
Heredity (2020) 125:155–166
https://doi.org/10.1038/s41437-020-0329-5

ARTICLE

Novel approach to incorporate information about recessive lethal
genes increases the accuracy of genomic prediction for mortality
traits

Grum Gebreyesus 1
● Goutam Sahana 1

● A. Christian Sørensen1
● Mogens S. Lund1

● Guosheng Su1

Received: 21 January 2020 / Revised: 2 June 2020 / Accepted: 2 June 2020 / Published online: 12 June 2020
© The Author(s) 2020. This article is published with open access

Abstract
The genetic underpinnings of calf mortality can be partly polygenic and partly due to deleterious effects of recessive lethal
alleles. Prediction of the genetic merits of selection candidates should thus take into account both genetic components
contributing to calf mortality. However, simultaneously modeling polygenic risk and recessive lethal allele effects in
genomic prediction is challenging due to effects that behave differently. In this study, we present a novel approach where
mortality risk probabilities from polygenic and lethal allele components are predicted separately to compute the total risk
probability of an individual for its future offspring as a basis for selection. We present methods for transforming genomic
estimated breeding values of polygenic effect into risk probabilities using normal density and cumulative distribution
functions and show computations of risk probability from recessive lethal alleles given sire genotypes and population
recessive allele frequencies. Simulated data were used to test the novel approach as implemented in probit, logit, and linear
models. In the simulation study, the accuracy of predicted risk probabilities was computed as the correlation between
predicted mortality probabilities and observed calf mortality for validation sires. The results indicate that our novel approach
can greatly increase the accuracy of selection for mortality traits compared with the accuracy of predictions obtained without
distinguishing polygenic and lethal gene effects.

Introduction

Important fractions of deleterious mutations segregating in
diploid organisms are recessive alleles that cause fatal
effects when present in a homozygous state. In dairy cattle
breeds, intensive use of a limited number of elite breeding
sires through artificial insemination has led to the spread of
recessive lethal alleles in populations (e.g., Shuster et al.
1992; Agerholm et al. 2001). Recessive lethal alleles are of
considerable economic consequence in the dairy industry
because they cause calf and young stock mortality as well as
reproductive inefficiency (e.g., Cole et al. 2016). Calf
mortality represents a major economic loss for farmers,

poses great animal welfare issues, and threatens public
perceptions of the dairy industry. Therefore, efficient stra-
tegies for limiting the impact of recessive lethal alleles on
calf mortality are critical.

Several strategies have been proposed that involve the
use of genotype information to limit the harmful effects of
recessive lethal alleles (e.g., Charlier et al. 2008; Pryce et al.
2012; Cole 2015), including the possibility of their removal
through genome editing (Johnsson et al. 2019). Currently,
the most practiced approach in dairy breeding is to limit
carrier-to-carrier mating (Charlier et al. 2008). While such
an approach might be feasible with few lethal alleles seg-
regating in the population, it is becoming considerably more
difficult with the increasing number of detected recessive
lethal alleles (VanRaden et al. 2011; Fritz et al. 2013;
Sahana et al. 2013, 2016; Kadri et al. 2014; Hoff et al.
2017). Preselection based on carrier status reduces selection
intensity, consequently affecting genetic gains in econom-
ically important traits. In addition, the genetic causes of calf
mortality are also partly polygenic. Therefore, genomic
prediction of breeding values for calf mortality traits should
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take into account both polygenic and recessive lethal
components.

Several approaches have been proposed for incorporating
genotypic information of major genes into genomic pre-
diction for traits controlled by both “major” genes and
polygenic inheritance (e.g., Hoeschele 1988; Fernando and
Grossman 1989). However, the proposed models tradi-
tionally rely on the assumption of additive effects for major
quantitative trait loci (QTLs), as in the remaining genome-
wide markers (Cole 2015), and different weights, with the a
priori assumption of different effect sizes. Adopting such
approaches to model polygenic effects and recessive lethal
alleles simultaneously is problematic, as not only the effect
sizes but also the modes of gene action are different. The
effect of the heterozygous genotype for a recessive lethal
locus on an individual is the same as that of the homo-
zygous genotype of the wild type, but the effects on the
future mortality risk of offspring differ. Additional sources
of complexity in modeling the two effects simultaneously
are that different recessive lethal alleles might have different
penetrance levels and the fact that the mortality risk trans-
ferred to offspring depends on both penetrance and reces-
sive allele frequency. Therefore, fitting polygenic and
recessive lethal effects simultaneously in genomic predic-
tion models has been a challenge.

In this study, we hypothesize that modeling risk prob-
abilities from polygenic QTL effects and recessive lethal
alleles separately can improve the accuracy of selection for
mortality traits. The objective of this study is therefore to
present a strategy where a breeding animal’s risk with
regard to the mortality of its future offspring can be pre-
dicted in terms of probabilities for the recessive lethal
allele and polygenic risk components. In this approach,
risk probabilities from recessive lethal loci are computed
as a function of carrier status and the recessive allele
frequency in the population. We develop methodologies
for transforming genomic estimated breeding values
(GEBVs) into polygenic risk probabilities using normal
density and cumulative distribution functions. Simulated
data are used to test the advantages of the presented
approach by comparing its prediction accuracies with
those of an alternative approach where risk probabilities
are predicted without distinguishing polygenic and reces-
sive lethal allele effects.

Materials and methods

In this section, we present an approach that allows the
prediction of genetic risk posed to the survival of future
offspring by both the recessive lethal locus and polygenic
components of a breeding animal as the basis for selection
to improve mortality traits.

Risk probabilities from recessive lethal alleles

The computation of risk probabilities from recessive lethal
alleles is straightforward when using the carrier status of an
animal as inferred from its genotype and the recessive allele
frequencies in the population. Given the genotype of a
breeding animal, e.g., a sire, for a particular recessive lethal
locus, an offspring’s risk probability of succumbing to a
lethal gene is the probability that it receives two copies of
the recessive lethal allele. Assuming a locus i with recessive
lethal allele a and wild-type allele A, the probability of the
offspring’s mortality due to the lethal allele (hereafter
referred to as plethi) is the probability of the offspring having
an aa genotype. This can be computed given the sire’s
genotype and the frequency of the recessive allele in the
population (pa), which accounts for the probability of
receiving a copy of the lethal allele from a dam under the
assumption of random mating:

p lethið Þ ¼ p a from sire sire genojð Þ � pa: ð1Þ

Assuming complete penetrance and given three possible
outcomes of the sire’s genotype, i.e., AA, Aa, or aa, the
lethal risk probability at locus i for an offspring can be
given as:

Sire AA : p lethið Þ ¼ 0;

Sire Aa : p lethið Þ ¼ 0:5� pa;

Sire aa : p lethið Þ ¼ pa (however, the affected individual
may not be a breeding animal under complete penetrance).

In cases of recessive lethal alleles with a penetrance other
than 100%, the risk probability in Eq. (1) can be calculated
by multiplying by the penetrance level of a given lethal
allele:

p lethið Þ ¼ p a from sire sire genojð Þ � pa � penetrance :

ð2Þ

An individual might carry more than one recessive lethal
gene. Thus, the risk probability across all n loci can be
computed as:

p lethð Þ ¼ 1�
Yn

i¼1
1� p lethið Þð Þ: ð3Þ

Prediction of polygenic risk probabilities

Obtaining risk probabilities from the polygenic component
requires a transformation from GEBVs, which are predicted
using different genomic prediction models. Mortality-
related traits are often recorded as categorical outcomes,
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which are usually binary and hence non-normally dis-
tributed. Commonly used approaches for modeling cate-
gorical traits include threshold-liability (probit) and logistic
regression (logit) models. Despite their violations of nor-
mality assumptions, linear models (LM) have also been
employed in many studies for genetic analysis of categorical
traits (e.g., Rao and Xia 2000; Peñagaricano et al. 2011). To
accommodate the specific computations in the prediction of
GEBVs in these different models, we present strategies for
transforming GEBVs into polygenic risk probabilities as
implemented in probit model, logit model, and LM.

Liability threshold (probit) model

In genetic modeling of categorical traits, one of the most
commonly used approaches is the threshold model (Wright
1934). In the threshold model, the observed categorical
responses are assumed to be the outcome of an underlying,
normally distributed latent variable, often termed the liabi-
lity (l), in relation to a fixed threshold (τ). In the context of
mortality traits, the categories of response are usually
“survival,” denoted as event 0, or “death,” denoted as event
1, i.e., a binary response, during a given monitored period.
Accordingly, the observed categorical outcomes (y) are
linked to the underlying liability (l) such that:

y ¼ 1; if l>τ

0; if l<τ

�
: ð4Þ

Thus, the expected liability (η) is assumed to be a
function of the predictors such that:

η ¼ Xβ þ Za; ð5Þ

where η is the vector of all expectations ηi, β is the vector of
fixed effects, a is the vector of random additive genetic
effects, and X and Z are the design matrices for the fixed
and random effects, respectively. Thus, the true underlying
liability (l) will be the expectation plus the residuals such
that:

l ¼ ηþ e; ð6Þ

where l is the vector of all li and e is the vector of random
residuals. The underlying liability for each individual as a
linear function of the linear predictors can thus be rewritten as:

li ¼ ηi þ ei:

Combining Eqs. (4) and (6):

y ¼ 1; if ηi þ ei>τ

0; if ηi þ ei<τ

�
: ð7Þ

Given ηi estimated from the data and an assumed value
for the fixed threshold τ, the observed outcomes are con-
ditional on the residuals as follows:

y ¼ 1; if ei>τ � ηi
0; if ei<τ � ηi

�
: ð8Þ

The probability of observing event 1 (mortality) given ηi
and τ can then be estimated as:

p yi ¼ 1jηi; τð Þ ¼ p ei>τ � ηið Þ ¼ 1�Φe τ � ηið Þ; ð9Þ

where Φe(.) is the cumulative density function with
ei � N 0; σ2e

� �
, where σ2e is residual variance. During

implementation of the probit model, the threshold τ is
commonly set to 0 as a convenient origin. Since the liability
cannot be observed, the variation in the liability is scaled to
be σ2e ¼ 1: Thus:

p yi ¼ 1 ηi; τjð Þ ¼ 1�Φe �ηið Þ; ð10Þ
with ei ~N(0, 1).

Considering the simplest case, where the population
mean is the only fixed effect in the threshold model, i.e.,
Xib= 1μ, the probability of observing event 1 can be esti-
mated as:

p yi ¼ 1 bμ; baijð Þ ¼ bπi ¼ 1�Φe � bμþ baið Þð Þ; ð11Þ
where bμ is the predicted population mean and bai is the EBV
of individual i.

Logit model

Alternatively, a logistic distribution can be assigned to
the residuals, resulting in a model known as the logit
model. In this model, it is assumed that the logit of an
underlying probability (πi) is a function of the linear
predictors:

logit πið Þ ¼ log
πi

1� πi

� �
¼ xibi þ zia: ð12Þ

Again, assuming a simple scenario, where the only fixed
effect in the model is the population mean, Eq. (12) can be
rewritten as:

logit πið Þ ¼ log
πi

1� πi

� �
¼ bμþ bai:

The underlying probability (πi) can then be estimated by
the inverse logit transformation:

πi ¼ logit�1 bμþ baið Þ ¼ Exp bμþ baið Þ
1þ Exp bμþ baið Þ : ð13Þ
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Linear models

In addition to the probit and logistic regression models, it is
a common practice in routine genetic evaluation to fit
categorical trait data using LM, treating the traits as nor-
mally distributed. It has been shown that the loss of power
when using a linear Gaussian model for categorical traits is
negligible compared with implementing logit or probit
regression, despite the violations of assumptions of nor-
mality (e.g., Meijering and Gianola 1985). Here, we present
an approach for transforming EBVs obtained from a LM
into risk probabilities in a way comparable to the probit
approach. An advantage of the probit approach is that the
threshold is usually set to 0. However, in a LM, the
threshold (τ) must be estimated. Here, we estimate an
approximate τ based on the cumulative distribution function
of the normal distribution.

Given a particular threshold (τ), the proportion of an
event (yi= 1) (hereafter π) is the proportion of the under-
lying liability (l) above the threshold, i.e.:

1� π ¼ Φ τð Þ; ð14Þ

where Φ(τ) is the cumulative probability of the normal
distribution N(μ, σ2). τ is unknown, but π can be estimated
as the proportion of observed yi= 1 events in the data.
Thus, the unknown threshold (τ) can be estimated by
inverse probability transformation as:

τ ¼ Φ�1 1� πð Þ: ð15Þ

As mentioned above, the LM treats the binary observa-
tions as variables with a normal distribution. To be con-
sistent with the mean and variance of the distribution for
binary observations, the normal distribution used to derive τ
is assumed to be:

N π; π � 1� πð Þð Þ:
Furthermore, risk probabilities can then be estimated

by Eqs. (9)–(11), but with an approximated threshold τ,
which is not set to 0 as in the liability threshold model.
Thus:

p yi ¼ 1 bμ;ba; τjð Þ ¼ bπi ¼ 1�Φe τ � bμþ baið Þð Þ: ð16Þ
Finally, since we are interested in the polygenic risk

transmitted from a breeding animal, e.g., a sire, which on
average passes half of its breeding value to its future off-
spring, the polygenic risk probability transmitted is half the
probability of the sire estimated using the models presented
above. Thus:

ppoly offspring ¼ 0:5� ppoly sire: ð17Þ

Combining risk probabilities from the lethal allele
and polygenic components

The risk probabilities computed separately from the reces-
sive lethal alleles and the polygenic effect can finally be
combined to give the total risk probability of an individual’s
future offspring. Assuming that the probabilities of survival
from the lethal allele and polygenic components are inde-
pendent, the total risk probability (ptotal) can be given as:

ptotal ¼ 1� 1� plethð Þ � 1� ppoly
� �� �

; ð18Þ
where pleth is the risk probability from the lethal component
and ppoly is the risk probability from the polygenic
component.

Assessing the accuracy of predicted risk
probabilities

It is possible to assess the accuracy of predicted total risk
probabilities with a validation procedure, where EBVs for
the polygenic effect of validation individuals are predicted
without using observations from their offspring. The pre-
dicted EBVs are subsequently transformed into risk prob-
abilities, which together with the risk from the lethal genes
are used to compute the total risk probability. The accuracy
of the predicted risk probabilities can then be computed as
the correlation between the predicted total risk probabilities
of the test individual’s offspring and the observed propor-
tion of offspring mortality.

Simulation experiments

We tested the proposed approach with a dataset of 15
replicates simulated using the stochastic simulation program
ADAM (Pedersen et al. 2009). In each replicate, a popu-
lation of animals was simulated for 4 years with over-
lapping generations and assuming no selection. In each
year, 50 males were randomly selected to mate with 10,000
females of different parities, with each male mated to 200
females. Offspring’s sex was assigned randomly with a
probability of 50% for males and females. The simulations
resulted in a total of 40,000 individuals in four generations
with approximately equal proportions of males and females.
Animals born in generations 1–3 were used as the reference
population, while animals in generation 4 (G4) were used as
the test population.

Genotype data were simulated mimicking the real link-
age disequilibrium profile in the Danish Holstein as
described in detail by Thomasen et al. (2019). The simu-
lated genotype data included 40K markers, 1980 QTLs with
polygenic effects, and 20 lethal genes with recessive allele
frequencies between 0.04 and 0.05. A large number of
QTLs with polygenic effects were assumed in order to
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mimic a trait of mixed polygenic-major gene inheritance,
where a large number of QTLs with small effects each and a
few lethal genes composed the genetic architecture. Other
simulation studies mimicking the bovine genome for
genomic prediction have assumed similar number of QTLs
(Lourenco et al. 2013), or slightly more QTLs (Hayes et al.
2009; Thomasen et al. 2019), underlying various polygenic
traits. The assumed recessive allele frequencies were chosen
based on the range reported for recessive lethal haplotypes
detected in the Danish and Nordic cattle breeds (Wu et al.
2020). SNPs were distributed across 30 chromosomes, each
100 cM in length. The QTLs were assumed to be evenly
distributed across the genome, such that on each chromo-
some, 66 SNPs were randomly sampled to be QTLs. The
effect of each QTL was sampled from a normal distribution,
and the effects collectively explained all the variation in the
simulated polygenic true breeding values (TBV).

Thus, the TBV for each animal i was defined as the sum
of all QTL genotypic values:

TBVi ¼
X

gj Qij;

where gj is the allele substitution effect of jth QTL, Qij is the
QTL genotype at locus j in individual i, coded as 0, 1, or 2
representing the number of copies for a particular allele in
the genotype. The TBVs were finally scaled to have a
variance of 1 in base population through dividing TBV by
the standard deviation of TBVs in the base population, i.e.,
setting the additive genetic variance as: σ2a ¼ 1.

Simulation of the TBVs was performed at the liability
scale, with a target heritability of 0.02 at the observed scale,
according to heritability estimates reported in the literature
for the Holstein breed (e.g., Hansen et al. 2003; Fuerst-
Waltl and Sørensen 2010; Henderson et al. 2011). The
target observed-scale heritability was transformed to the
underlying scale using the formula proposed by Dempster
and Lerner (1950):

h2l ¼
h2x � π 1� πð Þ

z2
; ð19Þ

where h2l is the heritability at the underlying scale, z is the
height of the normal distribution curve at the threshold, h2x is
the heritability at the observed scale, which is 0.02 in this
study, and π is the proportion for y= 1 (π= 0.068 in this
study). Thus, heritability at the underlying scale was 0.075.

Simulated QTLs were not included in the construction of
the genomic relationship matrices (GRMs) used for pre-
diction. Recessive lethal loci were assigned by randomly
sampling from SNPs with minor allele frequencies (MAFs)
between 0.04 and 0.05 on 20 randomly selected chromo-
somes. Each lethal locus was located on a different chro-
mosome, and the loci were thus assumed to be independent
of one another.

Four different scenarios were simulated with regard to
the penetrance of recessive lethal alleles. These included
three scenarios where all 20 lethal alleles were assumed to
have an equal penetrance of 60, 80, or 100%. The fourth
scenario considered a mixture of four penetrance groups
(with an equal number of lethal alleles): 60, 70, 80, and
100% penetrance.

Liability for death was generated by adding a residual
effect to TBV. The residual effect was sampled from e ~ N

(0, σ2e), where the residual variance (σ
2
e) was

1�h2lð Þσ2a
h2l

= (1−

0.075)/0.075. Simulated phenotypic values in observed
scale were either 0 if the animal survived or 1 if the animal
died. Individuals were assigned phenotypic values in a
stepwise manner, considering both polygenic and recessive
lethal allele components. First, a threshold was calculated as
the inverse cumulative distribution function of a target
mortality incidence (y= 1) of 6.8% from a normal dis-
tribution with mean 0 and variance σ2a þ σ2e . Individuals
with a liability greater than the threshold were subsequently
assigned a phenotypic value of 1. Second, an individual’s
phenotype was assigned as 1, regardless of the assigned
phenotype due to polygenic component, if its genotype for
at least one of the recessive lethal alleles was in a homo-
zygous state. When recessive lethal alleles were assigned a
penetrance other than 100%, a proportion of the homo-
zygous individuals for each allele was assigned a phenotype
of 1 in accordance with the penetrance value assumed (60,
80%, or a mixture with an average of 75%). The average
observed mortality over 15 replicates was 9.43%. On
average, 29.73% of the total mortality was caused by
recessive lethal allele effects, while 68.21% was due to
polygenic risk and 2.06% was due to both.

Statistical analysis

Breeding values and risk probabilities were estimated using
the above approach. To predict risks from polygenic and
recessive lethal allele effects separately, the data used to
predict polygenic effects excluded records of death caused
by recessive lethal alleles (Data_poly). Similarly, the GRM
used for the prediction of GEBVs was constructed without
recessive lethal alleles. All GRMs used for the different
scenarios were calculated using the first method presented
by VanRaden (2008), and SNP allele frequencies for
building GRMs were calculated directly from the SNP data.
Risk probabilities from the recessive lethal alleles were
computed separately and then used to compute the total risk
using Eq. (18).

To test the proposed approach’s superiority over the
conventional approach, breeding values and risk prob-
abilities were also estimated using a conventional approach
that did not distinguish the polygenic and lethal allele
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effects. Thus, the conventional approach predicted total
breeding values using phenotypic data without excluding
observations of death due to recessive lethal alleles
(Data_all) and GRMs that did not include recessive lethal
genotypes. Subsequently, the predicted GEBVs were
transformed into total risk probabilities.

In addition, we also assessed the accuracy of the poly-
genic GEBVs predicted without distinguishing the two
effects, i.e., with the data that included death due to
recessive lethal alleles, but taking into account the effects of
the recessive lethal alleles, either by including recessive
lethal alleles in the construction of the GRM or using
models that included fixed regression on recessive allelic
genotype code. Below, we present the methods used to
predict the GEBVs that were subsequently transformed into
risk probabilities for each of the models (probit, logit, and
linear).

These approaches were implemented using three statis-
tical models, namely, generalized linear mixed models with
logit and probit link functions and a linear mixed model,
using DMU software (Madsen and Jensen 2013).

The probit models for analysis of the simulated data

Three probit models were used to estimate breeding values
and risk probabilities due to polygenic effects. The first
probit model was:

Probit1 : η ¼ 1μþ Zg; ð20Þ
where element i of η is ηi=Φ−1(πi), μ is the overall mean, g
is the random additive genetic effects with distribution
g � N 0;Gσ2a

� �
, and G is the GRM constructed using only

markers, i.e., excluding the recessive lethal loci. Both
Data_poly and Data_all were analyzed using this model.

The second probit model includes fixed regression on
lethal genotype:

Probit2 :η ¼ 1μþ xd þ Zg; ð21Þ
where d is the fixed regression coefficient for lethal
genotype score and x is the vector of recessive lethal
statuses. Since a homozygous recessive genotype at a given
locus can cause mortality regardless of the genotype at
another recessive lethal locus, the element of x is 1 as long
as the recessive lethal allele is in a homozygous state at any
locus and “0” otherwise. The G matrix in this model also
excluded genotypes of recessive lethal loci, and this model
was used to analyze Data_all.

The third probit model was implemented to test the
impact of including recessive lethal alleles in the GRM on
genomic prediction:

Probit3 :η ¼ 1μþ Zg�; ð22Þ

where g* are the vectors of random additive genetic effects
with distribution N 0; G�σ2a�

� �
, where G* is the GRM based

on the markers including lethal alleles and σ2a� is the
corresponding genetic variance. This model was used to
analyze Data_all.

The logit models for analysis of the simulated data

The logit models used in the analysis were:

Logit1 :η ¼ 1μþ Zg; ð23Þ

Logit2 : η ¼ 1μþ xd þ Zg; ð24Þ

Logit3 : η ¼ 1μþ Zg�; ð25Þ

where element i of η is ηi ¼ log πi
1�πi

� �
and the rest of the

model components are the same as those in Models (20)–
(22).

The linear models for analysis of the simulated data

The implemented LM included three genomic best linear
unbiased prediction models:

LM1 : y ¼ 1μþ Zgþ e; ð26Þ

LM2 : y ¼ 1μþ xd þ Zgþ e; ð27Þ

LM3 : y ¼ 1μþ Zg� þ e; ð28Þ

where y is the vector of observations (0, 1) and e is the
vector of residuals with distribution e � N 0; I σ2e

� �
; where I

is an identity matrix and σ2e is the residual variance. The rest
of the model components in (26)–(28) are as described in
Models (20)–(22).

Computation of prediction accuracy and bias

To assess the accuracy of predicted risk probabilities, the
predicted total transmitted risk probabilities of the sires of
the G4 animals were compared with the observed propor-
tion of deaths among their G4 offspring, whose phenotypes
were masked during the prediction. This is to be consistent
with the situation where the candidate animals do not have
offspring at the time of selection. For the approach that
distinguished polygenic and recessive lethal allele effects,
the predicted total risk probability was calculated using Eq.
(18) to combine the risk probabilities from the recessive
lethal allele and polygenic components obtained from
GEBVs that were predicted using LM1, Logit1, or Probit1
and Data_poly. For the analysis that did not consider lethal
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genes, the predicted total risk probabilities were calculated
from the GEBVs predicted using LM1, Logit1, or Probit1
but based on Data_all. Prediction bias was measured as the
coefficient of regression of the observed rate of calf mor-
tality against the predicted probabilities for the
validation sires.

In addition, the advantages of incorporating recessive
lethal alleles, by either including them in the GRM (LM3,
Logit3, and Probit3) or considering lethal genotype as a
fixed effect in regression (LM2, Logit2, and Probit2) to
predict polygenic breeding values, were assessed by the
accuracy of GEBVs, which was measured as the correlation
between GEBVs and simulated polygenic TBVs.

The statistical significance of differences in prediction
accuracies between scenarios (approaches) and models, i.e.,
probit, logit, and linear, was tested using a pairwise t-test
across the replicates.

Results

Accuracy and bias of predicted risk probabilities

Figure 1 presents the accuracy of the total risk probability
predicted with the two approaches in comparison: (1) the
novel approach in which risk probabilities from the poly-
genic and recessive lethal components were estimated
separately, with the polygenic component predicted using
LM1, Logit1, or Probit1 based on Data_poly, and (2) the

conventional approach where risk probability was estimated
without distinguishing the polygenic and recessive lethal
effects and obtained from GEBVs predicted using LM1,
Logit1, or Probit1 but based on Data_all. Across all pene-
trance scenarios, the accuracies obtained with the novel
approach were significantly higher (P < 0.001) than those
obtained with the conventional approach. The difference in
prediction accuracy between the two approaches ranged
between 20 and 29.1 percentage points, depending on the
penetrance scenario assumed.

In all three statistical models, i.e., LM1, Probit1, and
Logit1, the highest accuracy was observed when all lethal
alleles had 100% penetrance (Pen100), while the lowest
accuracy was observed when all alleles had the lowest
penetrance (Pen60). Among the three models, Probit1
resulted in the highest prediction accuracies, followed by
Logit1, in both approaches. However, these differences in
prediction accuracy between the three models were not
statistically significant.

Table 1 presents the regression coefficients for observed
calf mortality against predicted total risk probability for the
novel approach which distinguished recessive lethal allele
and polygenic effects and used Data_poly, and the con-
ventional approach, which did not distinguish the two
effects and used Data_all. For the analysis distinguishing
the two effects, the regression coefficients were close to 1
for all three models and penetrance scenarios. For the
analysis with conventional approach, however, the regres-
sion coefficients deviated from 1 for all models and
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Fig. 1 Risk probability prediction accuracies in the two approa-
ches. Accuracies of predicted total risk probabilities obtained by the
novel approach, distinguishing polygenic and recessive lethal allele
effects (based on Data_poly), and conventional approach, not

distinguishing polygenic and recessive lethal allele effects (based on
Data_all), across the penetrance scenarios, plotted for each model
(LM1, Probit1, and Logit1).
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penetrance scenarios, with the largest deviation observed for
the LM.

Accuracy of prediction of GEBVs

Figure 2 shows the accuracy of GEBVs predicted with the
different approaches: (1) using Data_poly and a model with
a GRM that did not include recessive lethal loci (LM1,
Probit1, and Logit1), (2) using Data_all and a model with
regression on lethal genotype (LM2, Probit2, and Logit2),
and (3) using Data_all and a model with a GRM including
genotypes of recessive lethal loci. In general, approach (1)

resulted in the highest accuracy of predicted GEBVs, ran-
ging from 0.319 to 0.323 according to penetrance class.
Approach (2) resulted in slightly lower accuracies compared
with those in approach (1), ranging from 0.307 to 0.322.
However, the differences in GEBV prediction accuracies
between the two approaches were only statistically sig-
nificant in scenarios Pen60 (P < 0.01) and PenGRP (P <
0.05). Among the three approaches, approach (3) produced
the lowest GEBV prediction accuracies. The prediction
accuracies obtained using this approach were significantly
lower (P < 0.001) than those obtained using approaches (1)
and (2).

Table 1 Regression coefficients
for observed mortality against
predicted total risk probability,
obtained by the approach
distinguishing polygenic and
recessive lethal allele effects
(based on Data_poly) and the
approach not distinguishing
polygenic and recessive lethal
allele effects (based on
Data_all).

Model Data_poly Data_all

Pen100 PenGRP Pen80 Pen60 Pen100 PenGRP Pen80 Pen60

LM1 1.086 1.086 1.100 1.125 2.073 1.989 2.061 2.195

Logit1 1.066 1.061 1.070 1.072 1.344 1.252 1.303 1.275

Probit1 1.072 1.069 1.080 1.089 1.412 1.332 1.428 1.362

Pen60, 80, 100, and GRP= penetrance level of 60, 80, 100 and a mixture of 60%, 70%, 80%, and 100%
penetrance levels, respectively. Data_poly= phenotype data that excluded the records of death due to lethal
alleles. Data_all= phenotype data that included the records of death due to lethal alleles.
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Fig. 2 GEBV accuracies across the different approaches. Accuracy
of GEBVs predicted using phenotypic data that excluded the records
of mortality due to lethal alleles (Data_poly) with the LM1, Probit1,
and Logit1 models; data that included records of mortality due to lethal

alleles (Data_all) and models considering regression on lethal geno-
type (LM2, Probit2, and Logit2); and data that included records of
mortality due to lethal alleles (Data_all) and models with a GRM
including recessive lethal alleles (LM3, Probit3, and Logit3).
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Discussion

Prediction of risk probabilities

Genomic prediction for traits with mixed “major” genes and
polygenic inheritance has been shown to benefit from
models that account for differences in marker effects com-
pared with models with “infinitesimal” assumptions (e.g.,
Cole et al. 2009; Hayes et al. 2010; Legarra et al. 2011).
Recessive lethal loci might be considered special cases of
“major” genes. While a single recessive lethal locus might
have a large effect on an observed phenotype, the effect on
the individual itself might be different from the effect on its
future offspring. The carrier status of a single recessive
lethal allele alone does not affect the carrier’s mortality but
can determine the categorical outcome (death or survival) of
an offspring. In this study, we present an efficient approach
for predicting the total risk probabilities for future offspring
of selection candidates by predicting risk probabilities from
polygenic and recessive lethal components separately. By
using simulated data, the prediction accuracies of this
approach were compared with those of a conventional
approach that did not distinguish polygenic and recessive
lethal allele effects (Data_all vs. Data_poly in Fig. 1). The
results show that the prediction of risk probabilities with the
proposed approach leads to high accuracy in predicting
mortality for the future offspring of selection candidates,
with a gain in accuracy up to 29.1 percentage points. By
blending the risk probabilities estimated separately for the
two components, the novel approach allows efficient utili-
zation of information from the recessive lethal component,
which otherwise tends to be difficult to untangle with
simultaneous modeling due to differing modes of gene
action. The gain in accuracy achieved by distinguishing the
polygenic and recessive lethal allele effects, compared with
the approach that does not distinguish the two effects, is
dependent on the rate of mortality caused by the two effects.
In our analysis, the gain in accuracy (29.1%) was compar-
able to the rate of mortality caused by recessive lethal
alleles in the simulation (29.73%).

A potential challenge for the separate prediction of risk
probabilities caused by polygenic and lethal allele effects in
real data scenarios might be the difficulty of conclusively
distinguishing mortality caused by recessive lethal alleles
and that caused by polygenic components. This is because
genotypic information may not be available for dead ani-
mals. In this study, we further investigated if taking into
account the recessive lethal genotypes through, either
including regression on lethal genotypes in the models or by
accounting for genotypes of the recessive lethal loci in the
GRM, could improve the accuracy of predicted GEBVs
when using data that included mortality due to lethal alleles.
The results showed that when the data included records of

mortality caused by recessive lethal alleles, including the
recessive lethal alleles in the GRM did not improve GEBV
prediction accuracy. In contrast, when using data that
included records of mortality due to lethal alleles, models
with regression on lethal genotype resulted in prediction
accuracy being comparable to the approach that dis-
tinguished the two effects using Data_poly. Compared with
including genotypes of recessive lethal loci in the GRM,
using models with fixed regression on lethal genotypes
improved the accuracy of polygenic GEBVs by 4–9.3 per-
centage points, based on data that included records of
mortality due to lethal alleles. These results demonstrate
that in the situations where excluding mortality caused by
recessive lethal alleles is difficult, using models with
regression on lethal genotypes can improve prediction
accuracies. Potential challenges in the approach considering
fixed regressions on lethal genotype is the definition of a
lethal covariable and the uncertain relationship between a
lethal covariable and observations in the case of incomplete
penetrance and unequal penetrances among lethal loci.
Consequently, prediction accuracies might be affected by
penetrance. This was demonstrated in our simulation, where
the prediction accuracy of the model considering fixed
regression on lethal genotype was significantly lower than
that of the approach using Data_poly for scenarios having a
lower penetrance (Pen60) and a mixture of penetrance
levels (PenGRP).

In our simulation study, the accuracy of the predicted
GEBVs was generally low across the compared models.
This is expected given the low heritability considered in the
simulation. In dairy cattle breeding, definitions of different
calf and young stock mortality traits are dependent on
monitoring period. In general, studies across several dairy
cattle breeds have shown very low heritability estimates for
calf and young stock mortality traits (e.g., Hansen et al.
2003; Fuerst-Waltl and Sørensen 2010; Henderson et al.
2011), which limit the expected genomic prediction accu-
racy. However, given the major deleterious effects of indi-
vidual recessive lethal genes, the prediction accuracy for
mortality traits can be improved with the efficient incor-
poration of genotypic information on such genes. The
results of this study indicate that the presented novel
approach is quite advantageous in integrating information
on recessive lethal and polygenic components for the pre-
diction of mortality traits. By bringing the two components
to a comparable scale, i.e., risk probability, the approach
allows utilizing information from both effects to predict the
mortality status of future offspring of a breeding animal. A
somewhat comparable approach to the prediction of risk
probabilities presented in this study is the polygenic risk
score (PRS) approach, which is commonly used in human
genetics to predict an individual’s risk of succumbing to a
particular disease (Wray et al. 2007, 2019; Evans et al.

Novel approach to incorporate information about recessive lethal genes increases the accuracy of. . . 163



2009). However, the PRS used in human genetics is pre-
dicted based on SNP effects estimated from genome-wide
association studies that are often based on fitting one SNP at
a time, thus ignoring all other SNPs (Wray et al. 2007).
Moreover, PRSs in human genetics are used to predict the
future phenotypes of an individual, while the primary
objective in our approach, and in animal breeding more
generally, is to predict a selection candidate’s transmission
ability to its future offspring.

There are several assumptions in our simulation study
that might not be fully consistent with the features of real
data and thus might affect prediction accuracies to some
extent. We have shown that the gain in accuracy achieved
by distinguishing polygenic and recessive lethal allele
effects is dependent on the rate of mortality caused by
recessive lethal alleles. This rate, in turn, depends on the
number of recessive lethal loci and recessive allele fre-
quencies. In the simulation, 20 loci with lethal allele fre-
quencies between 0.04 and 0.05 were assumed. These might
be considered high-frequency lethal alleles compared with
what one would expect for a lethal allele under mutation-
selection balance or drift. Therefore, in cases with smaller
numbers of recessive lethal loci with lower MAFs, the
mortality caused by lethal alleles will be lower, subse-
quently resulting in a smaller gain achieved by distin-
guishing the two effects. However, several recessive lethal
mutations have been identified in cattle breeds, and the
numbers continue to increase (Cole 2015), with some
reaching high recessive allele frequency (e.g., Kadri et al.
2014; Sahana et al. 2016; Hoff et al. 2017).

An additional assumption potentially prone to violation
in real scenarios is the independence of recessive lethal loci
and the independence of recessive lethal loci and non-
lethal loci across the genome. In reality, recessive lethal
alleles might be in LD with each other as well as with
other loci. However, this is expected to have negligible
consequences when using the novel approach that pre-
dicts risk probability due to lethal allele and polygenic
effects separately, where polygenic GEBVs are estimated
using Data_poly, but may cause confounding between the
two effects when using the approach that does not dis-
tinguish the two effects, based on Data_all. An additional
issue that was not taken into account in our simulation is
the possibility of synergistic epistasis between the
recessive lethal loci and other loci with polygenic effects.
Under such interaction, the lethality, or penetrance, of
recessive lethal loci may depend on polygenic effects,
thus risking double counting of lethal effects when
GEBVs are estimated in the presence of the lethal alleles.
Such epistatic interactions were not considered in this
study due to the complexity and lack of prior information
for the simulation.

Comparison of models

Categorical traits are not normally distributed, and thus
linear mixed models are believed to behave poorly in
modeling such traits (Portnoy 1982). Despite such viola-
tions of normality assumptions, the use of linear mixed
models in the genetic analysis of categorical traits is gaining
popularity due to their straightforward implementation.
Meijering and Gianola (1985) demonstrated that LM can be
applied without much loss of statistical power. In our study,
slight differences in prediction accuracy were observed
between the three models implemented, i.e., logit model,
probit model, and LM, but the differences were not statis-
tically significant. These results indicate that our approach
can be implemented in LM with negligible loss of accuracy.

The regression coefficients of observed proportions of
calf mortality against predicted risk probabilities were dif-
ferent from 1 when using the models that did not distinguish
polygenic and lethal allele effects. The deviation from 1 was
much larger for the LM than for the logit and probit models.
This could partly be because in the LM, the threshold is
approximated by direct calculation of mortality from the
data, as opposed to the probit model, where the threshold is
set to 0 for convenience and the underlying liability moves
the origin accordingly. For the LM, the deviation from 1
was even larger for the approach based on Data_all that did
not distinguish recessive lethal allele and polygenic effects.
This could be explained by the fact that the threshold was
approximated from observed mortality in the data, including
mortality due to recessive lethal alleles, and hence the
approximate threshold could be far from the threshold for
the polygenic model. Moreover, the relationship between
sire risk probability due to polygenic effects and offspring
mortality is not necessarily linear. Consequently, the
regression coefficient of observed mortality against the
predicted risk probability might not necessarily be 1.

Management of recessive lethal alleles in breeding
programs

To date, commonly proposed methods for managing
recessive lethal alleles have focused on the optimization of
mate selection to avoid carrier-to-carrier matings. Van
Eenennaam and Kinghorn (2014) proposed methods and
programs that allow selection against the total number of
lethal alleles and recessive lethal genotypes. Cole (2015)
extended the parent-average penalizing method for con-
trolling inbreeding proposed by Pryce et al. (2012), allow-
ing it to consider information on recessive lethal alleles.
Some studies also suggested the complete removal of car-
riers from the breeding population to eradicate recessive
lethal mutations (e.g., Thompson et al. 2006).
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Managing recessive lethal alleles requires a trade-off
between controlling recessive lethal alleles in the long run
and maintaining genetic gains in production and functional
traits (Segelke et al. 2014). Previously proposed methods
aimed at optimizing mate selection as well as culling car-
riers might allow the control of recessive lethal allele fre-
quencies and avoid lethal homozygous genotypes.
However, these methods represent classic tandem selection,
where breeding animals are excluded from mating due to
low merit for one trait (recessive lethal alleles in this case),
regardless of their superiority in other traits. The con-
sequence of this approach is a reduction in selection
intensity and a subsequent reduction in genetic gain. The
slightly different approach proposed by Segelke et al.
(2014) recommends a selection index that weights the car-
rier status of recessive lethal haplotypes based on economic
consequences and population allele frequencies when
selecting females for mating. A drawback of this approach,
and many other mate-allocation-based approaches, is the
inability to handle many recessive lethal alleles. For
instance, Cole (2015) pointed out the difficulty of assigning
proper weights and costs for each recessive lethal allele as
the number of identified alleles increases.

The approach proposed in this study enables blending
polygenic breeding values for a given trait with risk prob-
abilities from recessive lethal alleles. Thus, the method is
beneficial for a balance between controlling recessive lethal
frequencies in the population and maintaining genetic gains
in economically important traits. In contrast to the methods
where carrier status for each recessive lethal allele is a
selection criterion, the proposed method integrates the effect
of each recessive lethal allele into the breeding value for a
particular trait (mortality or survival), which can be used for
selection decisions. Therefore, an overall weight for the trait
of interest can be used to integrate the breeding values,
which account for both the polygenic and recessive lethal
allele components, into a selection index with no need to
assign weights for each recessive lethal allele.

Conclusions

This study proposed an approach for predicting the prob-
ability of mortality of future offspring by predicting the
risk probabilities from polygenic and recessive lethal
components separately. The approach was tested using
simulated data and found to be superior to approaches that
do not distinguish polygenic and lethal allele effects. No
statistically significant differences in prediction accuracy
were observed between the probit model, logit model, and
LM, suggesting that the novel approach can be imple-
mented using different models, with comparable power.
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