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The present article correlates with a fuzzy hybrid technique combined with an iterative transformation technique identified as the
fuzzy new iterative transform method. With the help of Atangana-Baleanu under generalized Hukuhara differentiability, we
demonstrate the consistency of this method by achieving fuzzy fractional gas dynamics equations with fuzzy initial conditions.
The achieved series solution was determined and contacted the estimated value of the suggested equation. To confirm our
technique, three problems have been presented, and the results were estimated in fuzzy type. The lower and upper portions of
the fuzzy solution in all three examples were simulated using two distinct fractional orders between 0 and 1. Because the
exponential function is present, the fractional operator is nonsingular and global. It provides all forms of fuzzy solutions
occurring between 0 and 1 at any fractional-order because it globalizes the dynamical behavior of the given equation. Because
the fuzzy number provides the solution in fuzzy form, with upper and lower branches, fuzziness is also incorporated in the
unknown quantity. It is essential to mention that the projected methodology to fuzziness is to confirm the superiority and
efficiency of constructing numerical results to nonlinear fuzzy fractional partial differential equations arising in physical and

complex structures.

1. Introduction

Fuzzy set theory is also an effective methodology for analyz-
ing unpredictable scenarios. These ambiguities can arise in
each part of a fractional equation, such as initial and bound-
ary conditions. As a solution, determining fractional models
in real-world settings allows for implementing interval or
fuzzy formulations. The fuzzy set theory has been widely
applied in many domains, i.e., topology, fixed-point theory,
integral inequalities, fractional calculus, bifurcation, image
processing, consumer electronics, control theory, artificial
intelligence, and operations research. The area of fractional
calculus, which includes fractional-order integrals and deriv-
atives, has gotten a lot of interest from scholars and scientists
in the recent several decades. Fractional calculus has many
applications in modern physical and biological processes,
with precise and accurate conclusions. In fractional differen-

tial calculus, the integral (differential) operators have a larger
level of freedom. As a result, scholars have taken a keen
interest in this field. A plethora of research articles, mono-
graphs, and books have been produced in recent years, cov-
ering a wide range of topics such as existence theory and
analytical results [1-6]. Modern calculus has been imple-
mented to a wide range of topics in applied sciences where
data is uncertain. Zadeh [7] proposed the fuzzy set to deal
with similar issues. Fuzzy relations and fuzzy control were
defined further by Chang and Zadeh [8]. Fixed point theory,
topology, algebra, control systems, and fuzzy logic, among
other fields, use fuzzy set theory. The investigators developed
elementary fuzzy calculus, fuzzy set-based [9, 10]. Dobius
and Prada established the fundamental idea of fuzzy integral
equations [11]. Fractional integral and differential equations
have gained appeal among scholars in recent years. As a
result, fuzzy calculus was prolonged to fuzzy fractional
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integral equations and fuzzy fractional differential, with sev-
eral biological and physical implications. It is best to use a
fuzzy idea to specify the parameters rather than a crisp num-
ber when studying problems where pieces of information are
uncertain. As a result, numerous scholars have focused on
studying fuzzy fractional differential equations in diverse
directions. In [12-15], several basic difficulties are investi-
gated. The Atangana-Baleanu Caputo derivative [16], a non-
singular fractional derivative suggested by Attangana,
Balaneau, and Caputo, has recently gained prominence
among scholars [17-20]. Fuzzy derivatives can be used to
calculate fractional differential equations under the ABC
derivative, leading to a variety of fascinating conclusions
and new directions for young researchers.

Fuzzy fractional calculus theory is a prominent topic of
mathematics that spans a wide range of mathematical struc-
tures in both theoretical and practical applications. In this
arena, traditional derivatives are highly reliant on Caputo-
Liouville or Riemann-Liouville issues. The common fault
of these two qualifiers is the nonlocality and singularity of
the kernel function noticed in the integral operator’s side
by side with the normalizing function occurring alongside
the integral ticks. Indeed, the real-world core replicating
dynamic fractional systems, which cannot be denied, must
yield a more productive and straightforward definition. This
orientation introduces a new fractional fuzzy derivative con-
struct, Atangana-Baleanu Caputo, which is used to generate
and communicate new concrete fuzzy mathematical ideas.
Because the kernel is based on the nature of exponential
decay, the new fuzzy fractional Atangana-Baleanu Caputo
derivative appears to be releasing singularity with the local
kernel function, making fuzzy fractional differential equa-
tions more genuine in the creation of diverse uncertain
models [21-25].

In various scientific fields, such as control theory, plasma
oscillation, fluid flow, quantum mechanics, electromagnetic,
biomolecular dynamics, nonlinear optics, and population
growth, fractional differential equations have recently gained
much attention as appealing mathematical tools for model-
ing several complex nonlinear phenomena. Caputo-Katu-
gampola, Grunwald, Coimbra, conformable, Caputo, Riesz,
Riemann-Liouville, and Caputo Fabrizio’s fractional ideas
are among the many local and nonlocal fractional notions
in the literature. Nonlocal derivatives are more intriguing
than local derivatives since most physical implementations
rely on historical and nonlocal features. Some of these oper-
ations, such as Caputo and Riemann-Liouville, have been
proposed based on singular kernels. Recently, the fractional
derivatives based on nonsingular kernels given by Caputo-
Fabrizio [26] and Atangana-Baleanu [27] have been pre-
sented to represent physical dissipative phenomena better
and reduce numerical collision when in comparison to other
traditional fractional derivatives.

Gas dynamics are mathematical formulations of conser-
vation rules found in engineering, i.e., mass conservation,
momentum conservation, and energy conservation. Jafari
et al. [28], Jawad et al. [29], Elizarova [30], Evans and Bulut
[31], and Steger and Warming [32] used several analytical
and numerical approaches to solve various types of gas
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dynamics equations in physics. Aziz and Anderson [33] used
a pocket computer to tackle several gas dynamics problems
in 1985. Rasulov and Karaguler [34] used a different
approach to solve nonlinear system of equations problems
in gas dynamics for a category of discontinuous functions
in 2003. Liu [35] published a paper in 1990 on nonlinear
hyperbolic-parabolic partial differential equations in gas
dynamics and mechanics. Biazar and Eslami [36], Das and
Kumar [37], and Kumar et al. [38] have recently applied
the homotopy perturbation transform method and differen-
tial transform to solve the homogeneous and nonhomoge-
neous time-fractional gas dynamics problem.

The rest of the article is divided as follows. In Section 2,
we give basic definitions of fractional calculus, fractional
fuzzy derivative, and fuzzy set. The general methodology of
the present method is in Section 3. In Section 4, to detect
the validity and effectiveness of the suggested algorithm,
we present some numeric problems. Meanwhile, we present
the results in figures to see the effect of the Atangana-
Baleanu-Caputo operator to the considered model. Finally,
the conclusion will be drawn in the last section.

2. Basic Notions of Fractional and
Fuzzy Calculus

This portion shows clearly several important components
related to the fuzzy set theory and fractional calculus, as well
as specific discussion of results about the Shehu transform.
For further information, we refer the reader to [39].

Definition 1. We suggest that ¢ : R [0,1] is a fuzzy set,
then, it is known to be fuzzy number if it holds the subse-
quent assumptions [39-42]:

(1) ¢ is normal (for some #, € R; ¢(g,) = 1)

(2) ¢ is upper semicontinuous

(3) (@ + (1 -w)p,) = (9(g,) A plg0,)) Ve € [0, 1], 0,
90, €R, ie., ¢ is convex

(4) c{peR, ¢(p) >0} is compact

Definition 2. We define that a fuzzy number ¢ is r-level set
expressed as [39-42]

9] ={PeR: (@) 21}, (1)

where r € ]0,1] and ® € R.

Definition 3. The parameterized version of a fuzzy number is
denoted by [@(r), p(r)] such that r € [0, 1] fulfills the follow-

ing assumptions [39-42]:

(1) ¢(r) is left continuous, nondecreasing, bounded over
(0, 1] and left continuous at 0

(2) ¢(r) is right continuous, nonincreasing, bounded
over (0, 1] and right continuous at 0; 3. ¢(r) < ¢(r)
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Definition 4. For r € [0, 1] and Y to be a scalar, assume that
there are two fuzzy numbers [39-42] j1, = (ﬁl,ﬂl),ﬁz = (4,
,t4,), then, the subtraction, addition, and multiplication,
respectively, are stated as

A PG RGO NC RN AC) )
o= () -GMamN-H0), 6
Yogl={(Yh,Y,zl)Yzo, (Yﬁl,Yy_l)Y<0. (4)

Definition 5. Suppose a fuzzy mapping ® : E x E + R hav-
ing two fuzzy numbers [39-42] p1, = (p;, (1)), iy = (Hy> )5
then, ®-distance between i, and i, is represented as

O ) = sup [max { |, (1) = 1y (1) 1 (1) = ()]}

r€[0,1]
(5)

Theorem 6. Consider a fuzzy valued function E : R + E such
that E(n,;r)=[E(n,;r),E(y,57)] and re[0,1]. Then
[39-42]:

(1) (n,5r) and E(y,;r) are differentiable, if E is a (1)-
differentiable, and

[E'(10)] "= [E' (103 7). B (my 7). (6)

(2) E(y,;r) and E(n, ;) are differentiable, if E is a (2)-
differentiable, and

[El(no)}rz {E/(’?o”’)’ﬁl(%;r) : (7)

Definition 7. Assume that a fuzzy mapping (D;r?).f =) ¢
CFlo,s] N LF[0,s]. Then, the fuzzy g9 -fractional Caputo

differentiability of fuzzy-valued mapping @ is represented
as [39-42].

(r=1Lr,,reN,J >a,.

Therefore, the parameterized versions of @ =[D, (J),
®,(3)],r€0,1] and T, € (0,5), and CFD in a fuzzy sense
are stated as

Definition 8. Assume that a fuzzy mapping @(J) € o' (0, T)
and ve€[0,1], then, the fuzzy g -fractional Atangana-
Baleanu differentiability of fuzzy-valued mapping is repre-
sented as

(97 P"D)(F) = = Utlcp’(x) oF

Thus, the parameterized formulation of @ = (@, (), @,
(3)],re0,1] and F;€(0,s), and the fuzzy Atangana-
Baleanu derivative in Caputo sense is stated as

v -
[ABcg(i)fg%(D(so ; ’)}
v 0
= [ABcg(i)—g%@(so ; T)’ABcg(i)-g%(D(so ; r)} ,r€[0,1],
(12)

where
B(v) | . (S -x)°
ABC g0 . —
Doy g ®(Sp57) = 1—v L D j)-g7(X)Ep { v dx >
$-3,
13)
. Bv) | (. (S -x)°
ABC g0 < . —
Dy g P(Sg37) = T—v L D ;) g(X)Eg {? dx o
(14)

where B(v) denotes the normalized function which is
equal to 1 when v is assumed to be 0 and 1. Furthermore,
we suppose that type (i) —g# exists. Thus, here, there is
no need to consider (ii) —g7 differentiability.

Definition 9. Consider a continuous real-valued mapping ¥
and there is an improper fuzzy Riemann-integrable mapping
exp (—w/0)e®(S3) on [0, +00). Then, the integral [* exp (
~w/0)e®(F)dS is known to be the fuzzy Shehu transform,
and it is stated over the set of mappings [39-42]:



S= {cb(g): 34, py,p, >0, |D(S)| < A exp <?) Lif S e (-1) x [0,+oo)},
J

as

S[B(S)] = S(w,0) = J;OO exp (? s) 0 D(I)dS, w, 0> 0.
(16)

Remark 10. In (50), @ fulfills the assumption of the decreas-
ing diameter @, tiameter @ of a fuzzy mapping @. If 0 =1,
then fuzzy the Shehu transform is red % Laplace transform
[39-42].

(17)

Furthermore, considering the classical Shehu transform
[39-42], we obtain

S[D(S57)] :J exp (?s)g(s;r)ds, (18)

0

and

S[B(S:7)] = J;OO exp (S)D(SindS. (19)

Then, the aforesaid expressions can be written as
S[D(S)] = (S[@(S57)], S[D(S37)]) = (S(w, 0), S(w, 0)).
(20)

Then, we will define the fuzzy Shehu transformation of
the Caputo generalized Hukuhara derivative {;, 250(S).

Definition 11. Suppose there is an integrable fuzzy-valued
mapping 5 Z5P(J), and O(S) is the primitive of {5
DED(S) on [0, +00), then, the CFD of order v is presented
as [39-42]

W

= (2) esfem))e Y (£

k-1
a)v " qu(K)(O),ve (r—1,7],

(1)
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_ ((g)”s[@(s )] - ; ) oo™ (0:r),
(gﬂq&m—géf“WWm)

(22)

Bokhari et al. defined the fractional derivative of ABC
operator in the sense of Shehu transform. Furthermore, in
the context of a fuzzy Shehu transform, we extend the con-
cept of fuzzy ABC fractional derivative as follows.

Definition 12. Consider ® € CF[0,s] N LF[0,s] such that &(

F) =D(S, ), O(S, r)], r€[0,1] ; then, the Shehu transfor-
mation of the fuzzy ABC of order v € [0, 1] is defined as fol-
lows:

S[g# D5 D(S)] = % o (V(o, w)e 5cb(O)).

(23)

Furthermore, using the fact of Allahviranloo [39], we
have

B(v)
1-v+v(o/w)”

= (#:()a/d))” (X(a,a);r) - g(D(O;r)), (24)

' B(v) . 0= o
1—v+v(a/()9 (V(a,w, ) (I)CD(O’ ))>

© (V(o, w)© g(i)(o))

3. Main Work

In this section, we investigate our proposed model for a
semianalytical solution. For this, we use the Shehu transform
of the Atangana-Baleanu fractional differential operator
along with iterative transform method as
S[*DFD(E, 9)]
- 5[1)%&:((:, £.3)+ DID(LE ) + k(NF(LET)),

where v € (0, 1]; therefore, the Shehu transform of (25) is

#\Yga/w)v (5)2¢50

- 5[132&3((, £,.S) +DIO(E ) + k(N F (L&, s‘)}.

B(v)
1-v+v(o/w)”

S[D(.8,9)] -

(26)
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On using the initial condition, we obtain

3] . 1-v+v(o/w)®

w B(v)

: [ngb((, £ S)+ DIO(.ES) +k(NF(LE 5)} .

s@@Es) -2

Decompose the solution as @({, &, F) = Y2 @, ({, & I);
then, (27) implies

5y B,0.69)
n=0
g, 1- fw)” < - ~
_ g(wf) N v[;(\;()a w) ¢ D?);)%(C:E»«S) (28)
+D§ién(c,f,3)+1}(r)9‘((,s,5) .
n=0

Take parts of the solution by choice of comparison as

5[@0((, £3)] = g(ig) + 1—\’[;(\;()0/(0)"

S [lz(r)gr(c, £, 5)} .

_1-v+v(o/w)”

S[@1689)] =~ SDiP(G69) + D2y (0.8 3]

_1-v+v(o/w)”

S[@,(0,&9)] = B(Y) S[D{D, ($,€ ) + DD, ({6, )] ¢

~ _1-v+v(o/w)’

S[@,1(6:6,9)] = B(v) S[D7®, (88, 9) + DD, (8§, )]

(29)
Taking the inverse Shehu transform, we obtain

1-v+v(o/w)”

Qo(() E’S) :g((’ E) +(§_1 |: B(V)

smn%masﬂ,

@@@srvma+s1Fl%%§ﬂfSMmg@asﬂ,

D EF)=5" %5[1)@0((, §9) + D0y E.9)] |
1> - / v 2 7 s 2 T ~ 1
0,8 %) =67 LS00 8 %)+ D0 8. )
- Jw) |
0,053 =5 [F g 5D (06 %) + D (0.£ )|

1-v+v(o/w)”

0,089 = 7 [ L S0k 0.6, 9) < 20, 0 £ )

1-v+v(o/w)”

@069 =7 [ (070, 0.6,9) + i, 0.6, 9) |

_ L [1=v+v(o/w)”

®,.(083)=¢ B(v) S[D70, (6,4, B) + D, (3,6, 9)] |-

(30)
Thus, the solution becomes
D 88) =268, 8) + D, (3,8, ) + 9, (3,5, T+,
(31)
DLE D) =D ((EF) + D (LES) + Dy ((E F) .
(32)

Equation (31) is the solution in series form.
4. Numerical Examples

Example 1. The first example is of a fuzzy fractional gas dynam-
ics equation along with a fuzzy initial condition, as follows:

wepsa5)+ 069 28 o 5)0-a.9)

=0,0<v<1,0<(<1,

(33)
D((,0) =ke®. (34)
Using the scheme of Equation (30), we obtain
D((, S) =k(r)e ™, (35)
@y(0, ) = k(r)e™, (36)

&
NI

CUR TR

3) =k(r)et — v -Vv)
@03 =k g { g 1AV 69

—

. ;1 vgY _ Y N2
D,((,F) =k(r)e () {F(2v+1) +2v(1-v) ( ] +(1-v) },
(39)
D S kel L ﬂ _ S —v)?
D,(¢, ) =k(r)e [Bz(v) {F(2v+ 0 +2v(1 v)F vil) +(1-v) },
(40)
- - 1 v3539 5 g2 5 59
@,(8.3) =k(r)e {Bs—(w{m Ay PO ey 1)}’
(41)
NI | Vg ) g , g
D;((, ) =k(r)e (B3(v) {F(3v+ ) +3v3(1 —v)m +3v(1-v) m}
(42)

In a similar fashion, we can obtain the higher terms. The
series solution is obtained using Equation (31); therefore, we
write
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FiGurek 1: First graph shows that three dimensional fuzzy lower and upper branch graph of analytical series solution and second graph the

different fractional-order of v.

D, F) = By((, F) + D (5, D) + By (0, ) + By((, ) + By((, F) -

(43)
while, in upper and lower portion form, it is

D0, 3) =Dy (§ F) + @0, ) + Dy (§, F) + @5(0, ) + Dy (G, )+

+k(r)e’ le(v) {F(;v le) +2v(1 - v) (SV 5 +(1 —v)z}
rk(r)et Bj(v) {F(V;fiel) F3(1-v)
r(jzil) +3v(1 V)zf(vsj—l)}
(46)
O )=k 4kt g { S 1w
+k(r)e* le(v) {ijfzvl) +2v(1-v)
r(i TR ‘V)Z} +k(ret B31(v) (47)
g% v
{rg\i Y +3v2(1-) r(;+ 3

The exact solution of equation (33) is given as
D((, ) =ke ™S, (48)

Figure 1 indicates how the efficiency of various (upper and
lower bound accuracy) surface plots for example 1 connect with
the fuzzy Atangana-Baleanu operator and Shehu transforma-
tion are being showed in this research. Figure 2 shows that
the lower and upper bounded graph of two dimensional. The
pattern identifies the fluctuation in the mapping (¢, §) on
the space coordinate & with the considering of J and the uncer-
tainty parameter re[0, 1]. The figure shows that, as time passes,
the mapping @({, ) will become more intricate.

Example 2. The second example is of a fuzzy fractional gas
dynamics equation along with a fuzzy initial condition, as
follows

ABCDED(, F) + D¢ F) acbggm -0, 3)(1-D((,)) log b
=0,0<v<l, 0<{<1,

(49)
(L, 0)=kb~. (50)

Using the scheme of Equation (50), we obtain
D,((,S) = k(b (51)
Dy (L, §) = k(r)b™s, (52)

logh [ vG"
< - 108 _

D,(¢, ) =k(r)b B(v) {F(v+1) +(1 v)}, (53)
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FIGURE 2: First graph shows the two-dimensional fuzzy lower and upper branch graph of analytical series solution and second graph the

different fractional-order of v.

- ¢ log b{ v

e e ] I

- _ (logb)* [ ¥v?3* 3 5
D,(¢, F) =k(r)b™* () {FQV+1)+zw1—th;:ﬁ4¢1—v)}
(55)

e o (logb) [ VS 3" 2
®ACJ)_Mﬂh<B%v){f@;:ﬁ+2w1_wfﬁui)+“_v)}
(56)

@3(()5) =

oo (logh)’ [ v*gY I . 9
k(r)b B \TeveD) +3vi(1 V>7F(2v+1) +3v(1-v) T

(58)

In a similar fashion, we can obtain the higher terms. The
series solution is obtained using Equation (67); therefore, we
write

While, in upper and lower portion form, it is

D5, F) =Dy (5, F) + @y (5,F) + Dy (8, F) + D3(8,F) + Dy (8, F) -1,

(60)

D, F)=Dy(L,F) + D, (3, ) + Dy (0, B) + D3($, I) + Dy (4, )+

(61)
- <, ¢ logh [ vg¥ Yy
o, %) =k sk gE {2 e - |
¢ (log by’
+k(rb* B
{ +2v v)ﬁ+(l—v)2}
(logb)
+k(r)b
+k(r) ()
V3339 5 32\' 09
'{m”v (=) gy *3 0= (v+1>}+“"
(62)

B, F) = k()b + K(r)b s 280

B(v)
vgY — ¢ (log b)?
. {7“V+ 3 +(1 —v)} +k(r)b™* 20)

V2c~2v v 5
. {m+2v(l —v)m +(1-v) }

log b)* [ v} 302
I'3v+1)

k(r b_((
O )

32\) 59
+3v(1 —v)2}+-~.

T(2v+1) T(v+1)
(63)
The exact solution of equation (50) is given as
D, 3) =kb 3. (64)
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Figure 3 indicates how the efficiency of various (upper
and lower bound accuracy) surface plots for example 1 con-
nect with the fuzzy Atangana-Baleanu operator and Shehu
transformation is being shown in this research. Figure 4
shows that the lower and upper bounded graph of two
dimensional. The pattern identifies the fluctuation in the
mapping @({, F) on the space coordinate & with the consid-
ering of § and the uncertainty parameter ref0, 1]. The figure
shows that, as time passes, the mapping @(¢, §) will become
more intricate.

Example 3. The third example is of a fuzzy fractional nonlin-
ear homogenous gas dynamics equation along with a fuzzy
initial condition, as follows

00((, )
03
0<{<1,

ABCDED (L, T) + D F)

DB (1-DE, D)) +e 0 (65)

=0,0<v<l,

B(,0) = 12(1 - e“). (66)
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1.5 2

Using the scheme of Equation (65), we obtain In a similar fashion, we can obtain the higher terms. The
series solution is obtained using Equation (71); therefore, we
(8, %) =k(r)(1-¢*), (67) ~ write
By(0,F) = K(r) (1 B e“), (68)  PUD)=0y((8) D0 9)+ D0, 9) + B(0,9) + By (0, St
(73)
v
0,6%) =k g o + 09
B(v) (I'(v+1) While, in upper and lower portion form, it is
1 VS
k(e = (69)
B2 (v) \T(2v+1) - N N _ _ _
o D5 T) =Dy (8,F) + 21 (5, F) + D, (8,F) + D3(8F) + 2y (8 F) 4,
2v(1- 1-v)* %,
+2v( V)F(v+1)+( v)} (74)

_—_— Vg (75)
k(e (BZ(V) T(2v+1) 70)
3 5
t2v(1-v) (v+1) +H1-v) } 9((,5)=k(r)(1—e-<“) —k(r)e*%
[ 2 — 1 V3539 2 va" -V —k(r)e” (1)2
®,(0,9) = —k(r) ‘Bs(v){mm) V(1-v) " {Tevn 00} K0 g
71 22V la-a%
S 2 g’ hd 2v(l-v 1-v)?
.[‘(2\;+1) +3v(1 V) F(v+l)}, F(2v+zi; ( 3 )1;( +1> +( ) }
~ Vg3 5
o 51 ke - . —k(r)e‘?_B3(V) {7F T +3vi(1-v)
2(6, ) = —k(r) B |Tev+ D) vi(1l-v) - 50
S , g (72) '1“(2v+1) +3v(1-v) F(v+1)}+m’
——— +3v(l-v) ——},
r'2v+1) I'(v+1) (76)
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FIGURE 6: First graph shows the two-dimensional fuzzy lower and upper branch graph of analytical series solution and second graph the

different fractional-order of v.

D((, ) = I_c(r) (1 - e_(> - lz(r)e"(%
Vs o (1)
S M B

I'(2v+1) I'(v+1)
(77)
The exact solution of equation (65) is given as
B, 9) = 12(1 - e-<+5). (78)

Figure 5 indicates how the efficiency of various (upper
and lower bound accuracy) surface plots for example 1 con-
nect with the fuzzy Atangana-Baleanu operator and Shehu
transformation is being shown in this research. Figure 6
shows that the lower and upper bounded graph of two
dimensional. The pattern identifies the fluctuation in the
mapping @({, ) on the space coordinate & with the consid-
ering of § and the uncertainty parameter ref0, 1]. The figure
shows that, as time passes, the mapping @(¢, ) will become
more intricate.

5. Conclusion

This investigation is aimed at providing a semianalytical
result to the fuzzy fractional third-order KdV equations by

considering the Atangana-Baleanu fractional derivatives.
An important example has confirmed the result obtained.
Also, we have provided graphs of the numerical solution at
numerous fractional orders. As seen in the figures, the plots
will close with the curve at classical order 1 when the
fractional-order v approaches its integer value. Hence, we
noted that fractional calculus also identifies the global nature
of the dynamics of the equations concerning the fuzzy idea.
We will use this approach to more dynamics of the models
that involve fuzzy with future study. In future research, this
technique can be implemented to obtain analytical and
approximate results of perturbed fractional differential equa-
tions under the uncertainty equipped with nonclassical and
integral boundary conditions in the sense of the Atangana-
Baleanu operator.
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