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Abstract In this contribution, novel approaches are proposed for the improvement of the
performance of Probabilistic Neural Networks as well as the recently proposed Evolution-
ary Probabilistic Neural Networks. The Evolutionary Probabilistic Neural Network’s matrix
of spread parameters is allowed to have different values in each class of neurons, resulting
in a more flexible model that fits the data better and Particle Swarm Optimization is also
employed for the estimation of the Probabilistic Neural Networks’s prior probabilities of
each class. Moreover, the bagging technique is used to create an ensemble of Evolutionary
Probabilistic Neural Networks in order to further improve the model’s performance. The
above approaches have been applied to several well-known and widely used benchmark
problems with promising results.
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1 Introduction

One of the models that have been applied to a wide variety of real-world problems is the
probabilistic neural network (PNN) [29] that is used for classification tasks in several fields of
science [8,13,15,16,32]. It is closely related to the well-known discriminant analysis using
kernel functions and the final classification is obtained using the Bayes decision rule [14].

In our approach, several new ideas are proposed in order to improve the performance of the
probabilistic neural network as well as the evolutionary probabilistic neural network (EPNN)
[10] and other variations of PNNs. We have applied these novel approaches to EPNNs but
they can also be applied to other PNN variants. At first, an expansion of the EPNN’s spread
parameters’ matrix � is proposed which allows the kernels of each class of neurons to have a
different matrix. Also the weighting of the kernels’ outputs which was conducted by the prior
probabilities of each class, is now achieved by particle swarm optimization (PSO) algorithm.
Finally, the bagging technique is used for the further improvement of the performance and
the robustness of EPNN [4].

For completeness purposes, let us briefly present some background material. The PNN
was introduced by Specht [29] as a new neural network type, which is closely related to kernel
discriminant analysis [14]. In fact, the model that Specht introduced is the neural network
implementation of kernel discriminant analysis which incorporates the Bayes decision rule
and the nonparametric density function estimation of a population according to Parzen.

The training procedure of the PNN is quite simple and requires only a single pass of the
patterns of the training dataset T , which results in a very short training time. In fact, the
training procedure is just the construction of the PNN from the available data. The structure
of the PNN always has four layers; the input layer, the pattern layer, the summation layer,
and the output layer [10,29]. An input feature vector, X ∈ R

p , is applied to the p input
neurons and is passed to the pattern layer. The pattern layer is fully interconnected with the
input layer and is organized into K groups, where K is the number of classes present in the
data set. Each group of neurons in the pattern layer consists of Nk neurons, where Nk is
the number of training vectors that belong to class k, k = 1, 2, . . . , K . The i th neuron in the
kth group of the pattern layer computes its output using a Gaussian kernel function of the
form,

fik(X) = 1

(2π)p/2|�k |1/2 exp

(
−1

2
(X − Xik)

T �−1
k (X − Xik)

)
, (1)

where Xik ∈ R
p is the center of the kernel and �k is the matrix of spread (smoothing)

parameters of the kernel function. The summation layer consists of K neurons and estimates
the conditional probabilities of each class,

Gk(X) =
Nk∑

i=1

πk fik(X), k ∈ {1, 2, . . . , K }, (2)

where πk is the prior probability of class k,
∑K

k=1 πk = 1. So a vector X is classified to the
class that has the maximum output of its summation neurons.

A faster version of the PNN can be obtained by using only a part of the training data
set T instead of the whole training data set. Such a training set L can be obtained either
by randomly sampling from the available data or by finding some “representatives” of the
training data through a clustering technique. In our approach, we identified an adequate num-
ber of informative representatives (mean centers) from each class by using the K -medoids
clustering algorithm [17] on the training data of each class. The classification accuracy of a
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Novel Approaches to EPNN through Bagging and PSO 155

PNN is influenced by the spread parameters of its kernels. For the estimation of promising
values of the spread parameters, PSO algorithm has been employed [10]. PSO is a stochastic,
population-based optimization algorithm [18] and its concept is to exploit a population of
individuals to synchronously probe promising regions of the search space. In this context, the
population is called a swarm and the individuals (i.e., the search points) are called particles.
Let us assume a d-dimensional search space S ⊂ R

d where each one of the NP particles
Zi , (i = 1, 2, . . . ,NP) moves with an adaptable velocity Vi within the search space and
retains in a memory the best position BPi it has ever encountered. At every iteration, their
best positions are communicated between the particles of the swarm and the overall best
particle BPg is selected. The particles at iteration t are updated according to the following
equations

V t+1
i = χ

[
V t

i + c1 r1
(
BPt

i − Zt
i

) + c2 r2

(
BPt

g − Zt
i

)]
, (3)

Zt+1
i = Zt

i + V t+1
i , (4)

where i = 1, 2, . . . ,NP ; c1 and c2 are two positive constants called cognitive and social
parameter, respectively; χ is a parameter called constriction coefficient; and r1, r2, are random
vectors uniformly distributed within [0, 1] [5]. So, all vector operations in Eqs. 3 and 4 are
performed componentwise and the best positions are then updated according to the equation

BPt+1
i =

{
Zt+1

i , if f
(

Zt+1
i

)
< f

(
BPt

i

)
,

BPt
i , otherwise,

where f is the objective function to be minimized by PSO. In our case f declares the
misclassification proportion of the validation set. The constriction coefficient is derived ana-
lytically through the formula

χ = 2κ

|2 − ϕ − √
ϕ2 − 4ϕ| , (5)

for ϕ > 4, where ϕ = c1 + c2, and κ = 1, according to the stability analysis of Clerc and
Kennedy [5,31]. Nevertheless, the particles are always bounded in the search space S. For
details we refer to [23,24].

In addition, to further improve the classification accuracy and the robustness of the classi-
fication model, we incorporated the bagging technique [4,19]. Let L be a training set which
consists of {(X (i), Y (i)), i = 1, 2, . . . , Ntrain}, where X (i) ∈ R

p . In a classification task,
where an unknown vector X ∈ R

p must be classified into one of K predefined classes, the
Y (i)’s take values in {1, 2, . . . , K }. Regardless of the model being used, a classifier �(X, L)

is constructed. Suppose we have a sequence of training sets Lm each consisting of Ntrain inde-
pendent observations from the same underlying distribution as L. The task is to construct a
better classifier than �(X, L) using the set {Lm}.

It is typical that only a single training set is available so in order to obtain the appropriate
samples, bootstrap samples are drawn from L. Each bootstrap sample consists of Ntrain cases
and is drawn at random from L with replacement. Some cases may not be selected at all and
others may be selected multiple times. For each bootstrap sample Lm , a classifier �(X, Lm)

is constructed. In order to aggregate all the {�(X, Lm)}, a voting procedure is employed.
Let Nk be the number of times that the classifiers have voted for class k, k = 1, 2, . . . , K .
The final classification is made by a max-rule of {Nk}. In other words, the final classifier is
�B(X, L) = argmaxk(Nk) meaning that a majority voting scheme is employed. The above
procedure is named “boostrap aggregating" and the acronym bagging is used for it.
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2 The Proposed Approach

One drawback of PNN’s performance is the need to estimate a promising value for the spread
parameter of the network’s kernel function. This is usually obtained by a trial-and-error pro-
cedure, although several alternative methods have been proposed in the literature [10–12].
The Evolutionary PNN, proposed in [10], employs the PSO algorithm for the selection of
the appropriate spread parameters. The selection of spread parameters’ matrix � is accom-
plished by the minimization of the misclassification proportion of the training or validation
set with respect to � which is allowed to be a diagonal matrix whose entries may or may not
be equal. The former case is referred to as homoscedastic PNN while the latter is referred as
heteroscedastic PNN.

In this contribution, we expand the above concept in a way that every group of neurons
in the pattern layer of the PNN, has its own matrix �k, k = 1, 2, . . . , K . Now, the matrix of
the spread parameters of the neurons’ kernels of class k can differ from the ones of class l,
for k �= l. This results in a better adaptation of the kernels to the data, since the density of the
data of one class could have a different shape from the density of the data of the other classes.
Therefore, the matrix of spread parameters of our proposed approach will have the following
form �k = diag(σ 2

1k, σ
2
2k, . . . , σ 2

pk), k = 1, 2, . . . , K and the optimization dimension of
PSO will be d = k p.

Another novelty is that besides the optimization of the PNN’s spread parameters, PSO
algorithm is also employed for the better estimation of the prior probabilities πk . The prior
probabilities are neither estimated from the training data set nor set arbitrarily but they are
also included in the PSO optimization of the PNN together with the spread parameters. This
allows the PNN to have an even better adaptation and fit the data properly. It allows the model
to have an even higher degree of freedom of fitting the data. Of course, πk’s are constrained
to

∑
πk = 1. In fact, πk’s function as a new way of weighting the output of each kernel

function of the PNN.
As it was mentioned in Sect. 1, a way to improve the performance of a classification

model is to create an ensemble of m classifiers and use a majority voting system for the final
classification. The technique that was adapted in our contribution is the bagging technique.
A sequence of bootstrap samples is created from the training set and from each one of the
samples an EPNN is constructed. An unknown vector X is classified to the class that has
collected the more votes of the EPNNs. This technique accomplishes to construct a more
robust and stable classifier. In conclusion, our approach consists of the following steps:

Step 1: Apply the K-Medoids algorithm on each class of the training set T to obtain the
clustered training set L.

Step 2: Construct m PNNs using L (�k and πk randomly initialized).
Step 3: For i = 1, 2, . . . , m; Estimate �k and πk of PNNi by PSO, (fitness function: mis-

classification proportion on the whole training set T ).
Step 4: Compute final classification from m PNNs using a majority voting scheme.

3 Experimental Results

The aforementioned novel approaches of the EPNN were applied to six randomly chosen
benchmark problems from UCI data repository [2] from several fields of science with encour-
aging results. In fact, the data sets were downloaded from Proben1 database [25] since the
format that the data sets are offered in Proben1, can be easily used in machine learning
models. We have the following benchmark data sets:
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(1) The first data set that was applied to the proposed models is the Wisconsin breast cancer
database (WBCD) and its aim is to predict whether a breast tumour is benign or malig-
nant [20]. There are nine continuous attributes based on cell descriptions gathered by
microscopic examination and 699 instances.

(2) On the second data set (Card), the aim is to predict the approval or non-approval of a credit
card to a customer [26]. There are 51 attributes which are unexplained for confidential
reasons and the number of observations is 690.

(3) The aim of the third data set, namely The Pima Indians Diabetes Data Set, is to pre-
dict the onset of diabetes, therefore, there are two classes [28]. The input features are
the diastolic blood pressure; triceps skin fold thickness; plasma glucose concentration
in a glucose tolerance test; and diabetes pedigree function. These eight inputs are all
continuous without missing values and there are 768 instances.

(4) The fourth data set, Glass, consists of 214 instances and its aim is to classify a piece
of glass into six different types, namely float processed or non float processed building
windows, vehicle windows, containers, tableware and heat lamps [7]. The classification
is based on nine inputs, which are the percentages of content on eight different ele-
ments plus the refractive index and this task is motivated by forensic needs in criminal
investigation.

(5) In the fifth data set, namely Heart Disease, the aim is to predict whether at least one of
the four major vessels of the heart is reduced in diameter by more than 50%, so there
are two classes [6]. The 35 attributes of the 920 patients are age, sex, smoking habits,
subjective patient pain descriptions and results of various medical examinations such as
blood pressure and cardiogram.

(6) The last data set is the Horse data set and its task is to predict the fate of a horse that
has a colic [25]. The prediction whether the horse would survive, would die or would be
euthanized is based on 58 inputs of a veterinary examination of the horse and there are
364 instances.

So, the models that the aforementioned benchmark problems were applied to are the
following ones:

(a) PNN: At first, we have the original PNN where for the selection of the spread parameter
σ an exhaustive search in the search space is executed and in order to be fair with the rest
of the models, the number of functional evaluations that were computed for the selection
of σ is equal to the corresponding one of the EPNNs.

(b) CL.PNN: The same model (PNN) is used but the clustered training set is employed
instead of the whole training set.

(c) GGEE.PNN: A variation of the PNN that is proposed by Gorunescu et al. [12] has also
been used.

(d) Hom.EPNN: The homoscedastic EPNN [10] was applied to these data sets in order to
compare the obtained results with the corresponding ones of the proposed approaches.
The Hom.EPNN utilizes the whole training data set for the construction of the PNN’s
pattern layer, which means that the demand in memory allocation and computational
power is large

(e) Het.EPNN: The heteroscedastic version of the EPNN [10] that utilizes the whole training
set was also applied to the aforementioned problems.

(f) CL.Hom.EPNN: Another model used in the comparison was the Hom.EPNN where only
the clustered training set was used for PNN’s construction.

(g) CL.Het.EPNN: Also, the clustered version of Het.EPNN was applied to the benchmark
problems.
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(h) B.EPNN: In order to examine whether the weighting of pattern neurons by PSO offers
a remarkable increase in the performance of the EPNN, the Bagging EPNN (B.EPNN)
does not incorporate the PSO weighting but it incorporates bagging, clustered training
set and generalized spread parameters’ matrix.

(i) B.P.EPNN: The proposed approach (Bagging EPNN with Prior evolutionary estimation)
where the EPNN incorporates all the aforementioned ways of improvement: Bagging,
clustered training set, generalized spread parameters’ matrix and prior estimating by
PSO.

The B.EPNN and B.P.EPNN are the new approaches presented in this paper.
The aforementioned models were applied to these six benchmark data sets using 10 times

10-fold cross-validation. Each training data set was applied to all the models except B.EPNN
and B.P.EPNN for 5 times and the median of the test sets’ classification accuracy was recorded
in order to eliminate the bias of the accuracy due to the random initialization of PSO. In PSO,
the default parameter values, c1 = c2 = 2.05, χ = 0.729, were used [5]. In the Hom.EPNN,
the number of particles was set to NP= 5 and PSO was evolved for 50 generations in order
to find the value of σ that minimized the classification error on the whole training set. More-
over, in the Het.EPNN and in both the B.EPNN and the B.P.EPNN, 10 particles were evolved
for 100 generations. For the bagging EPNNs, 11 bootstrap samples were drawn from each
clustered training data set and based on these bootstrap samples, an ensemble of 11 EPNNs
was constructed and the final classification was obtained by a majority voting procedure.

The mean generalization ability (classification accuracy) of each problem’s test sets along
with its standard deviation (SD) is reported in Table 1 for the PNN, the CL.PNN, the
Hom.EPNN and Het.EPNN utilizing the whole training set and the corresponding clus-
tered training set (CL.Hom.EPNN and CL.Het.EPNN respectively), the GGEE.PNN and the
proposed Bagging EPNNs with and without the PSO weighting of pattern layer’s neurons
(B.P.EPNN and B.EPNN respectively). The corresponding training CPU times are presented
in Table 2 for all the models. For the bagging EPNN variants, the total CPU time for the
training of all the 11 models is presented.

The normality assumption was met in all the runs according to the Kolmogorov–Smirnov
normality test; thus to investigate the statistical significance of the results, a corrected resam-
pled t-test [3,21] was conducted to compare the mean classification accuracies of the best
proposed model and the best of the remaining models for each dataset. The highest mean
classification accuracy is shown in boldface letters and the statistically superior mean per-
formance is depicted in a box.

From Table 1, we can see that the proposed approach obtained a statistically superior
mean performance in two out of six problems (Breast Cancer, Diabetes). Moreover, in four
out of the six cases, the Het.EPNN achieved a superior mean performance compared with
the B.EPNN and B.P.EPNN but in Card and Heart the difference is quite small. Neverthe-
less, in Horse and especially in Glass there was a considerable difference between the mean
performances. We should recall that in Horse there are three classes of data and in Glass six
classes. Consequently, we can say that as the number of classes in the data set increases, the
original EPNN achieved higher performance. This is possibly due to the fact that in multi-
class problems, the clustering technique did not extract “reliable” centers or PSO could not
find promising values for all the spread parameters. It should also be noted that these two
benchmark problems do not have a large number of instances, so it may be better to use
the Het.EPNN. Moreover, in all cases where we have a binary classification problem, the
weighting of pattern neurons by PSO obtained a slightly better performance compared to the
B.EPNN where the prior probabilities πk were estimated from the relative frequencies of the
classes. Another remark is that the performance of the clustered versions of Hom.EPNN and
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Table 1 Classification accuracy of the models

Dataset Model Breast Cancer Card Diabetes

Mean SD Mean SD Mean SD

PNN 95.79 0.25 82.10 0.76 65.08 0.05
CL.PNN 91.91 0.84 80.49 0.66 65.08 0.05
GGEE.PNN 96.39 0.20 84.31 0.63 69.43 0.68
Hom.EPNN 95.82 0.28 85.35 0.38 67.67 0.88

Het.EPNN 95.32 0.57 87.67 0.51 69.37 0.80
CL.Hom.EPNN 90.50 1.58 82.02 1.15 65.35 0.48
CL.Het.EPNN 87.89 1.74 85.20 0.97 69.30 1.59
B.EPNN 96.85 0.46 86.64 0.51 71.00 1.02

B.P.EPNN 97.17 0.16 86.83 0.34 71.22 1.00

Dataset Glass Heart Horse

Model Mean SD Mean SD Mean SD

PNN 33.25 3.40 79.23 0.48 64.63 0.72
CL.PNN 41.74 1.64 79.84 0.71 60.23 1.67
GGEE.PNN 50.07 1.44 80.68 0.52 61.97 1.23
Hom.EPNN 68.52 1.55 81.50 0.27 66.54 0.79

Het.EPNN 75.36 1.77 82.60 0.40 68.48 0.97
CL.Hom.EPNN 54.04 3.61 79.96 0.56 61.81 0.77
CL.Het.EPNN 47.25 2.75 77.62 1.16 58.89 1.51
B.EPNN 54.91 3.98 82.28 0.62 66.47 1.40
B.P.EPNN 52.74 4.13 82.35 1.05 66.16 1.56

Table 2 CPU time for the training of the models (seconds)

Dataset Breast cancer Card Diabetes

Model Mean SD Mean SD Mean SD

PNN 42.09 0.66 182.01 7.88 49.58 0.38
CL.PNN 0.08 0.002 0.23 0.004 0.10 0.004
GGEE.PNN 1.52 0.17 5.46 0.06 1.87 0.03
Hom.EPNN 89.12 1.07 266.10 74.56 101.17 0.48
Het.EPNN 171.78 1.07 521.60 142.74 195.27 0.92
CL.Hom.EPNN 0.16 0.02 0.49 0.06 0.18 0.003
CL.Het.EPNN 0.32 0.06 0.66 0.14 0.36 0.008
B.EPNN 82.78 8.86 309.85 1.88 106.42 0.92
B.P.EPNN 90.01 0.92 309.73 2.62 106.24 0.81

Dataset Glass Heart Horse

Model Mean SD Mean SD Mean SD

PNN 3.82 0.02 207.99 45.27 29.29 0.88
CL.PNN 0.11 0.002 0.32 0.02 0.18 0.01
GGEE.PNN 3.66 0.08 6.47 0.92 5.46 0.14
Hom.EPNN 9.16 0.65 223.28 4.28 76.10 7.97
Het.EPNN 17.21 0.76 438.10 6.82 169.92 23.39
CL.Hom.EPNN 0.21 0.01 0.67 0.08 0.37 0.02
CL.Het.EPNN 0.45 0.01 1.37 0.16 0.76 0.03
B.EPNN 29.03 0.14 394.49 5.93 126.76 2.02
B.P.EPNN 28.30 0.11 393.22 4.95 123.03 2.24
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Het.EPNN is inferior in all cases compared to the original versions that utilize the whole
training set. Although the clustered versions are much faster in CPU time, the performance
is quite poor compared to the whole versions.

We should note that the bagging technique and generally ensemble techniques increase
the training and response time since we have to train 11 models in our case and not only
one. But, the number of neurons in the pattern layer of the Het.EPNN was about 20 times
larger than the corresponding B.P.EPNN’s, which has as a result a much faster model both
in training and response time. On the other hand, if we use the clustered training set for
the Het.EPNN., the performance is worse than the Het.EPNN and the B.P.EPNN, so we see
that the bagging technique helps to improve the performance of the CL.Het.EPNN. So, the
proposed approaches do not claim that they can achieve higher performance than EPNN,
but they obtain almost similar results with shorter training time in five out of six cases since
they utilize properly the clustered training set. In Table 2 the mean training CPU times are
reported for all the aforementioned models. The proposed approach demands less CPU time
than Het.EPNN in five out of six cases and in some cases such as the Breast Cancer problem
the B.P.EPNN training time is the half of the corresponding Het.EPNN training time.

Moreover, in order to give an insight to the classification ability of the proposed approaches
compared to any method and not just PNN variants, we have collected the best reported clas-
sification accuracies (generalization accuracy) of the aforementioned benchmark data sets
that have been achieved by any model and sampling technique after an extensive search in
the literature. The results are reported in Table 3.

For the Br.Cancer data set, the best result has been achieved by a Multilayer Percep-
tron trained by a hybrid algorithm that combines the Levenberg–Marquardt algorithm and
Genetic algorithms [1]. Next, the best classification accuracy for the Card problem has been
achieved by a immune network ensemble where each antigen represents a non-linear projec-
tion (NLP) [9]. The best result for Diabetes dataset has been achieved by an AdaBoost NN
and an Immune Network Ensemble with random subspace method (RSM) antigen [1]. For
the Glass problem, a sequential multi-category classifier (SMC) using radial basis function
(RBF) networks gave the best result [30]. The best generalization accuracy ever for the Heart
problem has been achieved by a MLP that its weights and connections (architecture) were
commonly evolved by a Genetic Algorithm [22]. Finally, for the Horse dataset, the best result
has been achieved by a NN trained by a Genetic Algorithm and a feature selection procedure
[27]. As we can see, the performance of the proposed approach is more or less close to the
best model’s performance on each dataset, besides the Glass where there is a great superiority
of the SMC-RBF network.

Table 3 Comparison of classification accuracies for the best ever model and the proposed approaches

Dataset B.EPNN B.P.EPNN Overall best

Mean SD Mean SD Mean SD Model

Br.cancer 98.07 0.46 98.95 0.38 99.98 0.11 GALM [1]
Card 88.09 1.37 87.51 1.13 90.30 – NLP [9]
Diabetes 73.70 2.38 73.23 3.14 80.00 – AdaB. &RSM [9]
Glass 64.76 – 57.14 – 78.09 – SMC-RBF [30]
Heart1 80.52 1.04 80.43 0.87 84.23 3.43 GA MLP [22]
Horse1 72.53 1.72 71.98 1.49 80.22 – GenAlg NN [27]
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4 Conclusion

Several approaches are proposed in this contribution in order to improve the performance
of PNNs as well as EPNNs and other PNN variations. An expansion of the EPNN’s spread
matrix is proposed so that the new model will achieve a better fit to the data. In addition, a new
way of weighting the neurons’ outputs is achieved by PSO besides the typical way where the
prior probabilities are estimated from the relative frequencies of their classes. Moreover, a
further improvement is achieved by the bagging technique. From the experimental results, it
is obvious that the proposed approach achieves higher generalization ability than the original
PNN and Gorunescu et al. PNN and obtain almost similar results with EPNN especially in
binary classification problems. However, the proposed B.P.EPNN has lower computing and
memory requirements due to its smaller pattern layer, so it can be used instead of EPNN in
large data sets and in binary classification problems since it can achieve similar performance
using the clustered training set, something that the clustered Het.EPNN can not.
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