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Novel application 
of automated machine learning 
with MALDI‑TOF‑MS for rapid 
high‑throughput screening 
of COVID‑19: a proof of concept
Nam K. Tran1*, Taylor Howard1, Ryan Walsh2, John Pepper3, Julia Loegering1, 
Brett Phinney1, Michelle R. Salemi1 & Hooman H. Rashidi1*

The 2019 novel coronavirus infectious disease (COVID‑19) pandemic caused by severe acute 
respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has created an unsustainable need for molecular 
diagnostic testing. Molecular approaches such as reverse transcription (RT) polymerase chain reaction 
(PCR) offers highly sensitive and specific means to detect SARS‑CoV‑2 RNA, however, despite it 
being the accepted “gold standard”, molecular platforms often require a tradeoff between speed 
versus throughput. Matrix assisted laser desorption ionization (MALDI)—time of flight (TOF)—mass 
spectrometry (MS) has been proposed as a potential solution for COVID‑19 testing and finding a 
balance between analytical performance, speed, and throughput, without relying on impacted 
supply chains. Combined with machine learning (ML), this MALDI‑TOF‑MS approach could overcome 
logistical barriers encountered by current testing paradigms. We evaluated the analytical performance 
of an ML‑enhanced MALDI‑TOF‑MS method for screening COVID‑19. Residual nasal swab samples 
from adult volunteers were used for testing and compared against RT‑PCR. Two optimized ML models 
were identified, exhibiting accuracy of 98.3%, positive percent agreement (PPA) of 100%, negative 
percent agreement (NPA) of 96%, and accuracy of 96.6%, PPA of 98.5%, and NPA of 94% respectively. 
Machine learning enhanced MALDI‑TOF‑MS for COVID‑19 testing exhibited performance comparable 
to existing commercial SARS‑CoV‑2 tests.

�e 2019 novel coronavirus infectious disease (COVID-19) pandemic caused by severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) has created a signi�cant demand for  testing1,2. In the United States, delays 
in establishing high throughput testing capacity early in the pandemic and subsequent supply shortages limited 
the nation’s ability to control the spread of COVID-193,4.

SARS-CoV-2 diagnostic testing relies on molecular or antigen platforms (Table 1)5. Molecular methods such 
as reverse transcription (RT) polymerase chain reaction (PCR) o�ers highly sensitive and speci�c means to detect 
SARS-CoV-2 RNA. Unfortunately, despite molecular technologies serving as the accepted “gold standard” for 
SARS-CoV-2 diagnostics, these techniques are o�en dependent on constrained supplies chains (e.g., molecular 
grade reagents and consumables, processing plates/pipettes, extraction kits, etc.)6. Moreover, molecular platforms 
typically tradeo� between speed versus  throughput6,7. Rapid (< 20 min) point-of-care molecular platforms, for 
example, are o�en being limited to testing one sample at a time, while high throughput laboratory-base instru-
ments tests in batches every few hours—realistically producing results within 24–48 h. Antigen testing o�ers a 
unique alternative to molecular diagnostics by detecting SARS-CoV-2 proteins rather than  RNA8,9. However, 
current data suggests antigen methods exhibit lower sensitivity and speci�city especially when testing asymp-
tomatic populations. To this end, there is a critical need for a highly sensitive and speci�c high throughput method 
that is cost-e�ective, and rapid, for screening COVID-19. 
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Matrix assisted laser desorption ionization (MALDI)—time of �ight (TOF)—mass spectrometry (MS) has 
been proposed as a potential solution for COVID-19  testing10. Brie�y, MALDI-TOF-MS has been employed in 
clinical microbiology over the last decade to accelerate identi�cation of bacterial and fungal species from positive 
culture  samples11,12. �e technique produces mass spectra that represents ionizable protein components found 
in the sample that may correspond with a pathogen and/or disease state. For any given sample, there could be 
numerous mass spectra peaks perhaps hundreds or thousands—making analysis of complex samples or diseases 
challenging. Current advances in machine learning approaches complements and enhances performance of these 
MS-based technologies to analyze these complex samples. In this paper, we describe a proof-of-concept novel 
automated machine learning (ML) enhanced MALDI-TOF-MS approach for testing nasal swabs from patients 
with suspected COVID-19. An automated ML platform was used for data analysis.

Methods
We conducted a bench analytic study to evaluate the performance of the MALDI-TOF-MS COVID-19 testing 
method using SARS-CoV-2 RNA PCR positive and negative samples. �e goal of this study was to determine 
the accuracy along with the positive percent agreement (PPA) and negative percent agreement (NPA) of the 
MALDI-TOF-MS method to the PCR method that was used as a comparative approach.

Study population/samples. �e study was approved by the UC Davis Institutional Review Board. 
Informed consent was obtained was obtained for 226 nasal swab samples (anterior nares) preserved in saline 
transport media were obtained from the UC Davis Clinical Laboratory Biorepository. All methods were carried 
out in accordance with relevant guidelines and regulations. Patients included asymptomatic and symptomatic 
populations including those meeting COVID-19 testing criteria (i.e., patients who presented with or without 
COVID-19 and/or in�uenza-like illness symptoms at the time of collection) as well as asymptomatic apparently 
healthy volunteers as part of workplace screening. Saline viral transport media was used due to its widespread 
availability and compatibility with MALDI-TOF-MS techniques. Commercially available swabs (Copan, Mur-
rieta, CA) were used for collection. All samples were stored at − 70 °C prior to testing.

MALDI‑TOF‑MS method. �e study testing work�ow is illustrated by Fig. 1. Mass spectrometry testing 
was performed on a Shimadzu 8020 (Shimadzu Scienti�c Instruments, Columbia, MD) MALDI-TOF-MS ana-
lyzer. Sample processing was conducted under a Class II Biosafety Cabinet. Nasal swabs were removed from 

Table 1.  Comparison of common emergency use authorized diagnostic methods for evaluating COVID-19 
tests. ABI applied biosciences, Ag antigen, CDC Centers for Disease Control and Prevention, ddPCR digital 
droplet PCR, E envelope protein gene, IMCA immunochromographic membrane assay, LFIA lateral �ow 
immuno�uorescent assay, LoD limit of detection, N nucleoprotein gene, NDU nucleic acid test detectable units, 
NPA negative percent agreement, ORF open reading frame, PCR polymerase chain reaction, PPA positive 
percent agreement, RNA ribonucleic acid, RT reverse transcription, S spike protein gene, TCID50 median 
tissue culture infective dose, TMA transcription mediated ampli�cation. a Random access capable. b Instrument 
model dependent.

A. Molecular assays

Manufacturer/Platform Method �roughput RNA targets LoD (NDU/mL) PPA (%) NPA (%)

Abbott Molecular/Alinity m RT-PCR 300 test/8  ha N1/N2 2700 > 99.0 > 99.0

Becton Dickenson/BDMax RT-PCR 12 tests/3 h N1/N2 1800 > 99.0 > 99.0

BioFire Defense/FilmArray RT-PCR 1 test/45 min ORF1ab/ORF8 5400 > 99.0 > 99.0

Bio-Rad/QX200 ddPCR 96 test/6 h N1/N2 600 > 99.0 > 99.0

CDC/ABI 7500 RT-PCR 21 test/5 h N1/N2 18,000 > 99.0 > 99.0

Cepheid/GeneXpert RT-PCR 1–16 tests/1  hb N2/E 5400 > 99.0 > 99.0

Hologic/Panther Fusion RT-TMA 500 tests/8 h ORF1ab 600 > 99.0 > 99.0

�ermo Fisher/Amplitude RT-PCR 3000 tests/24 h ORF1ab/N/S 180 > 99.0 > 99.0

Roche Molecular systems/cobas 6800 RT-PCR 94 tests/3 h ORF1ab/E 1800 > 99.0 > 99.0

Roche Molecular systems/cobas Liat RT-PCR 1 test/20 min ORF1ab/N 5400 > 99.0 > 99.0

B. Antigen assays

Manufacturer/platform Method Ag targets LoD (TCID50/mL) PPA (%) NPA (%)

Abbott Diagnostics/BinaxNow COVID-
19 Ag

ICMA N 140.6 84.6 98.5

AccessBio/CareStart COVID-19 Ag ICMA N 6.4 ×  103 83.3 100.0

Becton Dickenson/Veritor IMCA N 1.4 ×  102 84.0 100.0

Ellume Limited/Elumme COVID-19 
home

LFIA N 1.0 ×  103.8 91.0 96.0

Lumira Dx/LumeriaDx SARS-CoV-2 
Ag test

LFIA N 2.8 ×  105 97.6 96.6

Quidel/So�a-2 LFIA N 3.4 ×  105 96.7 100.0
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their respective saline transport media and �rst plated directly onto the MALDI-TOF-MS target plate. �e tip 
of the swab was lightly tapped onto the target plate by feel to produce a ~ 1 μL drop in the well. A�er the swab 
was plated, this was followed by addition of 1 μL mixture of α-cyano-4-hydroxycinnamic acid (CHCA), etha-
nol, acetonitrile, and water solution with 3% tri�uoroacetic acid (TFA). �e use of CHCA was based on known 
performance and prior MALDI COVID-19 publications in this  area10,13,14. To prepare the matrix solvent, mix 
3.3 mL of high-performance liquid chromatography (HPLC) grade acetonitrile, 3.3 mL HPLC grade ethanol and 
3.3 mL of deionized high purity water (i.e., Milli-Q or HPLC grade). To this, add 300 mL of tri�uoroacetic acid 
(TFA). Carefully mix the solution. �en weight out 10 mg of CHCA into a 1.5 mL microcentrifuge tube and add 
1 mL of the matrix solvent for a �nal concentration of 10 mg/mL.

Plated samples were then inactivated by ultraviolet (UV) irradiation for 10 min for inactivation of pathogens 
on the MALDI-TOF-MS plate. �erea�er, the target plate was transferred to the MALDI-TOF-MS analyzer for 
testing. MALDI-TOF-MS settings included a mass range of 2000–20,000 Daltons. Ten laser shots were �red 
for each pro�le at a frequency of 100 Hz using a dithering pattern (total of 1000 shots per well) and Gaussian 
smoothing method. Post-acquisition baseline subtraction and smoothing was performed using MALDI Solutions 
so�ware (Shimadzu Scienti�c Instruments, Columbia, MD) (parameters: Baseline Filter Width = 250, Smooth-
ing = Gaussian, and Smoothing Width = 50, Peak Width = 5). Peak picking was also performed by MALDIQuant 
so�ware (Shimadzu Scienti�c Instruments, Columbia, MD). �reshold Apex algorithm was used for peak selec-
tion where the peak mass is assigned by selecting the highest point on the peak. Based on this protocol, the 
MALDI-TOF-MS would complete 48 runs (samples and quality control) every 20 min. Mass spectra were then 
standardized prior to analysis by ML with peak selection/alignment performed using MALDIQuant so�ware.

Comparative method. Residual saline transport media was tested by RT-PCR using Food and Drug 
Administration (FDA) emergency use authorized (EUA) assays (Table 1)5. �ese EUA assays included the cobas 
6800 (Roche Molecular Systems, Pleasanton, CA), and digital droplet RT-PCR (Bio-Rad, Hercules, CA). Brie�y, 
the cobas 6800 SARS-CoV-2 EUA assay targets open reading frame 1ab (ORF1ab) and envelope protein (E) gene 
regions, while the digital droplet RT-PCR method targeted two regions within the nucleocapsid (N) protein 
region. Both assays report sensitivity and speci�city of > 99% based on their FDA EUA documentation. �e use 
of two di�erent assays was due to supply constraints during the pandemic.

Machine learning. �e machine learning (ML) aspects of this study were carried out through the Machine 
Intelligence Learning Optimizer (MILO) automated ML platform (MILO ML, LLC, Sacramento, CA) which 
has been published in several recent  papers15–18. Brie�y, MILO includes an automated data processor, a data fea-
ture selector (ANOVA F select percentile feature selector and RF Feature Importances Selector) and feature set 
transformer (e.g., principal component analysis), followed by its custom supervised ML model builder using its 
custom hyperparameter search tools (i.e., its custom grid search along with its random search tools) to help �nd 
the optimal hyperparameter combinations within the variety of its embedded supervised algorithms/methods 
(i.e., deep neural network [DNN], logistic regression [LR], naïve Bayes [NB], k-nearest neighbor [k-NN], sup-
port vector machine [SVM], random forest [RF], and XGBoost gradient boosting machine GBM]). Ultimately, 
MILO employs a combination of unsupervised and supervised ML platforms from a large set of algorithms, scal-
ers, scorers and feature selectors/transformers to create thousands of unique ML pipelines (Fig. 2) that generates 
over a hundred thousand models that are then statistically assessed to ultimately identify the best performing 
model for one’s given task.

For this study, we imported the trial data into MILO using COVID-19 status as the outcome measure for 
analysis. �e aforementioned functions were then performed automatically by MILO. Information is assessed to 
ensure model training and the initial validation step is based on a balanced dataset. Initially in the build phase of 
MILO, the �rst balanced Dataset A is split into training and validation test sets in an 80–20 split with a 10 k-fold 
cross validation step, respectively. Since many algorithms bene�t from scaling, in addition to using the unscaled 

Figure 1.  Conceptual drawing of study work�ow. �e study work�ow consisted of patients providing a nasal 
swab specimen preserved in saline transport media. Media was tested by RT-PCR (Step 1) and swabs plated 
onto the MAALDI-TOF–MS platform (Step 2). Mass spectra were standardized (Step 3) and then analyzed 
using machine learning via the Auto-ML MILO platform (Step 4). COVID-19 status is then exported to a smart 
device app (Step 5).
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data, the training dataset also underwent two possible scaling transformations (i.e., standard scaler and minmax 
scaler). To evaluate the e�ect of di�erent features within the datasets on model performance, a combination 
of various statistically signi�cant feature subsets (i.e., various MS peaks) or transformed feature sets were also 
selected to build new datasets with less features or transformed feature sets to feed into the various aforemen-
tioned supervised algorithms. �e features selected in this step are derived from several well-established unsuper-
vised ML/statistical techniques including ANOVA F-statistic value select percentile, RF Feature Importances or 
transformed using its principal component analysis  approach9. A large number of supervised machine learning 
models are then built through this approach from these datasets with optimal parameters through MILO’s various 
supervised algorithms (i.e., DNN, SVM, NB, LR, k-NN, RF, and GBM), scalers, hyper-parameters, and feature 
sets. Notably, the �nal validation of each model within MILO is not based on the 20% test set mentioned earlier 
that generated from the initial training dataset (i.e., Dataset A) but rather each ML model’s true performance is 
based on its predictive capability on the independent secondary dataset (Dataset B). Ultimately, for �nal model 
validation, MILO’s thousands of generated models are then individually passed onto this next phase of the 
MILO engine generalization assessment phase (Fig. 2). �is secondary testing approach markedly reduces the 
possibility of over�tted ML models since the model’s �nal performance measures are based on an independent 
secondary dataset only (Dataset B) as noted above. �e �nal machine learning model performance data results 
are then tabulated by MILO’s interface and reported as clinical sensitivity, speci�city, accuracy, negative predic-
tive value (NPV), positive predictive value (PPV), F1 score, receiver operator characteristic (ROC) curves, and 
brier scores with reliability curves.

Statistical analysis. Statistical analysis was performed using JMP So�ware (SAS Institute, Cary, NC). Area 
under the ROC curve analysis was also performed, as well as calculating PPA and NPA which served as sur-
rogates for sensitivity and speci�city. �e use of PPA and NPA is recommended by the FDA due to not having a 
proven “gold standard” for SARS-CoV-2 detection at this  time5,19. An independent Principal component analysis 
(PCA) within scikit learn was also performed on the greater than 600 MS peaks evaluated here and it’s PC1, 2 
and 3 components (results not shown) highlighted many of the shared peaks noted within the MILO feature 
selector approach (i.e., RF Importances features [25%]) that found one of the best performing ML models for 
this study.

Figure 2.  Machine intelligence learning optimizer Fig. 1. �e MILO auto-machine learning (ML) infrastructure 
consists of beginning with two datasets: (a) balanced data (Dataset A) set used for training and initial validation, 
and (b) an unbalanced dataset (Dataset B) for generalization/secondary testing. MILO initially removes the 
missing values followed by providing several scaling options for the given dataset which is then assessed by the 
so�ware. Unsupervised ML is then used for feature selection and feature engineering. �e generated models 
are then trained on a subset (80%) of dataset A (depicted as Dataset 1 in the image above) and then initially 
tested with the remaining subset (20%) of Data Set A during its supervised ML stage. Following this training/
initial validation stage, each of the ML models generated in this stage are then secondarily tested on Dataset 
B (depicted as Dataset 2 in the image above) for generalization testing. Selected models can then be deployed 
therea�er as joblib �les. For this study, we imported the study data into MILO using COVID-19 status as the 
outcome measure for analysis. �e following functions are then performed automatically by MILO.
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Results
Study population. A total of 226 samples were collected with 199 tested by both MALDI-TOF-MS and 
RT-PCR. Twenty-seven were invalid due to polymer contamination of the sample. For the remaining 199 sam-
ples tested, 107 samples were COVID-19 positive (28 asymptomatic and 79 symptomatic) with 92 determined 
to be negative (Fig. 3). Mean (SD) viral load as measured by RT-PCR cycle threshold (Ct) values was 25.7 (10.9) 
cycles with a range of 14.5–36.8 cycles. Cycle threshold values were similar between Datasets A and B. Examples 
of MALDI spectra for COVID-19 PCR positive versus PCR negative patient samples area shown in Fig. 4A,B.

Data analysis. Prior to ML analysis, an independent principal component analysis was performed 
(Fig. 4B,C). �erea�er, ML analysis was employed to build and identify the best performing model for the task of 
distinguishing the COVID positive cases from the negative cases. Figure 4D is an example of a COVID positive 
patient spectra overlaid over a negative patient spectra. MILO’s automated ML engine was initially trained on a 
selected subset of the aforementioned data with 82 cases (42 COVID-19 negative and 40 COVID-19 positive) 
known as Dataset A used for generating the large number of the ML models with initial validation followed by 
testing each of these models on a secondary generalization Dataset B comprising the remaining 117 cases (50 
negative cases and 67 positive cases). MILO produced a total of 379,269 models and identi�ed two models with 
high performance characteristics within 11 h (Fig. 5). �e �rst is a DNN model with 75% of the total features/
MS peaks (487 peaks [range 1993.91–19,590.89 m/z]) that exhibited an accuracy of 98.3% (95% CI 94.0–99.8%), 
PPA of 100% (95% CI 94.6–100.0%), NPA of 96% (95% CI 86.3–99.5%), with an area under the ROC of 99.9 
(95% CI 65.6–100.0). �e second model is a GBM model with 25% of the total features/MS peaks (166 peaks 
[range 2002.72–19,590.89 m/z]) that exhibited an accuracy of 96.6% (95% CI 91.5–99.1%), PPA of 98.5% (95% 
CI 92.0–100.0%), NPA of 94% (95% CI 83.5–98.8%), with an area under the ROC of 99.0 (95% CI 86.7–100).

Discussion
�e COVID-19 pandemic has created a critical shortage of high performance, high throughput, and rapid 
solutions for detecting SARS-CoV-2  infection1,2. O�en, many of these attributes are mutually exclusive, with 
platforms producing results in < 1 h having lower throughput and/or exhibiting lower clinical sensitivity and 
speci�city compared to their laboratory  counterparts3,4. Although, as of this paper, supply chains have improved 
to support testing of symptomatic individuals in a hospital setting, resources remain limited to facilitate and 

Figure 3.  Study datasets. A total of 226 asymptomatic and symptomatic patients were enrolled. Twenty-seven 
samples were invalid due to polymer contamination, preventing MALDI-TOF-MS analysis. �e remaining 
199 were successfully tested by MALDI-TOF-MS and produced spectra. �ese data were divided into Datasets 
A and B, with Dataset A serving as the training/initial validation dataset. Optimized models produced from 
Dataset A were then secondarily tested with Dataset B for generalization to assess their true performance.
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Figure 4.  Example MALDI-TOF-MS spectra and PCA analysis of COVID-19 positive vs. negative samples. (A) 
Illustrates the average MALDI-TOF-MS spectra for patients that were SARS-CoV-2 RNA PCR positive (pink) 
versus PCR negative (blue). Zoomed in regions of interested are also shown. X-axis is mass to charge (m/z) 
ratio and Y-axis is relative abundance. (B, C) Show unscaled and scaled PCA, respectively, for the 199 samples 
(red = positive, blue = negative) tested by the MALDI-TOF-MS method. (D) A pair of example (COVID-19 
positive vs. negative) patients.
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enable widespread rapid screening of asymptomatic individuals necessary for reopening businesses, schools, 
and other non-hospital settings. Novel molecular solutions have been devised using automated RT-PCR and 
sequencing platforms. Unfortunately, these mass testing platforms trade high throughput with speed—exhibiting 
real-world TATs of 24–48 h or even longer.

Our MALDI-TOF-MS approach attempts to address both throughput and speed limitations exhibited by 
molecular platforms, while maintaining high positive and negative percent agreement. Uniquely, MALDI-TOF-
MS does not detect viral RNA and the mass spectra peaks visualized in this technique represents ionizable 
contents collected from a nasal swab. As illustrated by our study, MALDI-TOF-MS spectra is highly complex, 
but patterns exist that is di�erentiable by PCA, but more importantly, by ML techniques that can then generate 
models that appear to di�erentiate COVID from non-COVID cases. �e use of ML for COVID-19 MALDI-TOF-
MS testing of nasal swabs collected in microbiological transport media (i.e., Cary Blair media) has been studied 
by another group and recently  published10 with a reported accuracy of 93.9%, and PPA of 95% and NPA of 93%.

Our study di�ers from Nachigall et al.10 in that we directly tested swabs rather than the transport media itself. 
Additionally, we used readily available saline as a preservative rather than Cary Blair media. Testing personnel 
consisted of a range of operators from pre-doctoral researchers (e.g., bachelor’s degree), non-laboratory physi-
cians, and clinical laboratory professionals (e.g., licensed clinical laboratory scientists). Personnel received one 
day of training to achieve su�cient competency to perform testing from sample plating to exporting results to 
the ML platform. Providing a diverse user base enables this test to be adapted to multiple settings and address 
personnel considerations de�ned under the United States Centers for Medicare and Medicaid Services Clinical 
Laboratory Improvement Amendment (CLIA).

�e dependence of ML also required innovative solutions. We accelerated development of ML models with 
improved percent agreement and eliminated programmer bias by utilizing a clinically validated auto-ML platform 
to identify optimized models in 11 h. As discussed in this study, as well as others, the manual programming of 
ML models is both laborious and prone to user bias. �ese data scientists would need to assess the performance 
of every feature combination, scaler, and other parameters across all types of ML techniques. Since it is not pos-
sible to accomplish this in a reasonable amount of time—especially during the pandemic, data scientists must 
base their ML development on their experience. �e use of MILO auto-ML enables stakeholders to evaluate 
the performance of every feature combination, scaler, and other parameters across a very large number of ML 
techniques in about 24 h. In the case of this study, MILO identi�ed two very promising ML models (DNN and 
GBM), both o�ering enhanced performance compared to the SVM based model proposed by Nachigall et al.10 
Notably, MILO’s best SVM (accuracy of 96.6%, and PPA of 98.5% and NPA of 94%), as a comparison, also out-
performed the SVM model proposed by Nachigall et al. (accuracy of 93.9%, and PPA of 95% and NPA of 93%) 
which further supports the need of use of such auto-ML platforms within this arena.

Frequent COVID-19 testing is key to reopening schools and businesses until herd immunity is  achieved20. 
However, this is not presently sustainable with molecular techniques and rapid antigen tests are still limited by 
reagent availability, and more importantly, false negative and false positive  rates8,9. MALDI-TOF-MS combined 
with ML o�ers several unique advantages over SARS-CoV-2 molecular and antigen testing. Firstly, the MALDI-
TOF-MS technique is rapid, with an analysis time of 20 min. Total turnaround time would be < 1 h and could be 
accelerated if multiple instruments are available to support random-access testing. Secondly, MALDI-TOF-MS 

Figure 5.  Receiver operator characteristic curves of the top performing ML models. �e �gure illustrates 
optimized deep neural network (A) and gradient boosting machine (B) ML models secondarily tested by 
Dataset B. For the deep neural network, the ML model used 75% of MS peaks (features) to yield a positive 
percent agreement of 100% (95% CI 95–100%), and negative percent agreement of 96% (95% CI 86–99%),  
with an area under the receiver operator curve of 0.9985. In contrast, the Gradient Boosting Machine ML model 
used only 25% of the MS peaks (features) to yield a positive percent agreement of 99% (95% CI 92–100%) and 
negative percent agreement of 94% (95% CI 84–99%) with an area under the receiver operator curve of 0.9904.
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can provide high throughput, with up to 46 samples per run with plus two levels of controls, it has the potential 
to perform up to 1104 analyses per day per instrument—limited by instrument down time (e.g., preventative 
maintenance, repairs, etc.) and incoming test volume. In contrast, high throughput commercial RT-PCR plat-
forms described in Table 1 require batch testing for optimal reagent use. As such, these instruments are suitable 
for reference laboratories that can provide results in 24–72 h. Lastly, the proposed MALDI technique is less 
dependent on complex supply chains, using readily available bulk chemicals such as acetonitrile, CHCA, ethanol, 
water, and TFA, whereas molecular assays require a long list of reagents including RNA extraction kits, master 
mixes, and molecular grade processing plates and pipettes which remain in short  supply6. �erefore, our approach 
provides an opportunity to be exploited for re-opening schools and businesses, where testing can be performed 
with both speed and scale. In order to operationalize this approach, patient registration, specimen collection, 
testing by MALDI-TOF-MS, and analysis by ML must work as a system rather than be deployed piecemeal. Fig-
ure 6 provides a conceptual model for ML-enhanced MALDI-TOF-MS integrated with secure mobile so�ware.

Limitations of this study include the use of frozen clinical specimens as a proof of concept. Proteomic pro�l-
ing of identi�ed peaks would also be needed to characterize the presence of viral proteins and host response 
factors. �is study was intended to determine if ML-enhanced MALDI-TOF-MS could di�erentiate between 
PCR positive COVID-19 patients versus those who tested negative. �e study did not evaluate the detection 
of other coronavirus or in�uenza like illnesses in the community. Notably, local “shelter in place” have greatly 
reduced in�uenza prevalence in the  community21. Polymer contamination of samples prevented ionization of 
27 samples—resulting in an invalid result. Sources of polymer include, but are not limited to the saline itself, 
specimen collection tube, and the swab. Polymer contamination is unfortunately a common challenge in mass 
 spectrometry22.

Conclusions
Machine learning—enhanced screening of COVID-19 in symptomatic and asymptomatic patients by MALDI-
TOF-MS exhibits acceptable positive and negative percent agreement for screening applications. �is approach 
may have great value for testing at satellite laboratories to rapidly screen large numbers of individuals requiring 
access to businesses, schools and other large facilities. Larger multicenter studies are needed to determine the 
feasibility of large-scale MALDI-TOF-MS-based COVID-19 detection for workplace screening and further re�ne 
ML models that encompass a range of negative COVID-19 vaccinated individuals, vaccinated individuals who 
still acquire COVID-19, and non-COVID-19 respiratory infectious diseases.

Data availability
�e datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Figure 6.  Conceptual model for near patient ML-enhanced MALDI-TOF-MS COVID-19 testing. �e Figure 
outlines the conceptual work�ow for our ML-enhanced MALDI-TOF-MS COVID-19 testing method when 
performed near patient. Individuals with unknown COVID-19 status register via a smart device app which links 
their identity with a unique quick-response (Q–R) barcode. �e Q-R code is paired to the nasal swab specimen 
which is self-collected under supervision. �e sample is tested by MALDI-TOF-MS and mass spectra analyzed 
by the ML algorithm to report out a COVID-19 result. COVID-19 individuals are allowed entry for 24 h 
until. COVID-19 positive/indeterminant individuals will be denied entry and/or require follow-up testing by 
molecular methods. Data from MALDI-TOF-MS is fed routinely to the automated ML platform for both quality 
assurance and continual re�nement of models. Total time from sample collection to result is < 1 h.
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