direc-
tions of effect across most individual data sets (eFigure 2A in
Supplement 1). While VRK3 is located approximately 5 megab-
ases downstream of APOE, the APOE-adjusted model and analy-
ses showing that rs3745495 is not in linkage disequilibrium with
variants within APOE (eFigure 4 in Supplement 1) suggest that
it represents an independent AD-associated signal in African
American individuals. The identified rare variants include a

Figure. Association Plots From Single-Variant Meta-analysis
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genome-wide significant intergenic locus at 15q26 close to
ARRDC4 and IGF1R (rs570487962; MAF = 0.01; P = 1.69 × 10−9)
and 6 loci with associations of P < 5 × 10−7 close to SIPA1L2,
WDR70, API5, ACER3, PIK3C2G, and RBFOX1 (Table 1 and eFig-
ures 1 and 2 in Supplement 1). Repeating the analyses stratified
by APOEe4 carrier status revealed the association with RBFOX1
was only present in cases without an APOEe4 allele, while the
intergenic association at ARRDC4/IGF1R was only found in car-
riers of the APOEe4 allele (eTables 4-5 in Supplement 1). These
results should be interpreted with caution because of the small
sample sizes obtained after stratification on APOEe4 status
(eTable 5 in Supplement 1).

Of the variants previously implicated in AD in African Ameri-
can individuals by other studies,15,17,20,21 rs112404845 in COBL
showed association (P = 5.4 × 10−6), and 2 variants each in
TREM2 (rs7748513; P = 3.6 × 10−5 and rs2234256; P = .001) and
AKAP9 (rs149979685; P = .005 and rs914662445; P = .01) were
replicated with at P < .05 (eTable 6 in Supplement 1). A low-
frequency TREM2 stop-gain variant previously reported at
P = .08 in a sample of 906 load cases and 2487 controls, was as-
sociated at P = 1.4 × 10−3 (rs2234258).17 Of the GWAS loci im-
plicated in non-Hispanic White individuals besides APOE
and ABCA7,7 only the variants in BIN1 (P = 9 × 10−4), CD2AP
(P = .02), FERMT2 (P = .01), and WWOX (P = .04) showed nomi-
nal association in this African American sample (eTable 6 in
Supplement 1).

Gene-Based Analyses
Gene-based analyses confirmed at gene-wide significance the
TREM2 gene, originally identified in non-Hispanic White
populations,5,29 as an AD risk locus in African American indi-
viduals (P = 9.89 × 10−6) and identified 8 loci (TRANK1, FABP2,
LARP1B, TSRM, ARAP1, STARD10, SPHK1, and SERPINB13) with
associations of P ≤ 1 × 10−4 (Table 2 and eFigure 2 in Supple-
ment 1). Of the other risk loci previously reported in African
American or non-Hispanic White individuals besides TREM2,
only C2DAP (P = .03) was significant at P ≤ .05 (eTable 7 in
Supplement 1). Full summary statistics for the complete set of
single-marker and gene-based analyses are available through

the National Institute on Aging Genetics of Alzheimer Dis-
ease Data Storage Site.30

Validation and Prioritization of Identified Loci
To validate the identified loci and evaluate their biological sig-
nificance, we examined differential expression of amyloid
and tau pathology in AD vs control brains and conducted
pathway analyses.

To explore differential expression, we capitalized on post-
mortem brain pathology quantified by immunohistochemis-
try and expression data from 478 individuals of European an-
cestry from the ROS/MAP study.31 Covarying for sex, age at
death (age at last visit for clinical AD diagnosis), postmortem
interval, RNA integrity, APOE ε4 status, and first 3 genomic
principal components, higher expression of ALCAM (β = 0.038;
P = .003) and ARAP1 (β = 0.058; P = 2.0 × 10−4) and lower ex-
pression of GPC6 (β = −0.035; P = .001) and RBFOX1
(β = −0.055; P = .001) were associated with brain amyloid load
after correction for multiple testing (Table 3; Bonferroni P value
threshold for significance: P = .05/19 tested genes = .003).
Higher expression of STARD10 was associated with higher tau
pathology burden (β = 0.050; P = 8.46 × 10−5). When covary-
ing in addition for differences in cell type composition across
samples, associations for ALCAM (β = 0.033; P = .004), ARAP1
(β = 0.06; P = 9.3 × 10−6), GPC6 (β = −0.034; P = .002), and
RBFOX1 (β = −0.050; P = .001) with brain amyloid load re-
mained unchanged; association of STARD10 with tau pathol-
ogy burden was slightly attenuated (β = 0.03; P = .01).

Pathway analyses conducted using Multi-marker Analy-
sis of GenoMic Annotation32 identified 8 main functional
groups at P < 1 × 10−3 (Table 4): (1) intracellular trafficking,
(2) lipid and phospholipid metabolism, (3) transcription/
DNA repair, (4) nervous system development/synaptic plas-
ticity, (5) cell division, (6) immune response, (7) cellular sig-
naling, and (8) kidney system development. With the exception
of kidney system development, these pathways overlap with
the key molecular mechanisms identified in the large-scale ge-
nomic studies in non-Hispanic White individuals.7,33 How-
ever, enrichment of amyloid precursor protein/amyloid (A)-β

Table 2. Novel Top Loci Identified in Gene-Based Analyses

Gene Chromosome
Start BP
(hg37)

Stop BP
(hg37) No.

Model 1a Model 2b

Pathway
No. of
SNVs

z
Statistic P value

No. of
SNVs

z
Statistic P value

TRANK1 3 36 858 311 37 021 548 7984 1221 2.83 2.2 × 10−3 1201 3.83 6.4 × 10−5 Neuronal development

FABP2 4 120 228 405 120 278 545 7984 411 2.66 3.8 × 10−3 452 4.00 3.1 × 10−5 Lipid metabolism

LARP1B 4 128 947 423 129 154 086 7984 1071 4.11 1.9 × 10−5 1334 1.93 2.6 × 10−2 RNA transcription

TSRM 7 113 056 127 113 101 457 7984 334 3.62 1.4 × 10−4 334 4.02 2.7 × 10−5 Zinc finger
domain-related protein

ARAP1 11 72 386 114 72 539 644 7984 1294 3.74 9.1 × 10−5 1281 3.62 1.4 × 10−4 Endocytosis/intracellular
trafficking

STARD10 11 72 455 774 72 539 726 7984 664 3.94 3.9 × 10−5 660 3.50 2.3 × 10−4 Lipid metabolism

SPHK1 17 74 337 665 74 393 941 7984 485 3.73 9.3 × 10−5 482 3.48 2.5 × 10−4 Immune response

SERPINB13 18 61 219 223 61 281 873 7984 633 3.10 9.4 × 10−4 626 3.79 7.4 × 10−5 Protease inhibition,
immune response

Abbreviations: BP, base pair; SNV, single-nucleotide variant.
a Model 1 is adjusted for PCs, age, and sex.
b Model 2 is adjusted for PCs, age, sex, and APOE genotype.
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and tau pathways, which recently emerged as top molecular
pathways in the large-scale rare variant meta-analysis in non-
Hispanic White individuals conducted by the International Ge-
nomics of Alzheimer Project (IGAP),7 are notably absent among
the top disease-associated pathways observed in this data set
of African American individuals.

Examination of Identified Single-Variant, Gene-Based,
and Pathway Associations in the IGAP Data Set
of Non-Hispanic White Individuals
Comparison of the top single-variant associations in African
American individuals with the results of the latest GWAS of
non-Hispanic White individuals from the IGAP consortium
(n = 94 437)7 revealed nominal replication of the single-
variant association in the WDR70 gene (P = .05) and nearly
nominal replication of the RBFOX1 locus (P = .07) (eTable 8 in
Supplement 1). Gene-based testing of loci resulting from the
single-variant analysis of African American individuals re-
vealed PIK3C2G and GPC6 to have significance at P < .05. For
the gene-based loci, the only result with nominal replication
in IGAP was STARD10 (P = .02), although ARAP1 also ap-
proached significance at P < .05. Of the 21 pathways associ-
ated at P < 10−4 in African American individuals, only 2 repli-
cated at a nominal level: inositol tetrakisphosphate
phosphatase activity (P = .02) and positive regulation of nuclear
division (P = .05), suggesting that while the major pathways
are similar between African American and non-Hispanic White
individuals, the subpathways defining these functions may dif-
fer slightly because of the specific genes involved.

Discussion

In the largest AD GWAS study on African American individu-
als conducted to date and to our knowledge, we confirmed
ABCA7, the intergenic locus on chromosome 5q35, and sev-
eral variants in or near COBL, TREM2, and AKAP9 as associ-
ated with AD and identified 1 novel genome-wide significant
disease locus and 10 novel disease-associated loci associated
at P ≤ 5 × 10−7. Gene-based analyses also confirmed TREM2 as
a risk locus in this population and nominated 8 additional loci
with associations of P ≤ 1 × 10−4. For 4 of these 8 novel loci, gene
expression analysis from brain tissue demonstrated signifi-
cant association with burden of brain amyloid (ALCAM, ARAP1,
GPC6, RBFOX1), a key pathological hallmark of AD. Of 25 known
loci in non-Hispanic White individuals,7,34 only APOE, ABCA7,
TREM2, BIN1, CD2AP, FERMT2, and WWOX were implicated
at a nominal significance level or stronger in this African Ameri-
can sample.

Notably, the majority of novel loci identified in this study
cluster in pathways was also implicated in non-Hispanic White
individuals. The 4 common loci that were, because of their high
allele frequencies, robustly present in all contributing data sets,
cluster near or in genes involved in intracellular trafficking, im-
mune response, and glutamatergic synaptic transmission.
EDEM1, located in a known AD linkage region (3q26),35 en-
codes a protein that sequesters misfolded proteins, including
the amyloid precursor protein, away from productive folding
cycles and redirects them to endoplasmic reticulum–

Table 3. Association of Gene Expression at Suggestive Loci With Neuropathological Measures of Alzheimer Disease in the ROS/MAP Data Set31

Chromosome Band Symbol

Amyloid pathology Tau pathology

βa P value βa P value

1 q42.2 SIPA1L2 –0.004 .72 –0.018 .08

3 p22.2 TRANK1 –0.057 .005 –0.046 .007

3 p26.1 EDEM1 0.002 .84 –0.022 .01

3 q13.11 ALCAM 0.038 .003 –0.023 .03

4 q26.2 FABP2 Not detected in DLPFC Not detected in DLPFC

4 q28.2 LARP1B –0.017 .21 0.019 .10

5 p13.2 WDR70 –0.028 .05 0.036 .004

11 p12 API5 0.009 .24 –0.013 .04

11 q13.4 ARAP1 0.058 2.0 × 10−4 0.019 .11

11 q13.4 STARD10 0.005 .71 0.050 8.46 × 10−5

11 q13.5 ACER3 0.027 .08 –0.002 .91

12 p12.3 PIK3C2G –0.011 .09 –0.001 .88

13 q31.3 GPC6 –0.035 .001 0.001 .91

15 q26.2 ARRDC4 0.017 .32 –0.023 .11

15 q26.2 IGF1R 0.031 .005 –0.005 .61

16 p13.3 RBFOX1 –0.055 .001 0.008 .57

17 q25.2 SPHK1 0.067 .01 0.015 .50

18 q21.33 SERPINB13 Not detected in DLPFC Not detected in DLPFC

19 q13.33 VRK3 –0.001 .91 –0.022 .03

Abbreviation: DLPFC, dorsolateral prefrontal cortex.
a β Coefficient for the association between the expression of the gene and

amyloid or tau pathology is reported. A positive β coefficient reflects an

increased pathology burden in the presence of higher gene expression, and a
negative β coefficient reflects an inverse association.
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associated degradation.36-38 There is evidence that upregula-
tion of endoplasmic reticulum–associated degradation leads
to amyloid precursor protein degradation and reduced Aβ
production.39 ALCAM encodes CD166 antigen promoting T-
cell activation, maturation of the immunological synapse, and
axon growth. A recent GWAS on cognitive decline in older
adults free of dementia identified a suggestive signal in the
ALCAM gene region (rs34476301; P = 6.5 × 10−6) associated
with longitudinal changes in the memory domain.40 GPC6 en-
codes glypican 6 belonging to a conserved family of heparan
sulfate proteoglycans. Secreted by astrocytes, GPC6 regu-
lates recruitment of glutamate (GluA1 AMPA) receptors to
the neuronal surface and promotes formation of excitatory
synapses in neurons.41 The locus at 19q13 shows different lo-
cal ancestry with regard to AD status in African American
individuals,13 providing significant support for the impor-
tance of this region in AD etiology in this ethnic group. The sig-
nal falls within VRK3 encoding a serine/threonine kinase modu-
lating the activity of extracellular signal-regulated kinases42

involved in the regulation of synaptic protein synthesis, den-
dritic morphology, and synaptic plasticity.43,44 Dysregula-
tion of glutamate-induced extracellular signal-regulated ki-
nase signaling via VRK3 is associated with Aβ accumulation,45

and VRK3 itself has been suggested as a potential therapeutic
target for AD.45 In expression data from the ROS/MAP study,31

ALCAM and GPC6 expression was associated with amount of
brain amyloid pathology. Codeposition and association of vari-
ous heparan sulfate proteoglycans with Aβ has long been
described,46-48 and in vitro studies have shown that heparan
sulfate proteoglycans can regulate Aβ production49,50 and
aggregation.49,51

The 7 identified rare variant loci include the 2 top loci iden-
tified in this study, centered in a noncoding RNA (LINC02254)
near the IGF1R gene on chromosome 15q26 (P = 1.69 × 10−9)
and API5 on chromosome 11p12 (P = 8.81 × 10−8). The associ-
ated variants near IGF1R are all African-specific according to
the Genome Aggregation Database.52 Interestingly, a GWAS of
cognitive flexibility, an AD-linked phenotype,53 identified a ge-
nome-wide significant association approximately 80 kilo-
bases upstream of this rare variant signal in African American
individuals but not in non-Hispanic White individuals,54 lend-
ing support to this locus as an AD locus specific to African
American individuals. IGF1R is a receptor for insulinlike growth
factor I (IGF-I) controlling stress resistance, aging, and
lifespan.55 Brains of individuals with AD show abnormalities
in IGF1R expression and downstream signaling molecules, in-
sulin and IGF1 resistance,56,57 and long-term inhibition of IGF
signaling supports neuronal function and neuroprotection.57,58

Lifespan-extending heterozygous IGF1R knockout alleviates
AD pathology through Aβ clearance,56 confers neuroprotec-
tion against Aβ proteotoxicity, and improves behavior in mice
with AD.59,60 In this study, association of IGF1R expression with
amyloid load was close to Bonferroni-corrected significance
(P = .005). Apoptosis inhibitor-5 (API5) is a nuclear protein
highly expressed in the brain whose expression prevents apop-
totic cell death.61

While the top disease-associated variant at the chromo-
some 16p13 locus is located approximately 500 kilobases
downstream of RBFOX1, analysis of expression data and find-
ings from epidemiologic, animal, and experimental studies
nominate RBFOX1 as a potential candidate gene at this locus
that warrants further scrutiny. RBFOX1 is a critical regulator

Table 4. Top Associated Pathways Derived From MAGMA Pathway Analysis

Pathway (GO) Model
No. of
genes P value Pathway description

GO:0045898 2 13 2.0 × 10−5 Transcription

GO:0051004 1 15 4.9 × 10−5 Lipoprotein metabolism

GO:0072017 1, 2 12 1.0 × 10−4 Kidney system development

GO:0072207 1 20 2.2 × 10−4 Kidney system development

GO:0033363 1 27 3.4 × 10−4 Intracellular trafficking

GO:0015693 2 11 3.4 × 10−4 Magnesium ion transport

GO:0048169 1 23 3.5 × 10−4 Synaptic plasticity

GO:0051785 2 62 4.3 × 10−4 Cell division

GO:0009395 1 29 4.6 × 10−4 Phospholipid metabolism

GO:0006266 2 16 4.7 × 10−4 DNA repair

GO:0042493 2 422 5.2 × 10−4 Drug response

GO:0044304 2 58 5.6 × 10−4 Nervous system development

GO:1903533 1 296 5.7 × 10−4 Intracellular trafficking

GO:0052743 1 10 6.5 × 10−4 ITPKB/Ins(1,3,4,5)P4/ERK signaling

GO:0051717 1 10 6.5 × 10−4 Cellular signaling

GO:1990782 1 55 6.5 × 10−4 Cellular signaling

GO:0002281 2 11 6.6 × 10−4 Immune response

GO:0046475 1 13 7.3 × 10−4 Phospholipid metabolism

GO:0051103 2 12 8.4 × 10−4 DNA repair

GO:0032386 1 597 8.8 × 10−4 Intracellular trafficking

GO:0008143 2 12 9.3 × 10−4 Transcription

GO:0045840 1 51 9.7 × 10−4 Cell division

Abbreviations: ERK, extracellular
signal-related kinase; MAGMA,
Multi-marker Analysis of GenoMic
Annotation.
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of splicing and cytoplasmic mRNA stability in neurons62,63 that
has been implicated across a series of neurodevelopmental and
psychiatric disorders.64 There is evidence from experimental
studies that downregulation of RBFOX1 leads to destabiliza-
tion of messenger RNAs encoding for proteins involved in syn-
aptic transmission and diminished synaptic function in AD65,66

and that RBFOX1 might regulate splicing of amyloid precur-
sor protein.67 Notably, a GWAS of positron emission tomog-
raphy amyloid levels in individuals without dementia re-
ported by Raghavan et al68 nominates RBFOX1 as a locus for
brain amyloidosis, in line with this notion and our GWAS and
brain amyloid pathology analyses.

Gene-based analyses confirmed TREM2 as an AD risk gene
in African American individuals and identified an additional 8
novel loci with associations of P ≤ 1 × 10−4 (eFigure 5 in Supple-
ment 1). Notably, also these genes largely cluster in AD path-
ways implicated by genomic studies in non-Hispanic White
populations. While TRANK1 at 3p22.2 is a known GWAS risk lo-
cus for bipolar disorder and schizophrenia69-72 and potentially
modulates expression of genes involved in neural develop-
ment and differentiation,73 FABP2 and STARD10 are involved in
lipid metabolism, SPHK1 and SERPINB13 in immune response,
LARP1B in RNA transcription, and ARAP1 in endocytosis and in-
tracellular trafficking. Finally, the results of our pathway analy-
ses also support the notion that the principal molecular pathways
(eg, immunity, lipid processing, intracellular trafficking) under-
lying AD in African American individuals overlap with those ob-
served in non-Hispanic White individuals, albeit largely with dif-
ferent disease-associated genes within these pathways. A novel
AD pathway emerging from this pathway analyses is kidney sys-
tem development. This finding is particularly interesting given
the observation that African American individuals are 3 times
more likely to experience kidney failure compared with the non-
Hispanic White population,74 and along with Hispanic popula-
tions, have a higher rate of comorbidity for dementia and kid-
ney disease.75 Impaired kidney clearance of peripherally
circulating Aβ results in elevated cerebral Aβ retention.76 Deter-
mining the contribution of this comorbid condition to AD risk,
and whether misdiagnosis of AD plays a role in this association,77

could have important implications for the prevention and treat-
ment of AD in African American individuals.

Compared with our previous analyses based on the 1000
Genomes panel (June 2011), the African Genome Resources
reference panel used in the current analysis allowed us to in-
clude both a higher number of common variants and a signifi-
cant set of low-frequency variants previously not included.
While some of the newly identified common variants were
assessed in the previous analyses but now reached genome-
wide significance because of increased statistical power, most
of the newly identified variants with rarer minor allele fre-
quencies were previously not assessed. For all novel identi-

fied disease-associated variants, imputation quality was ex-
cellent. There was also no evidence of inflation in our study
when including low-frequency variants, minimizing the like-
lihood that the observed associations are spurious.

Limitations
This study has limitations. First, given the paucity of available
African American samples for genomic research on AD and the
need to maximize sample size to reach sufficient statistical power
to identify variants with low frequency or effect sizes, we com-
bined all samples into 1 discovery set and relied on the IGAP data
on non-Hispanic White individuals and ROS/MAP brain expres-
sion data sets for replication.7,78 Additional validation will likely
need to be derived from experimental studies. Second, while this
is the largest GWAS data set on African American individuals to
date and to our knowledge, our sample size was underpowered
to detect associations with very rare single variants or rare vari-
ants exerting very small effects. Consequently, it is possible that
there remain unidentified disease-associated variants.

Conclusions
Our study strongly suggests that the principal molecular path-
ways implicated in AD etiology in African American individu-
als largely overlap with those in non-Hispanic White individu-
als but that the disease-associated loci within these pathways
differ. These observations are critical for several reasons. First,
they provide significant support for the importance of native im-
mune response, intracellular trafficking, lipid metabolism, ner-
vous system development, and synaptic plasticity in AD etiol-
ogy and suggest that these pathways are not ethnicity-specific
but critical in disease etiology across ethnic groups. Second, this
study suggests that there might also be pathways whose contri-
butions to disease differ between ethnic groups. While amy-
loid and tau pathology did not emerge as top pathways in this
data set on African American individuals, kidney system devel-
opment was identified as a novel, plausible disease mecha-
nism.Interestingly,cerebrospinalfluidconcentrationsoftauhave
been observed to be lower in African American individuals af-
fected with AD compared with non-Hispanic White individuals
with AD.24 Finally, these observations strongly suggest that poly-
genic risk scores developed for non-Hispanic White popula-
tions will likely not be applicable to this ethnic group and vice
versa but that polygenic risk scores need to be developed and
applied as ethnic group–specific. While additional validation is
needed, the identified genomic loci and pathways significantly
help to disentangle AD etiology in African American individu-
als, aid to clarify the molecular mechanisms underlying ob-
served health disparities, and help to pinpoint molecular tar-
gets for therapeutic intervention in this ethnic group.
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