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Abstract

A majority of the existing fingerprint recognition algo-
rithms are based on matching minutia features. Therefore,
minutiae extraction is one of the critical steps in finger-
print verification algorithms. Poor quality fingerprint im-
ages lead to missing and spurious minutiae that degrate the
performance of the matching system. We propose two new
techniques for minutiae verification based on non-trivial
gray level features. The proposed features intuitively repre-
sents the structual properties of the minutiae neighborhood
leading to better classification. We use directionally selec-
tive steerable wedge filters to differentiate between minutiae
and non-minutiae neighborhoods We also propose a second
technique based on Gabor expansion that results in even
better discrimination. We present an objective evaluation of
both the algorithms.

1. Introduction

Fingerprint verification has emerged as one of the most
reliable means of biometric authentication due to its univer-
sality,distinctiveness, permanence and accuracy [10]. Most
of the existing fingerprint recognition algorithms are based
on matching minutiae features. Minutiae represent local de-
viation in the flow of ridges .Given a fingerprint image, all
the minutiae locations, orientations and structural relation-
ship among the points are determined and stored as part
of the template. During matching, the deformation between
two such point sets is recovered and the point correspon-
dences are determined to generate a similarity score [10].
Despite of extensive research efforts, reliable matching of
fingerprints still remains a challenging problem. No two dif-
ferent impressions of the fingerprint are identical even when
they come from the same individual. The matching algo-
rithm has to be therefore invariant to changes in orienta-
tion, displacement,occlusion and missing features. Varying
skin conditions may lead to poor quality images that can
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lead to feature extraction errors and subsequently error dur-
ing recognition.

1.1. Problem Description

Many of the minutiae extraction algorithms are sequen-
tial in nature, resulting in error propagation in each of the
stages. Error resulting from poor quality images can be
eliminated using enhancement techniques like Gabor filter-
ing [6]. Variations due to displacement and elastic defor-
mation are handled by the matching algorithm itself. In this
paper, we deal with errors introduced during feature extrac-
tion. The feature extraction results in the following type of
errors

1. Missing minutiae: The feature extraction algorithm
fails to detect existing minutia when the minutiae is ob-
scured by surrounding noise or poor ridge structures.

2. Spurious minutia: The feature extraction algorithm
falsely identifies a noisy ridge structure such as a
crease, ridge break or gaps as minutiae.

When the feature extraction is performed using binariza-
tion and thinning, spurs, bridges, opposing minutiae, tri-
angles, ladders are some of the structures leading to false
minutiae detection [10]. Gray level based feature extraction
methods such as the ridge following approach proposed by
Maio and Maltoni [9] can eliminate many of the sources
of error that are caused by binarization and thinning. How-
ever, in poor contrast or poor quality images where the local
maxima of the ridges cannot be reliably located, false pos-
itives are still introduced. Therefore, minutiae extraction is
usually followed by a post-processing step that tries to elim-
inate false positives. It has been shown that this refinement
can result in considerable improvement in the accuracy of a
minutia based matching algorithm [12].

In this paper we present two approaches to eliminate
false minutiae that are invariant to feature extraction pro-
cess.Minutiae represent local deviation in the flow of ridges.
Although many different types of fingerprint features have
been identified, ridge endings and bifurcation account for a
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Figure 1. Overview of the proposed approach

majority of those features. We treat both ridge endings and
bifurcation uniformly since their type can get exchanged
with slight variation of pressure. Also, the majority of the
existing fingerprint matching algorithms do not distinguish
between the minutia types during verification.

1.2. Prior related work

Existing methods to filter spurious minutiae can be cate-
gorized into two methods

1. Structural post processing: Structural post process-
ing methods prune spurious minutia based on heuris-
tics rules that use the relative location of the detected
minutia, length of the ridges and other structural in-
formation. However, these rules are very specific to
the feature extraction algorithm. Xiao and Raafat [18]
provided taxonomy of structures resulting from thin-
ning that lead to spurious minutia and proposed heuris-
tic rules to eliminate them. Hung [7] proposed a graph-
based algorithm that exploits the duality of the ridges
and bifurcation. The binarization and thinning is car-
ried on positive and negative gray level images re-
sulting in ridge skeleton and its complementary val-
ley skeleton. Minutiae features that occur in both im-
ages are retained while eliminating the false positivies.

2. Gray level image based filtering:Gray scale based
techniques use the gray scale values in the immedi-
ate neighborhood of the candidate minutiae to validate
them. Prabhakar et. al [12] proposed direct pixel value
based approach to eliminate false minutiae. A 64x64
region of the neighborhood surrounding the minutiae
is normalized w.r.t orientation and brightness variation.

Horizonatally oriented Gabor filters are used to en-
hance the region and the pixels in the central 32x32 re-
gions is used as features to distinguish between minu-
tiae and non-minutiae neighborhoods. The classifica-
tion is done using a Learning Vector Quantizer that
uses the central 1024 pixels as input and classifies
the region as ridge, bifurcation or non-minutiae. Maio
and Maltoni [2] proposed a neural network based ap-
proach for minutiae filtering. In this method, the minu-
tiae neighborhood is normalized w.r.t ridge frequency
in addition to orientation and brightness variations.
The dimensionality of the feature set is reduced by us-
ing Karhunen Leove Transform. Classification is done
using a shared weights neural network that uses both
positive and negative images of the minutiae neighbor-
hood to exploit the duality of the ridge and bifurca-
tion. Although this approach leads to significant reduc-
tion in the number of false positivies and exchanged
minutiae, it also increases the number of missing minu-
tiae. Both the approaches also differ on their defini-
tion of non-minutiae neighborhoods. While Prabhakar
etal. [12] treat even plain ridges as non-minutiae, Maio
and Maltoni additionally use the actual false positives
given by their feature extraction algorithm [9] as non-
minutiae. Recently, Wu et al. [17] developed an opti-
mal filter based approach to detection of creases in fin-
gerprint images. In this approach, the ridge neighbor-
hood containing the crease is represented using a pa-
rameterized rectangle. They employ a multiple chan-
nel filtering framework to detect creases in different
orientations. However, this method cannot detect spu-
rious minutiae that occur in smudged or exceptionally
dry parts of the fingerprint.
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1.3. Overview

Figure 1 shows an overview of the proposed approach.
Firstly, we generate training samples consisting of minu-
tiae and non-minutiae neighborhoods. Then, given suffi-
cient labelled data, the system uses a suitable feature set and
a machine learning algorithm to ’learn’ the difference be-
tween genuine minutiae and non-minutiae neighborhoods.
We propose two feature descriptors that can be used to
differentiate between minutiae and non minutiae neighbor-
hoods. The first approach is based on the response of the
minutiae neighborhood to a bank of steerable wedge filters.
The response is fed to a feedforward back propagation net-
work to classify the inputs as either minutiae or non minu-
tiae neighborhood. The second and also the more accurate
approach is based expressing the minutiae neighborhoods
as a linear sum of basis images made up of multi-resolution
Gabor elementary functions. We utilize a Bayesian classifi-
cation for this purpose. The particular choice of classifiers
is explained in subsequent sections.

The rest of the paper is organized as follows. Section 2
explains the use of wedge filter for minutiae verification.
The second approach using Gabor expansion is presented
in section 3. Experimental verification and objective eval-
uation of the techniques is presented in section 4. Finally
conclusion and future work are discussed in section 5.

2. Steerable Wedge Filters

Steerable filters have been used for some time to ana-
lyze local orientation in images. Steerable filters allow us
to compute the responses at different orientations as a lin-
ear combination of responses to a set of basis filters. Free-
man and Aldeson [5] first developed the concept of steer-
able filters using directional derivatives of Gaussians. How-
ever, the symmetry of these derivatives imposes an angu-
lar periodicity of 7 on these filter responses irrespective of
the underlying image structure. The bimodal response is not
very useful in junction analysis and pattern recognition ap-
plication where a full range resolution([0, 27]) is needed.
Simoncelli and Farid [16] propose asymmetrical filters that
exhibit a unimodal response. A brief overview of these fil-
ters is provided for completeness. Further details are pro-
vided in [5] and [16]. Consider a bank of two filters given
by

Go(r,0) = Cos(@)w, G™/2(r,0) = sin(6) g™ (r) n

orm orm
e

+ @

g(r) =

The subscript indicates the order of the derivative while the
superscript indicates the orientation of the basis filters. It
can be easily shown that using these two basis filters, a fil-
ter oriented in an arbritrary direction ¢ can be constructed

(@ (b) (© (d) ()
® (=) (h) @ @

Figure 2. Bank of steerable wedge filters for
N=5.(a-e) evenly symmetric filters, (f)-j)oddly
symmetric filters

using

h(¢) = G cos(¢) + GT/? sin(g) 3)

cos(¢) and sin(¢) form the interpolation function. Simon-
celli et. al [16] further impose a hilbert transform relation
between the even and odd components of the filter. The fil-
ters are obtained using

Z Wy, cos(no),

The weights w,, are chosen so as to localize the energy re-
sponse. To construct a filter in arbitrary orientation, it is ex-
pressed as a linear combination of basis filters h(¢ — cv,).

Z wp sin(ng)  (4)

N
fe(r ) = h(¢—a) Z h(¢—an) (5)
g(r) represents an arbitrary radial function with compact
support. k,, («) represents the interpolation function and «,
represents the orientations of the basis filters. Figure 2
shows the basis filters for N=5.

2.1. Minutiae Verification

Minutiae is marked by local deviation in the ridge flow,
with three dominant local directions corresponding to the
two branches of the bifurcation and the parallel ridge di-
rection. Plain ridges are marked by a single dominant di-
rection aligned with the horizontal. On the other hand,
false positives encountered around the creases and noisy re-
gions of the fingerprint are marked by random and multiple
dominant directions. Creases, in particular are identified by
dominant components in directions orthogonal to the ridge
flow.Figure 3 shows response of a wedge filter to a proto-
typical bifurcation and non minutiae region. The distinction
between the two regions is clearly evident.
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Figure 3. Response of the wedge filter to a prototypical bifurcation and plain ridge

Minutiae verification using wedge filter consists of the
following steps (i) A 24x24 region surrounding each po-
tential minutiae is normalized w.r.t orientation. (ii) The lo-
cal block is enhanced using the algorithm described in [1].
This makes it invariant to brightness and contrast variation.
(iii) The orientation response of the block is computed in
the interval [—, 7] using N=18 basis filters. (iv) The re-
sponses are then classified into minutiae and non-minutiae
region using a neural network classifier.

2.2. Neural Networks

An analysis using Fisher discriminant analysis [4] shows
us that the two classes are not linearly separable. Therefore
it requires a more sophisticated classification step. It is well
known that a multi-layered feed forward neural network is
capable of classifying non-linearly separated data. We use
a three layered , 180-10-1 neuron architecture for our pur-
pose. We use resilient back propagation [15] algorithm to
train the network. The resilient back propagation algorithm
works by considering only the sign of the derivative for up-
dating the weights. The change in weight is determined by a
separate parameter. Therefore unlike gradient descent meth-
ods, the rate of convergence does not slow down as the slope
of the error gradient decreases with time. The evaluation of
the classifiers is given in sectionsec:evaluation

3. Gabor expansion

Gabor elementary functions have been previously used
for enhancement of fingerprint images [6] and also for syn-
thetic fingerprint generation [14]. They have important sig-
nal properties such as optimal joint space frequency resolu-
tion [13]. Daugman [3] and Lee [8] have used Gabor ele-
mentary functions as basis functions to represent generic 2D
images.Gabor elementary functions form a very intuitive
representation of fingerprint images since they capture the

periodic,yet non-stationary nature of the fingerprint regions.
Howeyver, unlike fourier bases or discrete cosine bases, us-
ing Gabor elementary functions have the following prob-
lems. (i)From a signal processing point of view, they do not
form a tight frame. This means that the image cannot be
represented as a linear superposition of the Gabor elemen-
tary functions with coefficients derived by projecting the
image onto the same set of basis functions. However, Lee
[8] has derived conditions under which a set of self similar
Gabor basis functions form a complete and approximately
orthonormal set of basis functions. (ii) They are biorthog-
onal bases. This means that the basis functions used to de-
rive the coefficients(analysis functions) and the basis func-
tions used to reconstruct the image (synthesis functions) are
not identical or orthogonal to each other.However, Daug-
man proposes a simple optimization approach to obtain the
coefficients.

Daugman gives the following form for the 2D Gabor el-
ementary function

G(z,y) = exp(—n((z — z0)’a® + (y — y0)*%).

exp(—2m i[uo(r — x0) +vo(y — vo)])  (6)

xo and yo represent the center of the elementary function in
the spatial domain. ug and vy represent the modulation fre-
quencies. o and 32 represent the variance along the major
and minor axes respectively and therefore the extent of sup-
port in the spatial domain.

3.1. Feature representation

We use a multi-resolution representation using Gabor ex-
pansion to distinguish between minutiae and non minutiae
neighborhood.The bases are derived using a self similar Ga-
bor elementary functions computed at multiple scales and
orientations. Figure 4 displays some of the basis functions
used to derive the feature representation. The basis function
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Figure 4. Some of the Gabor basis func-
tions used to represent the minutiae neigh-
borhoods

at scale m, displacement (p,q) € (0,2™,22™..., N) and ori-
entation 6 is given by [3]

Vipgo (2,y) = 27"G"y) )
¥ = 27™[zcos(f) +ysin(d)] —p (8)
y = 27" [—xsin(f) + ycos(d)] —q (9)

We represent a 32x32 region around the fingerprint image
using basis functions that span two scales and four orienta-
tions resulting in 272 such basis functions. The image can
therefore approximately represented using

272

I(z,y) = anGn(z,y) (10)
n=1

The optimal coefficients are obtained a gradient descent ap-
proach as suggested by Daugman in [3]. At each iteration
the coefficient is incremented by an amount

k
(11)

Figure 5 shows examples of normalized minutiae neigh-
borhoods and their approximate reconstruction using Gabor
expansion.

3.2. Bayesian Classification

We use a deterministic Bayesian classifier [4] in order
to distinguish between minutiae and non-minutiae neigh-
borhoods. We can treat minutiae and non minutiae as two
states of nature w; and wy. The coefficients can be repre-
sented using a feature vector . We decide the given sam-
ple as belonging to w; if the posterior probability p(w |Z)
is greater than p(ws|Z). According to Baye’s rule, the pos-
terior probabilities can be calculated using

o P(@|wi)p(w:)
pwilT) = =——=—~
' > P(Elws)
In practice, we usually take a decision that maximizes the

log probabilities In(p(w;|Z)). In terms of discriminant func-
tions, we decide that the feature belongs to wy if g1 (%) >
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Figure 5. Neighborhoods reconstructed us-
ing Gabor functions

92(Z) where g;(Z) = In p(Z|w;) + Inp(w;). Also, we have
observed that all conditional probabilities,p(Z|w;) can be
represented as univariate gaussian. We further assume that
the features are independent of each other. The discriminant
function can therefore be expressed as
- = onty—lim o 1

9i(@) = —5 (= @)'T (T — @) — 5 |Z| - (A3)

Here 1; represents the mean vector for the class w; and %;

consists of a diagonal covariance matrix since we assume
each feature to be independent of each other.

3.3. Feature Selection

We notice that all the 272 features do not sufficiently dis-
criminate the two classes wy and wo. We therefore consider
only those features that sufficiently disciriminate among the
classes. We define the discriminability metric D of each fea-
ture x; as

D, = |1 — pail (14)
015 + 09
We select only those features where D; > 0.5. This results
in retaining 12 of the 272 total features. Only these features
are used for the Bayesian classification.

4. Experimental Verification
4.1. Wedge filter approach

4.1.1. Test data The test data consisted of 2000 genuine
and impostor minutiae neighborhoods extracted out of 30
pairs of images. The ground truth minutiae location in these
images were established manually using a semi-automated
truthing tool. Half of these pairs consisted of bad prints that
contained poor ridge structure and creases. The quality of
the fingerprint images was established using an objective
quality metric described in [11].

4.1.2. Training and Testing The training set con-
sists of 500 impostor and genuine neighborhoods that have
been normalized w.r.t orientation and brightness. The test-
ing set consists of an equal number of impostor and genuine
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Figure 6. ROC for the (a) wedge feature clas-
sifier and (b) Gabor based classifier

neighborhoods. Ridges and bifurcation are treated uni-
formly since it can be emperically shown the response of
the wedge filter are identical in each case. The 180 di-
mensional features obtained are used to train a neural net-
work to distinguish between the two classes. The equal
error rates during training and testing are 6% and 17% re-
spectively. Figure 6a shows the ROC curve for the wedge
feature classifier.

4.2. Gabor expansion approach

4.2.1. Test data The gabor expansion for ridge endings
and bifurcations are of opposite signs. Since we treat bifur-
cations as duals of the ridge endings, the negative image is
used during feature extraction. The 272 features are pruned
using the procedure mentioned in section 3.3. The fea-
tures are classified using Bayesian classification. For sake
of brevity, results using Neural networks have been omit-
ted, since they perform less optimally than a Bayesian ap-
proach.

4.2.2. Training and testing Training uses 60% of the data
and the rest is used for testing. The training results in the fol-
lowing pieces of information. (i)The mean vectors /; and
i, the std. deviation vectors d; and o, corresponding to im-
postor and genuine neighborhoods respectively. The equal
error rate during training and testing are 2% and 2% respec-
tively. Figure 6b shows the ROC curve for the Gabor ex-
pansion based classifier.

5. Conclusion

We have presented two novel features for minutiae veri-
fication in fingerprint images. The algorithm provides accu-
racy better than other gray scale approaches mentioned in
literature. The approaches are computationally efficient and
can also be used to design minutiae detector that can di-
rectly operate on the gray scale images. Our future work

will involve fusing the decision of the two classifiers and
studying the effects of minutiae verification on matching
performance.
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