
1

Cite as follows:

M. Cococcioni, F. Rossi, E. Ruffaldi, S. Saponara and B.

Dupont de Dinechin, ”Novel Arithmetics in Deep Neural

Networks Signal Processing for Autonomous Driving:

Challenges and Opportunities,” in IEEE Signal Processing

Magazine, vol. 38, no. 1, pp. 97-110, Jan. 2021, doi:

10.1109/MSP.2020.2988436.

2

Novel Arithmetics in Deep Neural Networks Signal

Processing for Autonomous Driving:

Challenges and Opportunities

Marco Cococcioni, Senior Member, IEEE, Federico Rossi, Emanuele Ruffaldi, Senior Member, IEEE,

Saponara Sergio, Senior Member, IEEE and Benoı̂t Dupont de Dinechin

Abstract—This paper focuses on trends, opportunities and
challenges of novel arithmetics for DNN signal processing,
with particular reference to assisted and autonomous driving
applications. Due to strict constrains in terms of latency,
dependability and security of autonomous driving, machine
perception (i.e. detection or decisions tasks) based on DNN can
not be implemented relying on a remote cloud access. These
tasks must be performed in real-time on embedded systems
on-board the vehicle, particularly for the inference phase
(considering the use of DNNs pre-trained during an off-line
step). When developing a DNN computing platform, the choice
of the computing arithmetics matters. Moreover, functional safe
applications like autonomous driving pose severe constraints on
the effect that signal processing accuracy has on final rate of
wrong detection/decisions. Hence, after reviewing the different
choices and trade-off concerning arithmetics, both in academia
and industry, we highlight the issues in implementing DNN
accelerators to achieve accurate and low-complex processing
of automotive sensor signals (the latter coming from diverse
sources like cameras, radars, lidars, ultrasonics). The focus is
on both on general-purpose operations massively used in DNN
like multiply, accumulation, compare, or on specific functions
like for example sigmoid or hyperbolic tangent, used for neuron
activation.

Index Terms—Deep Neural Networks (DNN), Autonomous
Driving, Real-Time Image & Signal Processing/Classification,
Alternative Real Number Representations, HW Accelerators.

I. INTRODUCTION

THE use of deep neural networks (DNNs) as a general

tool for signal and data processing is increasing both

in automotive industry and academia, proposing a set of

algorithms for most of the autonomous driving tasks.

The effort in computing these artificial intelligence al-

gorithms is an open challenge in the field of computing

platforms nowadays. In particular, when considering strict

requirements, such as lowering the power consumption,

maximizing the throughput and minimizing the latency the

computational complexity becomes more and more critical.

Moreover, with the modern achievements in sensor com-

ponents, the complexity and requirements further scale with

data coming in higher volumes and dimensions and at higher

speed [1].

M. Cococcioni, F. Rossi and S. Saponara are with the Department of
Information Engineering, University of Pisa, 56122 Pisa – Italy, e-mail:
{marco.cococcioni, federico.rossi, sergio.saponara}@unipi.it

E. Ruffaldi is with MMI spa, e-mail: emanuele.ruffaldi@mmimicro.com
B. Dupont de Dinechin is with Kalray, e-mail: benoit.dinechin@kalray.eu

This survey work is focused on the trends, opportunities

and challenges of the adoption of DNN signal process-

ing techniques for autonomous driving and the needs of

signal processing acceleration, and the relevant computing

arithmetic. Indeed, autonomous driving is a safety critical

application, as specified also in functional safety standards

like ISO26262, with strict requirements in terms of real-

time (both throughput and latency) [1, 2]. In Levels L1
and L2 and of the SAE autonomous driving scale [3] just

an assistance to human driver is needed. Therefore, signal

processing based on deterministic algorithms is still enough,

e.g. FFT-based processing of Frequency Modulated Contin-

uous Wave Radar (FMCW) as done in [1]. Instead, for high

autonomous driving levels, from L3 to L5, the complexity of

the scenario and the need of signal processing not only for

sensing, but also for localization, navigation, decision and

actuation, is so high that in recent state-of-art DNN signal

processing is proposed to be used on-board [1, 2, 4, 5]. This

trend is confirmed by the rise of the Autonomous Systems

Initiative within the IEEE SP society [6]. DNNs have

reached state-of-art in several signal processing domains

like image processing, segmentation, classification, tracking

[7]–[10], computer vision [11] and related areas [12]–[14].

In the automotive field, while sensor raw data processing

(from cameras, lidars, radars, ultrasonics) can be still per-

formed using classical signal processing techniques, DNNs

are emerging as more appropriate solutions to solve complex

and high level tasks such as data fusion, classification, and

planning in harsh, unstructured and continuously chang-

ing environments. Tasks such as scene understanding (e.g.

image segmentation, region-of-interest extraction, sub-scene

classification, etc.) must be done on-board the vehicles,

since cloud-based computing scenarios (where the signal

processing is done on remote cloud server and on-board

there is only a client unit generating requests to the server)

suffers of several issues: privacy, authentication, integrity or

connection latency and contention or even communication

unavailability in uncovered areas (highway tunnels, etc). On-

board DNN signal processing can be done only if a low

computational complex algorithm is used and a performing

hardware is adopted. Hence, on-board computing units for

DNN should be optimized in terms of the ratio between

signal processing throughput performance and resources

(memory, bandwidth, power consumption, etc.) [15]–[17].

3

This is the trend that also big players are following like

Google, NVIDIA or Intel, that are trying to enter in the

autonomous driving market, or the recently announced Full

Self Driving (FSD) chip from Tesla. This concept is also

the core of the automotive stream in the H2020 European

Processor Initiative (embedded HPC for autonomous driving

with the BMW group as main technology end user [17],

where the article’s authors are involved. To address the

above issues new computing arithmetic styles are appearing

in state of art [18]–[26] to overcome the classic fixed-

point (INT) vs. IEEE-754 floating point duality in case

of embedded DNN signal processing. Just as an example,

Google is proposing BFLOAT16 (Brain FLOAT), equivalent

to a standard single-precision floating point value with a

truncated mantissa field. Basically, they are less precise than

Float16, but with a range similar to Float32. BFLOAT16 are

supported in Google cloud TPU and TensorFlow and Intel

AI processors. Intel is also proposing flexpoint [18, 19],

a 16-bit block floating-point format aiming at replacing

Float32. NVIDIA Turing architecture is supporting in its

tensor cores Float16 to Float16 or Float32 matrix multiply-

add operations, and also INT4 or INT8 to INT32 matrix

multiply-add operations, the latter for inferencing workloads

that tolerate quantization [24]. The Tesla FSD chip exploits a

neural processing units using 8-bit by 8-bit integer multiply

and a 32-bit integer addition. Transprecision computing for

DNN is also proposed in state of art by academia [20]

and industry, e.g. IBM and Greenwaves in [21]. Recently,

a novel way to represent real numbers, called Posit, has

been proposed [25, 26]. Basically, the Posit format can be

thought as a compressed floating point representation, where

more mantissa bits are used for numbers around 1, and less

mantissa bits stepping away from 1, within a fixed-length

format with variable sized fields (the exponent bits adapts

accordingly, to maintain the format fixed in length).

The rest of this tutorial paper is organized as follows.

Section II reviews the onboard computing challenge of

DNN signal processing for sensing and machine perception,

and the emerging trends in the state of art to solve this

issue. Sections III and IV will review computing arithmetic

proposed for DNN signal processing as alternative to classic

IEEE-754 floats and integer both in academia and industry.

In particular, Section IV focuses on the new Posit format.

Posit implementations based on software (SW) libraries or

custom hardware (HW) accelerator are discussed in Section

V. In Section VI a specific focus is on special signal

processing functions like sigmoid and hyperbolic tangent

for neural networks. Section VI also addresses the problem

of the efficient implementation of computing approaches

based on Look-up-tables (LUTs), Multiply and Accumu-

late (MAC), Fused/Exact dot product, Vectorization/loop-

unrolling/Intrinsics, low-resolution DNN. Sections VII and

VIII discuss tradeoff of DNN signal processing in terms of

accuracy vs. complexity, taking care of results we achieved

using different types of datasets and DNNs (considering both

training and inference phases, or just inference of a pre-

trained network). Section IX will draw some conclusions

and will discuss upcoming trends in the sector.

II. STATE-OF-THE-ART REVIEW OF DNN SIGNAL

PROCESSING IN AUTONOMOUS DRIVING

Autonomous driving is deeply bounded to vehicle navi-

gation, including vehicle self-localisation, motion, mapping

and interaction. A relevant survey on trends and technologies

for autonomous driving is presented in [27]. Localization

task is aimed to know the vehicle pose (position and

orientation) referred to a relative or absolute coordinate

system. Traditional approaches to localization include satel-

lite communication like GPS. However these signals are

typically weak radio ones that can be easily occluded by

trees or buildings in a metropolitan scenario. There exist

other types of equipment like Inertial Measurements Unit

that, combined with GPS, RTK (Real Time Kinematic) and

Kalman-based predictors, can solve this problem, but they

increase implementation cost. Since the task of constantly

knowing the vehicle position is critical one cannot rely only

on these type of signals. The mapping task introduces a

further level of context awareness. With a map-matching

approach a vehicle is able to know not only its position,

but also its surroundings. An important mapping technique

is Simultaneous Localization and Mapping (SLAM, [28])

that allows a vehicle to bypass or minimize the need for

satellite navigation. SLAM considers the surrounding as a

probability distribution of points rather than a snapshots in

time of the context, building a world model making use of

lidar sensors or similar. The typical output of these sensors

are point clouds representing the surrounding environment,

that must be processed in order to give more information

about it. In [29] a way to classify lidar images using DNNs

is presented. In [30] a benchmark challenge for DNNs for

the German Traffic Road Signs (GTRSB) is proposed and

in [31] there are some advanced DNN techniques like data

augmentation and region of interest extraction to maximize

DNN recognition and detection accuracy, reaching top-

level accuracy on the road signs recognition and detection

benchmarks. Moreover, with the advanced developments in

computer vision, vehicles can be equipped with cameras,

whose signals can be processed by DNN as well. For exam-

ple, in [32]–[34] a semantic segmentation of city landscapes

challenge is presented, providing a benchmarks for DNNs to

prove the ability to identify the main components of a road

(such as lanes, other vehicles and pedestrians), from image

or video signals. On the industry side, with the advent of

companies like Tesla or Google’s Waymo, the use of DNNs

in processing lidar or camera signals has become more and

more central.

A. Low-precision DNNs

Academia and industry have proposed multiple solutions

to the problem of reducing the number of bit used to

represents DNNs’ weights, compressing the size from 32-

bit to 16, 8, 4 and even 1-bit, resulting in little-to-none

4

degradation in performance when tested with common DNN

tasks and benchmarks. As an emerging trend in state of

art, literature is starting to explore the possibility to use

the newly introduced Posit representation in order to halve

the weights’ size though maintaining the same accuracy

and to further reduce the weights’ size sacrificing little-

to-none in DNN accuracy. A very interesting work has

been presented in [35], where network weights have been

binarized, dramatically reducing the network footprint and

increasing the training and inference speed. On the industry

side, NVIDIA has lead the reduction of weight bits with its

Tensor Processing Units (TPU), introducing integer weight

types such as 8 and 4-bit integers.

In [36] a novel method is introduced to train neural

networks with extremely low precision (eg, 1-bit) weights

and activations, at run-time. In [37] the authors studied

the training of NNs using low-precision fixed-point com-

putations and evaluated the impact of different rounding

techniques.

The vision presented in this work aims to develop neural

network accelerator entirely based on Posits, also embedding

look-up tables for low-bit Posits such as 4-to-12-bit Posits.

In this way we ensure an homogeneity of representations

that is lost in the NVIDIA approach, due to the discontinuity

introduced when switching from floating point half-precision

to 8 or 4-bit integers.

III. ALTERNATIVE REPRESENTATIONS FOR REALS

In this section we review the most interesting representa-

tion for real numbers, which could be used as an alternative

to the floating point representation (IEEE-754 standard,

2008, that will be referred simply as Float from now on). In

the following we will use an homogeneous representation

for the different number representation “Type Bits[,Exp]”,

where Type is the name of the representation (Float, Posit,

Fixed), Bits is the number of bits, and Exp is the number of

bits used for the exponent. For fixed point Exp represents

the scaling factor to be applied to the number considered

signed integer (e.g Fixed16,8 represents value with 8 bit of

integer part and 8 of fractional part). For Float when Exp

is missing the standard value is assumed: 11, 8 and 5 for

Float64, Float32 and Float16 respectively corresponding to

binary64, binary32 and binary16 of the IEEE standard.

A. BFLOAT16

The research on DNNs has demonstrated that 16-bit Floats

could be enough for many classification problems. From this

the idea to give HW support to the standard half-precision

(Float16,5) too, in addition (or as an alternative) to Float32.

The problem is that pre-trained DNN models are usually

available with Float32, and thus their lowering to 5 bits

of exponent could introduce alterations to the classification

and thus could overall affect the classification performance.

For this reason, the BFLOAT16 format (Brain Float 16-

bit, namely Float16,8 in the present notation) has been

recently introduced with 8 bits of exponent instead of 5.

Having the same size of the exponent of Float32 the use of

BFLOAT16 introduces loss of numerical precision but not

loss of dynamic range. Also the conversion with Float32 is

bitwise.

B. FlexPoint

Flexpoint numbers [18] are characterized by a shared

tensor exponent used for all the number representations in

a given neural network layer (e.g. 16-bit flexpoint plus 5-bit

shared exponent). Moreover the magnitude of the common

exponent is dynamically adjusted according to the required

numerical range during training. The flexpoint approach,

although interesting and powerful, cannot be used as a drop-

in replacement to Floats: software changes are required to

the DNN software libraries. This also makes cumbersome

the reuse of pre-trained DNNs.

C. Type-III Uniform numbers: Posits

Type-III uniform numbers are the third proposal of uni-

versal numbers, proposed again by Gustafson. They can

be exact (Valids) or inexact (Posits). Posits are particularly

interesting, because they are a drop-in replacement for

Floats, while Valids are not. Posits will be presented and

deeply investigated in next section. Before that, we present

on the next two sub-sections two further representations that

are somehow related to Posits.

D. Universal Coding of the Reals using Bisection

The bisection method proposed by Peter Lindstrom in [38]

is based on Elias codes. It encodes each real number in

a binary string based on bi-secting intervals, starting from

the base interval (− inf,+ inf). Each bit of the string is

the result of a comparison with a value contained in a

given interval. The framework proposed as universal coding

allows to build new number systems by defining a generator

function to produce the various intervals and a so called

refinement operator, to compute the average value between

two numbers. Theoretically speaking this encoding is very

interesting due to the possibility to rapidly prototype and

verify the representation. However the encoding is quite

inefficient, involving elaborate expressions in its computa-

tions thus becoming non-hardware-friendly. This suggests

that this particular encoding is not so interesting in the

high performance hardware accelerator topic discussed here,

although also Posit numbers can be generated using this

powerful encoding technique.

E. Logarithmic Numbers and the Kulisch Accumulator

As pointed out by Jeff Johnson in [39], a researcher at

Facebook AI Research, the problem with floating point op-

erations in hardware is that the transistors needed to perform

multiplication and division occupy the main part of the FPU,

being significantly more complex than that for addition/sub-

traction. To overcome this problem, the Logarithmic Number

5

System (LNS) has been proposed decades ago in [40]. LNS

consists in representing a number as y = 2x, i.e., in a pure

logarithmic way. This makes multiplication and division just

a matter of adding and subtracting logarithmic numbers.

However this requires huge hardware lookup tables to

compute the sum or difference of two logarithmic numbers

[39]. This has been one of the main bottlenecks for the

format, since handling these tables can be more expensive

than basic hardware multipliers.

In order to avoid common fused multiply and add com-

plexity, the Kulisch accumulation can be used. The idea is

not to accumulate with a floating point type but instead

maintaining an accumulator in a fixed-point type. As a

drawback this approach leads to a significant increase of in

logic circuitry and power consumption, due to the bit-count

requirements of the Kulisch accumulator.

Although this approach is really promising and can be

combined with the Posit philosophy, it has not been demon-

strated yet that logarithmic numbers are more effective than

Floats for DNNs. Thus more research is clearly needed

before resorting to this solution.

IV. A DEEPER INVESTIGATION ON POSITS

Posit numbers have been proposed by John L. Gustafson

in [26]. The format is a fixed-length representation for real

numbers and it has two parameters: the total number of bits

totbits and the number of exponent bits esbits. It is composed

by a maximum of four fields (see Fig. 1):

• 1-bit sign field S;

• variable length regime field R (1..rebits);

• exponent field E, having a pre-determined maximum

length of esbits (the field E can even be absent);

• variable length fraction field F (can be absent too).

With the adopted notations PositN,E refers to a Posit with

N total bits and E esbits.

012345678910111213141516171819202122232425262728293031

S Regime(1..rebits) Exponent (0..esbits) Fraction (0...)

Fig. 1: Illustration of the of 32-bit Posit data type.

Both the total number of bits and the maximum size of

the exponent field (esbits) are decided empirically a-priori,

depending on the application. These two lengths are those

that fully characterize the Posit representation. The regime

field length is determined by the number of consecutive 0s

after the sign bit ended by one 1 or, vice versa, by the

number of consecutive 1s ended by one 0. In the former

case, the regime value is negative. After having determined

the regime length, the associated value k can be retrieved

according to the procedure illustrated in Fig. 2. The bits that

follow the regime field are, if present, the ones associated

to the exponent. Their number can be, at maximum, equal

to esbits (the a-priori predetermined maximum number of

exponent bits). When the field is missing, the exponent e
is assumed zero. When less bit than esbits are present, the

value of e can be obtained by filling the missing bits with

zeros before decoding it (see Fig.3).

If there are additional bits after the exponent field, they are

the ones associated to the fractional part of the mantissa. If

the Posit is negative (first bit equal to one), before decoding

it to retrieve k, e and f , the 2’s complement of its remaining

bits must be computed.

Fig. 2: Mapping table between regime bits and k value for

a 5-bit string. Amber bits represent the regime bits, brown

ones terminate the regime run.

Therefore, let p the integer represented by the Posit bit-

string, k the correspondent integer indexed by the regime bits

into a run-length table (see Figure 2), e the unsigned integer

associated to the exponent field E and f = 0.f1f2...fn (the

fractional part of the mantissa m (m = 1+f), associated to

the F field); the expression that maps the bitset to the real

value is:

x =

0, if p = 0

NaR, if p = −2(totbits−1)

sign(p)× uk · 2e · (1 + f), otherwise

where

u = 22
esbits

.

Notably it is possible to prove that for PositN,0 the

numbers in the range [−1, 1] are encoded as signed fixed

points over N−1 bits. This property is important for L1

operations discussed later.

Figure 3 shows an example of Posit16,3 (16-bit with max

3 exponent bits) and its decoding procedure.

0123456789101112131415

S R E F

0 0001 101 00001101

0123456789101112131415

S R E

0 11111111111110 1

Fig. 3: Two examples of Posit16,3 that is 16-bit Posit with

esbits=3. For the top case, the associated real value is:

+256−3 · 25 · (1 + 13/256) (13/256 is the value of the

fraction, 1 + 13/256 is the value of the mantissa). The

final value is therefore +1.907348 × 10−6 · (1 + 13/256)
∼= +2.0042× 10−6. For the bottom case, the associated real

value is: +256+12 · 24 · (1 + 0) (since the fractional part of

the mantissa is missing, we set it to zero). The final value is

therefore 296 ·24 ∼= +1.2676506×1030. The second example

allows to clarify that: i) the fractional part can be missing,

ii) the exponent field can be shorter than its maximum size

(in that case the missing bits are assumed zero: the exponent

4 comes from the reconstructed exponent field 100).

6

A. Posit advantages over Floats and industrial adoption

A shown in [26], the main advantages of Posits over IEEE

floating points are represented by less waste of representa-

tions (such as unique 0 and NaN bit configurations) and

higher decimal accuracy when compared to same bit length

floating point. Moreover, the simplicity of the Posit num-

ber systems theoretically allows a more hardware friendly

implementation, simplifying circuitry thus reducing area

occupation and power consumption.

Even if the Posit format is relatively new, it has already

attracted the attention of researchers from Facebook, IBM,

Google, Microsoft, Intel, Bosch, Huawei, Fujitsu, Qual-

comm, Kalray, Micron, Altair, Etaphase, Posit Research, Rex

Computing, Stillwater Supercomputing, and Comma Corp,

as reported by Gustafson during a recent talk [41].

V. SOFTWARE AND HARDWARE IMPLEMENTATIONS OF

POSITS

A. Software Implementations

Having software implementation of Posit arithmetic is

useful in order to test the applicability of the type to existent

libraries and algorithms in order to compare performances

against the traditional floats, also in the absence of proper

hardware support for Posit operations.

1) SoftPosit: This is a library, endorsed by NGA (Next

Generation Arithmetic committee). Positive factors include

multi-platform, supporting C, C++, Julia and Python. How-

ever it presents hard-coded Posit configurations and non-

modern implementation, without templatized classes for the

various configurations. It also lacks support for tabulated

Posits.

2) bfp (beyond floating point): BFP is one of the first

C++ Posit arithmetic libraries developed. However it is still

incomplete and does not support Posit tabulation.

3) StillWater: StillWater is a complete library with mod-

ern C++ features and class templatization, although being

computationally heavy and missing Posit tabulation.

4) cppPosit: This library (available in [42]), developed by

the authors of the present work, exploits some of the modern

C++ features like templates (i.e., generic programming)

and traits. It supports Posit tabulation and logic separation

between frontend interface and backend underlying type

used for computation: the frontend is the Posit number

expressed in its packed form, while the backend allows to

choose different approaches for performing mathematical

operations.

The library identifies four operational levels, with increas-

ing computational cost. At level 1 (called L1), operations are

just bit manipulation of the bits of the encoding. The cost

is the same of integer operations performed in ALU. At

level 2, Posit data is extracted to its fields (sign, regime,

exponent, and fraction), with no need to compute the expo-

nent completely. Computations are performed on these fields

and the cost includes encoding and decoding of the format.

At level 3 we have the unpacked version that is completely

built (including sign, exponent, fraction). In addition to level

Operation Approximated Requirements

2 · x no esbits=0

x/2 no esbits=0

1− x no esbits=0, x ∈ [−1, 1]
1/x yes esbits=0

FastSigmoid yes esbits=0

FastTanh [43] yes esbits=0

FastELU yes esbits=0

TABLE I: cppPosit most important L1 operations, stating

whether the operation produces an exact or an approximated

result and reporting the requirements to be fulfilled. For

instance notice how 1 − x can be computed using fast bit

manipulations only when x ∈ [−1, 1].

2 operations, here there is the need to build the full exponent.

At level 4 the unpacked version is used to perform the

operations in either software or hardware floating point or

using fixed point representations. The most efficient level is

of course the L1, since it comprehends operations that only

require bit-manipulation of the Posit representation, which

can be computed on existing ALUs, without having to wait

for Posit processing units. Table I reports most important

L1 operations provided by the library. The library offers the

possibility to use different backends for Posit operations:

• Fixed number backend (using a quire-like approach);

• Tabulated backend (see VI-B);

• Floating point backend: either SW (SoftFloat) or HW

(FPU).

Each L3 operation in the cppPosit library undergoes three

different phases: i) decode, ii) operation backend, iii) encode.

Each of these phases requires different functionalities in the

processor architecture:

• Decode: mostly bit manipulation. The core function that

is used here is the count leading zeros (CLZ) builtin

function

• Backend:

– Fixed: requires big integer (64-128 bits) support

– Float: requires a Floating Point Unit (FPU)

– SoftFloat: requires 32/64-bit integer manipulations

• Encode: bitwise operations

Table II shows a summary of the requirements support

on two common architectures (both the architectures have

been used for the benchmarks executed in the next sections,

respectively Intel i7560u and ARM Cortex A72). The two

architectures do not differ in terms of hardware requirements

for the aforementioned phases. However, speaking about

the big integer support, the Intel instruction set architecture

(ISA) offers a single instruction (mulq) to perform a 64·64-

bit to 128-bit integer multiplication; on the other hand, the

ARM ISA requires the execution of two instructions.

B. Hardware Implementations of the Posit Processing Unit

Some work has already been done to implement Posit

units on FPGAs, in order to provide efficient and optimized

hardware implementation of Posit arithmetic. In [44] an al-

gorithmic flow and architecture generator for Posit numbers

7

TABLE II: Requirements support of Intel and ARM for the

cppPosit library.

Requirements Intel 7th gen. (Kaby Lake) ARMv8

CLZ built-in X X

Big-integer X(1 single instr.) X(2 instr. needed)

FPU X X

Integer manip. X X

Bitwise ops X X

is proposed, including a Float-to-Posit converter unit and

base arithmetic units. For the converter the flow follows two

major parts, floating point unpacking and Posit construction.

The first part works as any floating point unit, while the other

determines the impact of the design on the hardware. This

has been implemented on a Xilinx Virtex-6 device, resulting

in around 600 FPGA slices for 32-bit Posit adder and 300
for a 16-bit Posit adder.

In [45] a Posit core generator called POSGEN is proposed.

In addition, the FPGA design has been enriched with an

extension of the BLAS library for the Posit numbers called

PBLAS, in order to connect the FPGA through the Intel

OpenCL libraries. The results show that the maximum fre-

quency reached by the proposed implementation matches the

state-of-art FloPoCo floating point implementation. However

the area consumed by the POSGEN implementation is much

higher than the FloPoCo one.

Another Posit arithmetic core (called PAU, Posit Arith-

metic Unit) generator is presented in [46] where generators

for Posit adder and multiplier are proposed. The design

results show a reduction in area occupation referring to [44]

both for adder and multiplier, as well as a reduction in power

consumption for 8-bit Posits. For 16-bit Posits the results are

overturned in favour of the other implementation, as well as

for 32-bit Posits. Moreover from the comparison between

the Posit realization and the standard IEEE floating point

on it results that a 32-bit Posit adder occupies less area and

has a lower delay than a 32-bit Float adder. 32-bit multiplier

instead occupies the same area but with higher delay. Finally,

a 16-bit adder occupies an higher area with higher delay.

In [47] another Posit arithmetic core generator has been

introduced, called PACoGEN. The work presents different

generators for HDL adder/subtractor and multiplier/division

cores. An interesting aspect of this implementation is the

pipelined Posit arithmetic architecture, aimed to increase the

throughput of the unit trying to produce a new result at each

clock cycle (when at regime), making the three phases of an

operation independent (Posit data extraction, core arithmetic

process and Posit construction). Design results shows that

the proposed implementation has a lower area (LUT) ·
period (ns) when compared to literature proposal such as

[46]. However, when the design is compared to standard FP

ones, results show that 32-bit Posit adder/multiplier units

occupy more area than some 32-bit FP ones.

An accelerator for Posit-based BLAS operations is pro-

posed in [48]. The work presents a modular framework for

Posit arithmetic with the common 3-step dataflow: Posit data

extraction, operation and construction. The implementation

consists in a Posit adder, multiplier and a Posit accumulator.

The BLAS library proposed enables vectorized operations

such as element-wise addition, subtraction and multiplica-

tion, as well as dot product and vector sum. Experimental

results show a consistent speed-up obtained when using the

vectorized approach when compared to a software imple-

mentation.

When considering FPGA implementation of Posit arith-

metic units we need to consider the area occupation (thus the

power consumption) of the realized design and compare it to

a FPU realization. Having a 32-bit hardware Posit unit makes

sense if the area of the realized Posit unit is less than the

FPU one. If this does not hold, it still makes sense to have a

16-bit hardware Posit unit if its area is less than a 32-bit FPU

one, since 16-bit Posit achieve similar performance of 32-

bit Floats in different application fields (in Section VIII we

show that in DNNs even a Posit8 can match the performance

of a Float32).

VI. POSIT-BASED DNNS FOR SIGNAL PROCESSING

Non-linear activation functions are a very important part

in DNNs. Its efficient implementation is therefore crucial.

In the next paragraphs we will see how some widely used

activation function can be efficiently computed when using

Posits.

A. DNN Activation Functions

In this subsection we present special implementations of

well-known mathematical functions and algorithms adapted

to the Posit format. When considering these implementa-

tions, it is crucial to build them mostly with L1 operations

(see V-A4).

1) Sigmoid: The sigmoid function:

sigmoid(x) =
1

1 + e−x

has a very efficient approximation when using Posit format

with 0 exponent bits, only consisting in a manipulation of

representation’s bits. This discovery is due to Yonemoto and

Gustafson [26]. Although this formula is appealing in neural

networks, since it leads to faster training, there are intrinsic

limitations when going down with the total number of bits

(precision). Indeed, the sigmoid function does not exploit

enough the dynamic range of the Float or Posit format, since

its co-domain varies in [0, 1]. For this reasons, we have

developed a fast approximation of the hyperbolic tangent

(see below).

2) Hyperbolic Tangent: In order to solve said problem,

an expression for the hyperbolic tangent has been derived,

using a linear combination of the sigmoid function:

tanh(x) = 2 · sigmoid(2 · x)− 1

This leads to a fast and approximated version of the hy-

perbolic tangent (FastTanh from now on) when using the

aforementioned fast sigmoid approximation:

FastTanh(x) = 2 · FastSigmoid(2 · x)− 1

8

In order to have an L1 expression we initially restrict the

domain to the negative numbers only. Doubling operation

and sigmoid function are L1 when using 0 exponent bits

and the result of the first term of the expression is contained

in the unitary range. This means that computing −(1−y) is

also an L1 operation according to Table I. Finally thanks

to tanh symmetry we can extend back the domain also

to positive numbers. Figure 4 shows the time comparison

between the fast approximated version and the exact version

of the hyperbolic tangent. As we can see, the FastTanh

approximated version is six time faster than the exact tanh

version. Moreover, we computed the mean squared error

between the two, resulting in mse = 2.947 · 10−3 in the

entire Posit interval.

A similar approach can be applied to the Extended Linear

Unit (ELU) activation function. This function solves the

common problem of vanishing gradients of sigmoid-like

functions like the hyperbolic tangent and the effects of the

flattening of the ReLU for negative numbers.

ELU(x) =

{

ex − 1, if x ≤ 0

x otherwhise

Starting from the Sigmoid function we can obtain the

negative argument case as follows, where each step of the

following equation can be executed as an L1 operation with

contained approximation:

ELU(x) = 2 ·

(

1

2 · Sigmoid(−x)
− 1

)

If we switch from Sigmoid to the fast approximated version

already exploited with the hyperbolic tangent, we can get

a fast approximation of the ELU (called FastELU). Table

III shows an example of accuracy and timing improvements

when using the approximated ELU function in place of

the exact one. We trained a LeNet-like [49] model with

the different activation functions until negligible improve-

ments in validation accuracy were obtainable. Then we

tested the three mentioned trained models with the different

Posit types, reporting accuracy and processing time. As we

can see, the approximated FastELU model outperforms the

RELU model in terms of accuracy and, in particular, the

type Posit8,0 shows less degradation in terms of accuracy

with FastELU/ELU rather than RELU. In terms of timing

the FastELU and RELU are comparable with PositN,0 being

both L1 operations, while ELU is costlier. More mathemat-

ical details on the FastTanh and the FastELU can be found

in [50].

B. The Look-up-table approach

When using a low number of bits, the use of LUT

becomes appealing very soon. In theory, one could profile a

specific application (i.e., computing the histogram of most

used values and the most significant range), and then create

an ad-hoc series of values. For this set of values, one

only has to compute the four LUT for the four elementary

Fig. 4: Time comparison in various repetitions of ∼ 60k
executions of tanh and FastTanh for a Posit16,0 (benchmarks

were executed on a Intel 7th generation (Kaby Lake) Intel

i7-7560U processor with 2 cores @ 2.4 GHz.). The latter

shows to be around six time faster with a computed mean

squared error of 2.947 · 10−3.

operations, plus the tabulation of significant unary functions

(exp, log, trigonometric functions, sqrt, square, etc.). There

also exists some optimized soft mathematical libraries in

the Sun Cephes collection ([51]). The collection consists in

more than 400 mathematical functions entirely implemented

in C, mostly delivered in different arithmetic precisions (32,

64, 80, 96, 144, and 336 bits operands).

1) Look-up-tables for Posits: Posit LUT size depends on

the overall number of Posit bits. Without any optimization

a table for a binary operation for x bit Posits is a square

one, with number of rows and columns equal to R = C =
2x − 1. Each table entry occupies b bits, depending on the

underlying type used to hold the Posit number. The overall

occupation for a naive table is thus S = R ·C · b. For a 8-bit

Posit represented over a 8-bit unsigned integer type a single

table occupies 64kB. In order to reduce table size symmetry

of addition/subtraction operations can be exploited to halve

table size and number. Moreover multiplication and division

tables can be discarded by exploiting logarithm properties

thus just using the addition/subtraction tables.

C. MAC: Multiply and Accumulate

The task of multiplying two numbers and summing the

result into an accumulator is a very common operation

during DNN operations (such as convolution or matrix

multiplication). The presence of an hardware multiplier-

accumulator is crucial since it helps reducing by one the

number of roundings involved in the computation at each

step. In [52] is presented the implementation of an exact

MAC for low-precision Posits and other floating/fixed-point

types, resulting in 8-bit Posit matching or even overcoming

32-bit Floats.

9

TABLE III: Comparison of different activation functions when applied to neural network for traffic sign classification.

Benchmarks were executed on a Intel 7th generation (Kaby Lake) Intel i7-7560U processor with 2 cores @ 2.4 GHz.
1NCT: Normalized Computing Time (Posit computing times are normalized against the Posit16,0 computing times)

GTRSB

Activation FastELU RELU ELU

Acc. (%) Time (ms) NCT1 Acc. (%) Time (ms) NCT1 Acc. (%) Time (s) NCT1

Posit16,0 94.0 5.8 − 92.0 5.0 − 94.2 6.4 −
Posit14,0 94.0 4.6 0.79 92.0 4.3 0.86 94.2 5.2 0.81

Posit12,0 94.0 4.6 0.79 92.0 4.3 0.86 94.2 5.1 0.79

Posit10,0 94.0 4.6 0.79 92.0 4.2 0.84 94.2 5.0 0.78

Posit8,0 92.0 4.6 0.79 86.8 4.0 0.8 91.8 5.0 0.78

D. Fused/Exact Dot Product

When dealing with low bit number representations the dot

product is a critical operation. The dot product is intensively

used in deep neural networks during convolution operations

and overflows can occur with high probability during the

accumulation of term products. In order to avoid most of

these overflows two solutions can be adopted:

1) Fused Dot Product: While a MAC technique computes

the product result, rounds it, adds it to the accumulator and

then round it again, a fused dot product (also known as

fused multiply add) computes the entire expression at the

maximum available precision, typically using an accumula-

tor that has twice the bit of the single operands. In [26] the

potentiality of Posits in overcoming rounding issues when

using fused operations are shown, such as the possibility to

use 32-bit Posits for high-performance computing instead

of 64-bit Posits, thus increasing the computation speed

and reducing the power consumption as well as storage

requirements.

2) Exact Dot Product: The exact dot product (EDP)

technique makes use of the concept of quires (very high

bit-count scratch area) as accumulator, deferring rounding

only at the very last operation, thus minimizing rounding

errors. The concept of quires has been introduced by Ulrich

Kulisch in [53], in order to minimize the number of transistor

used to build a fixed-size register inside a processor. A

quire is a very high-bit count fixed-size scratch area used

to perform arithmetic operations at the maximum possible

precision given by that fixed size type. If the quire is properly

dimensioned the rounding error will affect only the very last

operation, when converting back the result to the original

low-precision type. In order to have the quire being able

not to underflow or overflow during these operations we

need to dimension it depending on the Posit configuration1.

Suppose to have a totbits-bit Posit, the maximum possible

value for the Posit will be maxpos = utotbits−2, while

the minimum possible value will be minpos = 1
maxpos

,

where u = 22
esbits

; each number is then an integer mul-

tiple of minpos. Suppose we need to perform the follow-

ing dot-product {maxpos,minpos} · {maxpos,minpos},

we’ll need the quire to be able to accomodate the value

maxpos2/minpos2. After some transformation, we can

1https://posithub.org/docs/Posits4.pdf

compute the maximum value to hold as

2(4·totbits−8)·2esbits

Moreover one bit has to be reserved for the sign and more

bits to handle the sum (e.g. Gustafson chooses 30 more

bits to guarantee the absence of overflows). Practically, for

example, this means that with a 8-bit Posit (esbits = 0)

we will need one 64-bit quire register, for a 16-bit Posit

(esbits = 1) we will need a 256-bit (4 64-bit registers) and

for 32-bit (esbits = 2) Posit 512-bit (8 64-bit registers).

E. Kalray MPPA approach

In order to address the challenges of high-performance

embedded computing with time-predictability, Kalray has

been refining a homogeneous manycore architecture called

MPPA (Massively Parallel Processor Array) based on VLIW

cores. On the 3rd-generation MPPA processor [54], each

VLIW core is paired with a coprocessor designed for 2D data

processing, especially the mixed-precision tensor operations

of deep learning inference. In particular, each coproces-

sor implements matrix multiply-accumulate operations on

INT8/32 and Float16/32 where we use the ’/’ to describe

the two bandwidths of the multiplicand and the accumulator.

Exploitation of INT8/32 operations relies on the Tensor-

Flow Lite quantization support [55], while exploitation the

Float16/32 artithmetic by standard frameworks is the same as

for NVIDIA GPGPUs. However, unlike the NVIDIA tensor

cores, the Kalray MPPA3 coprocessors perform exact dot-

product inside the Float16.32 matrix multiply-accumulate

operations, by applying Kulisch’s principles on a 80+ǫ
accumulator [56].

Following [52], the Posit8 numbers have been identified

by Kalray as an effective compressed representation for the

Float32 network parameters: instead of rounding the Float32

parameter values to Float16 values, the results of rounding

can be restricted to Posit8,0 or Posit8,1 numbers, with the

primary benefit of reducing by half the memory capacity

and bandwidth required by the network parameters. Kalray

focuses on the Posit8,0 and Posit8,1 numbers because they

are exactly represented as Float16 numbers, and thus can

benefit from the exact Float16/32 dot-product operator of

the MPPA3 coprocessors. Conversely, the Posit8,2 numbers

include 8 values of magnitude 65536 and larger that are out

of range of the Float16 numbers, while the Posit8,3 numbers

https://posithub.org/docs/Posits4.pdf

10

overflow even the range of the BFLOAT16 numbers. Evalu-

ation of the hardware costs and application benefits of using

Posit8,0 numbers as compressed format for Float32 network

parameters is on-going. This evaluation should lead to the

inclusion of new arithmetic instructions to expand Posit8,0

to Float16 in the MPPA IP delivered to the H2020 European

Processor Initiative.

Preliminary results obtained comparing the use of Float32,

Float16 and Posit8,E (with a E from 0 to 3) for data storage

(while computation is still done in Float32) during the

inference phase using network models for both classification

task (e.g. SqueezeNet, Alexnet, VGG16, VGG19, GoogleNet

and Custom CNN on MNIST and CIFAR100) and detection

tasks (e.g. YOLOv3) show that Posit8,1 or Posit8,2 offer

the best performance, with an accuracy loss below 1% vs.

Float32, but with a data compression of factor 4. This will

lead to reduced complexity for data transfer and storage that

are dominating DNN applications.

To be noted that: i) the networks where pre-trained using

Float32, and ii) the used datasets in the reported results had

thousand of images. Indeed, the ILSVRC2012 (ImageNet

Large Scale Visual Recognition Challenge 2012) dataset has

been used for classification and the VOC2012 (Visual Object

Classes Challenge 2012) dataset for detection.

F. Vectorization of Posit operations (tested on random im-

ages)

While in the absence of proper hardware support for

Posits (i.e. Posit Processing Unit) we can still accelerate

DNN core functions and operators using already existing

hardware accelerators. This is the case of ARM Scalable

Vector Extension (SVE) SIMD engine. We have also ported

our cppPosit library to provide vectorized version of Posit

functions exploiting ARM SVE library. When talking about

vectorized functions, L1 Operations are the easiest ones to

vectorize. In fact, since they only rely on integer arithmetic

and logic, we can effortlessly exploit native ARM SVE vec-

torization of integer operations. Benchmarks were executed

on a HiSilicon Hi1616 CPUwith 32@2.4GHz ARM Cortex-

A72, using the ARM SVE Instruction Emulator. Table IV

shows some timing results between vectorized and non-

vectorized approaches. Furthermore, we have provided an

interface between the Posit floating point backend and the

ARM SVE types in order to vectorize L3/4 operations as

well. This allowed to implement Posit-accelerated version

of convolution and pooling operations. Table V shows an

example of timing results with 3× 3 convolution and max-

pooling operations. Finally, Table VI shows vectorization

performance in terms of processing time on low-precision

inference on Posit8,0. Performance have been obtained on

the tinyDNN library, on various very deep neural netwoks.

All benchmarks have been executed on the ARM instruction

emulator. As reported, the processing time with SVE vec-

torization enabled dramatic speedups. Note that, in terms of

absolute values, the processing time is quite large. Clearly,

this is due to the fact that SVE-enabled hardware is not

TABLE IV: L1 operations performance processing time (in

milliseconds) comparison between non-vectorized (naive)

and vectorized (SVE-X) approaches. Each timing result

comes from function computation on a vector of 8192 items

FastSigmoid (ms) FastTanh (ms) FastELU (ms)

Posit 8,0 16,0 8,0 16,0 8,0 16,0

Version

Naive 3.08 3.41 5.76 7.24 8.12 8.54

SVE-128 0.73 1.51 1.32 2.65 1.29 2.60

SVE-256 0.59 1.05 1.18 1.83 1.16 1.79

SVE-512 0.43 0.62 0.69 1.09 0.69 1.05

SVE-1024 0.29 0.39 0.48 0.72 0.46 0.68

SVE-2048 0.22 0.28 0.36 0.50 0.35 0.47

TABLE V: 3× 3 Convolution and Pooling processing time

(in milliseconds) comparison on two common Posit config-

uration with 225×225 random images. The Naive approach

is the non-vectorized one. The other approaches are with

incremental SVE-vector registers.

Max Pooling (ms) Convolution (ms)

Posit 8,0 16,0 8,0 16,0

Version

Naive 49.7 59.41 80.67 80.84

SVE-128 9.51 26.52 24.02 37.99

SVE-256 8.89 22.06 11.66 21.49

SVE-512 6.96 14.69 6.85 14.03

SVE-1024 5.12 11.84 6.38 12.88

SVE-2048 4.13 9.76 3.65 8.81

available at moment of writing and all benchmarks are

executed inside the ARM SVE instruction emulator.

VII. DNN SIGNAL PROCESSING PERFORMANCE:

ACCURACY AND COMPLEXITY

In [52] and [57] Carmichael et al. show an architecture

using Posits in deep neural networks called Deep Positron

using exact multiply and accumulate technique (EMAC)

on 8-bit low precision formats. The architecture has been

tested on the MNIST, Fashion-MNIST and datasets report-

ing no drop in accuracy with regards to Float32. Another

approach to deep learning with low-bit numbers has been

tested in [39], using logarithmic numbers with a ResNet-

50 architecture on Imagenet, resulting in a drop of 0.90%
percentage point when shifting from Float32 to logarithmic

representation. We have integrated the cppPosit library in a

deep neural network C++ library called tiny-DNN [58], that

is capable of support various different computing arithmetic

TABLE VI: Image processing time (in seconds) for various

very deep neural network models using Posit8,0. For this

benchmark random RGB 224× 224 images are employed.

Version Alexnet Resnet34 VGG16 VGG19 Resnet150

Time(s) Time(s) Time(s) Time(s) Time(s)

Naive 40.06 146.07 590.68 675.32 779.7

SVE-128 2.76 10.07 40.74 46.57 53.77

SVE-256 2.64 9.61 38.88 44.45 51.32

SVE-512 2.54 8.93 36.12 41.30 47.68

SVE-1024 2.44 8.92 36.06 41.23 47.60

SVE-2048 2.34 8.90 35.97 41.13 47.48

11

such as BFLOAT16, flexpoint and Posits. Then we tested the

accuracy of different network models in image classification

benchmarks such as MNIST, Fashion-MNIST, CIFAR-10

and German Traffic Road Sign Recognition Benchmark

(GTRSB) using the fused dot product (FDP) technique. For

MNIST dataset we registered a drop of 0.9% percentage

points when testing the model from Float32 to Posit8. For

GTRSB we registered a drop of 0.2% percentage points

instead. For other Posit configurations with 16, 14, 12, 10 bits

we registered no drop in accuracy from Float32 to the Posit

type.

VIII. BENCHMARK DATASETS AND EXAMPLES OF

ACHIEVABLE RESULTS

We have considered different standard datasets, like the

one shown in Figure 5, and standard CNN architectures,

like the one shown in Figure 6. In particular, for the

MNIST and GTSRB benchmarks we trained customized

CNN variants of that reported in Figure 6, including Posit-

related optimizations to convolutional and activation layers.

For the Fashion-MNIST benchmark we used a pre-trained

model with starting accuracy of 95%. For CIFAR-10 we

used VGG16 pre-trained model [59]. All the networks

were initially trained using Float32 and then tested on

the corresponding test sets, converting each Float32 trained

model using different Posit configurations. Furthermore, in

order to provide a fair timing-accuracy tradeoff comparison,

the Float32 model has been tested exploiting the SoftFloat

library for software-emulated floating point numbers.

A. MNIST, Fashion-MNIST and CIFAR-10

Table VII presents the results obtained on three well-

known classification benchmarks: MNIST, Fashion-MNIST

and CIFAR-10. MNIST is a digit recognition problem, while

Fashion-MNIST has been designed as more complex drop-

in replacement for the MNIST dataset, providing more

general classes to be recognized (such as fashion products).

Furthermore, CIFAR-10 consists in an even more complex

task, bringing 3-channel images in the dataset.

As reported the tests on the model with the different types

show that Posits with zero exponent bits and sized from 12

to 14 bits can be a perfect, replacement for Float32, while

with 10 and 8 bits can replace Float32 with some drop in

accuracy. The same holds for the Fashion-MNIST dataset.

Note how the processing time (on an Intel 7th genera-

tion (Kaby Lake) i7 processor) for single image inference

of VGG16 model on a CIFAR-10 sample is expressed

in seconds, highlighting the infeasibility of these model

on traditional CPU architectures. However we are moving

towards GPU-enabled DNN libraries as described in Section

IX. For comparison, an entire training epoch of 60k CIFAR-

10 samples on a Resnet-50 architecture only takes around 30
seconds on a dual GPU (Tesla T4) configuration, thus only

0.5 milliseconds for forward and backward passes (including

weight update).

To be noted also that, to make the comparison fair, we

compare in Tables VI and VII the software implementation

of Posits (using our developed cppPosit library) with a

software implementation of Floats (the SoftFloat library).

From Tables VI and VII we can observe that moving

from SoftFloat32 to Posit8,0 we get (roughly) the same

classification accuracy on all the considered datasets, but

with a reduction in computing time of about a factor 3.

B. Automotive Benchmarks: The traffic sign recognition

problem

Fig. 5: GTRSB dataset example

In this subsection we report the results obtained on a clas-

sification benchmark related to assisted/autonomous driving.

Benchmarks were executed on an Intel 7th generation (Kaby

Lake) Intel i7-7560U processor with 2 cores @ 2.4

GHz. German Traffic Road Sign Recognition Benchmark is

a baseline benchmark for road sign recognition, being very

interesting as automotive task. Table VIII shows that also in

this case Posits from 12 to 16 bits and even 10 bits can be

a perfect replacement for Float32 while Posit8,0 performs

good with a little drop in accuracy.

Fig. 6: LeNet5 architecture as described in [49]. Some

customisations have been added to the network in order to

better fit our goals: the activation function has been changed

to FastTanh (as described before) for the MNIST dataset and

to a fast approximation of ELU for the GTSRB dataset. The

input size of the first layer has been extended to hold the

64× 64× 3 color images of the GTSRB datasets.

Fig. 7: Cityscapes Dataset example of semantic segmentation

of a road in Stuttgart.

We have also started an activity to assess the perfor-

mance of Posits using the Yolo (You Only Look Once)

approach [60, 61] and on Apollo [62] (http://apollo.auto/)

heterogeneous framework and the results achieved confirm

12

TABLE VII: Accuracy and processing time obtained on MNIST, Fashion-MNIST and CIFAR-10 datasets. Processing time

is evaluated as the mean per-sample inference time on the testset of the relative dataset.
1NCT: Normalized Computing Time (Posit computing times are normalized against SoftFloat32 computing times)

Type MNIST Fashion-MNIST CIFAR-10

Acc. (%) Time (ms) NCT1 Acc. (%) Time (ms) NCT1 Acc. (%) Time (s) NCT1

SoftFloat32 99.4% 8.8 − 95.0% 41.9 − 93.75% 7.75 −
Posit16,0 99.4% 5.2 0.59 95.0% 13.6 0.32 93.75% 2.55 0.32

Posit14,0 99.4% 4.6 0.52 95.0% 13.5 0.32 93.75% 2.49 0.32

Posit12,0 99.4% 4.6 0.52 95.0% 13.5 0.32 93.75% 2.44 0.31

Posit10,0 99.3% 4.6 0.52 95.0% 13.4 0.32 93.75% 2.40 0.30

Posit8,0 98.5% 3.8 0.43 94.0% 13.4 0.32 85.0% 2.34 0.30

TABLE VIII: Accuracy-processing time trade-off obtained

on the German Traffic Road Sign Benchmark dataset.
1NCT: Normalized Computing Time (Posit computing times

are normalized against SoftFloat32 computing times)

Type GTRSB

Acc. (%) Time (ms) NCT1

SoftFloat32 94.0% 15.86 −
Posit16,0 94.0% 6.37 0.40

Posit14,0 94.0% 5.21 0.32

Posit12,0 94.0% 5.08 0.32

Posit10,0 94.0% 5.0 0.31

Posit8,0 93.8% 4.0 0.25

what already obtained above with GTRSB, MNIST and

Fashion-MNIST datasets. Moreover we started an activity

to asses Posit performances in semantic segmentation tasks

(such pixel-level or instance-level classification, [33, 34]) on

famous datasets like CityScapes, see Figure 7. The results

we are obtaining are in line with those obtained on, MNIST

and fashion-MNIST and GTRS benchmark datasets.

C. k-Nearest Neighbours results

The k-Nearest Neighbours (k-NN) algorithm is ubiquitous

in pattern recognition problems. It can be used to segment

images, or to compute the normal vectors to each point

of a point cloud obtained by a lidar sensor mounted on

a car. The k-NN algorithm algorithms finds the K nearest

neighbours of a given point, from those in a given dataset.

We have compared the performance of the k-NN when

using Posits and Floats and, again, we have found that the

accuracy of a Posit16,0 is very close to that of Float32 (see

Fig. 8), and that a Posit8,0 outperforms a Float16. These

results have been obtained on a single dataset, but scaling

it multiple times in order to reduce the dynamic range of

the input data (thus allowing low-precision data types to

be competitive with Float32). More details can be found in

[63]. The obtained results confirm that Posits are powerful

in a number of machine learning application and thus this

means that implementing Posit-based HW accelerators will

be beneficial for a number of different applications.

D. Next Experiments

We are working towards the implementation of other

fast approximated functions (e.g. ELU). We are currently

porting our cppPosit-based tinyDNN library on the ARM

Fig. 8: Performance of the k-NN using different data types,

on a single dataset using different values for the scaling

factor.

instruction emulator used within the H2020 EPI project

(European Processor Initiative, [64]), to exploit the Scalable

Vector Extension (SVE2) as much as possible (providing a

vectorization backend for the cppPosit library).

We are also planning to test our software on available

simulators like GEM5, SESAM and MUSA, in order to

provide useful feedbacks to the ongoing EPI processor co-

design process.

IX. CONCLUSIONS AND ROADMAPS

In this work we have reviewed the state-of-the-art of DNN

signal processing for autonomous driving application and the

quest for novel representations of real numbers, that must

be both efficient and reliable. We have seen how Posit is

a suitable drop-in replacement for IEEE-754 standard, and

we have assessed its potentialities in autonomous driving

applications. Implementations with both SW-libraries or

HW-SW embedded systems, from academia and industry,

have been discussed. The achieved results when combining

Posit arithmetic with DNN are promising in terms of trade-

off between accuracy and processing time. From this and

related works, it is clear that the current challenges are i)

the development of real-time and low-power accelerators for

performing DNN inference at the edge, ii) the development

of methods for DNN verification and validation, with the

13

high coverage rates required by the standards for safety-

critical applications and iii) moving towards a GPU-enabled

DNN library, such as Tensorflow, in order to build, train

and evaluate even more complex models, once integrated

with our cppPosit library. Furthermore we plan to test

our approach on GPU-enabled ARM devices such as the

NVIDIA Jetson boards and on mobile devices that do not

employ GPUs or even without the FPU.

ACKNOWLEDGMENT

This work is partially funded by H2020 European Pro-

cessor Initiative (grant agreement No 826647) and partially

by the Italian Ministry of Education and Research (MIUR)

in the framework of the CrossLab project (Departments of

Excellence).

REFERENCES

[1] S. Saponara and B. Neri, “Radar sensor signal acquisition and multi-
dimensional FFT processing for surveillance applications in transport
systems,” IEEE Transactions on Instrumentation and Measurement,
vol. 66, no. 4, pp. 604–615, 2017.

[2] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent
advances and trends in on-board embedded and networked automotive
systems,” IEEE Transactions on Industrial Informatics, vol. 15, no. 2,
pp. 1038–1051, 2019.

[3] Taxonomy and Definitions for Terms Related to Driving Automation

Systems for On-Road Motor Vehicles, 2018. [Online]. Available:
https://doi.org/10.4271/J3016 201806

[4] J. Royo-Alvarez et al., Ed., From Signal Processing to Machine

Learning. John Wiley & Sons, Ltd, 2018, ch. 1, pp. 1–11.

[5] L. Deng, “Artificial intelligence in the rising wave of deep learning:
The historical path and future outlook [perspectives],” IEEE Signal

Processing Magazine, vol. 35, pp. 180–177, 2018.

[6] https://ieeeasi.signalprocessingsociety.org/.

[7] M. T. McCann, K. H. Jin, and M. Unser, “Convolutional neural
networks for inverse problems in imaging: A review,” IEEE Signal

Processing Magazine, vol. 34, no. 6, pp. 85–95, 2017.

[8] A. Arnab, S. Zheng, S. Jayasumana, B. Romera-Paredes, M. Larsson,
A. Kirillov, B. Savchynskyy, C. Rother, F. Kahl, and P. H. S. Torr,
“Conditional random fields meet deep neural networks for semantic
segmentation: Combining probabilistic graphical models with deep
learning for structured prediction,” IEEE Signal Processing Magazine,
vol. 35, no. 1, pp. 37–52, 2018.

[9] S. F. Dodge and L. J. Karam, “Quality robust mixtures of deep neural
networks,” IEEE Transactions on Image Processing, vol. 27, no. 11,
pp. 5553–5562, 2018.

[10] P. Nousi, A. Tefas, and I. Pitas, “Deep convolutional feature his-
tograms for visual object tracking,” in ICASSP 2019 - 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2019, pp. 8375–8379.

[11] A. Voulodimos, N. D. Doulamis, A. Doulamis, and E. Protopapadakis,
“Deep learning for computer vision: A brief review,” in Comp. Int.

and Neurosc., 2018.

[12] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: Going beyond euclidean data,” IEEE Signal

Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[13] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“Deep reinforcement learning: A brief survey,” IEEE Signal Process-

ing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[14] J. Han, D. Zhang, G. Cheng, N. Liu, and D. Xu, “Advanced deep-
learning techniques for salient and category-specific object detection:
A survey,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp. 84–
100, 2018.

[15] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “Model compression and
acceleration for deep neural networks: The principles, progress, and
challenges,” IEEE Signal Processing Magazine, vol. 35, no. 1, pp.
126–136, Jan 2018.

[16] P. Nousi, E. Patsiouras, A. Tefas, and I. Pitas, “Convolutional neural
networks for visual information analysis with limited computing re-
sources,” in 25th IEEE International Conference on Image Processing

(ICIP’18), 2018, pp. 321–325.

[17] D. Reinhardt, U. Dannebaum, M. Scheffer, and M. Traub, “High
Performance Processor Architecture for Automotive Large Scaled
Integrated Systems within the European Processor Initiative Research
Project,” SAE Technical Paper 2019-01-0118, 2019.

[18] U. Köster et al., “Flexpoint: An adaptive numerical format for efficient
training of deep neural networks,” in Advances in Neural Information

Processing Systems, 2017, pp. 1742–1752.

[19] V. Popescu, M. Nassar, X. Wang, E. Tumer, and T. Webb, “Flexpoint:
Predictive numerics for deep learning,” in 2018 IEEE 25th Symposium

on Computer Arithmetic (ARITH), June 2018, pp. 1–4.

[20] G. Tagliavini, A. Marongiu, and L. Benini, “Flexfloat: A software li-
brary for transprecision computing,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 39, no. 1, pp.
145–156, 2020.

[21] A. C. I. Malossi, M. Schaffner, A. Molnos, L. Gammaitoni, G. Tagli-
avini, A. Emerson, A. Toms, D. S. Nikolopoulos, E. Flamand,
and N. Wehn, “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), March 2018, pp. 1105–1110.

[22] G. Venkatesh, E. Nurvitadhi, and D. Marr, “Accelerating deep con-
volutional networks using low-precision and sparsity,” in 2017 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), March 2017, pp. 2861–2865.

[23] G. Srivastava, D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and
J. Seo, “Joint optimization of quantization and structured sparsity for
compressed deep neural networks,” in ICASSP 2019 - 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2019, pp. 1393–1397.

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” CoRR, vol. abs/1609.07061, 2016.
[Online]. Available: http://arxiv.org/abs/1609.07061

[25] M. Cococcioni, E. Ruffaldi, and S. Saponara, “Exploiting posit
arithmetic for deep neural networks in autonomous driving applica-
tions,” in 2018 International Conference of Electrical and Electronic

Technologies for Automotive, 2018, pp. 1–6.

[26] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[27] P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and
N. Mohammadiha, Autonomous Vehicles: State of the

Art, Future Trends, and Challenges. Cham: Springer
International Publishing, 2019, pp. 347–367. [Online]. Available:
https://doi.org/10.1007/978-3-030-12157-0 16

[28] A. Woo, B. Fidan, and W. W. Melek, Localization for Autonomous

Driving. John Wiley & Sons, Ltd, 2019, ch. 29, pp. 1051–1087.

[29] Y. Wenhui and Y. Fan, “Lidar image classification based on con-
volutional neural networks,” in 2017 International Conference on

Computer Network, Electronic and Automation (ICCNEA), 2017, pp.
221–225.

[30] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs.
computer: Benchmarking machine learning algorithms for traffic sign
recognition,” Neural Networks, vol. 32, pp. 323 – 332, 2012, selected
Papers from IJCNN 2011.

[31] V.-D. Hoang, M.-H. Le, T. T. Tran, and V.-H. Pham, “Improving traffic
signs recognition based region proposal and deep neural networks,” in
Intelligent Information and Database Systems, N. T. Nguyen, D. H.
Hoang, T.-P. Hong, H. Pham, and B. Trawiński, Eds. Cham: Springer
International Publishing, 2018, pp. 604–613.

[32] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benen-
son, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset for
semantic urban scene understanding,” in Proc. of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2016.

[33] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in ECCV, 2018.

[34] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan,
W. Wang, Y. Zhu, R. Pang, V. Vasudevan, Q. V. Le, and H. Adam,
“Searching for mobilenetv3,” in ICCV, 2019.

[35] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in

https://doi.org/10.4271/J3016_201806
https://ieeeasi.signalprocessingsociety.org/
http://arxiv.org/abs/1609.07061
https://doi.org/10.1007/978-3-030-12157-0_16

14

Advances in Neural Information Processing Systems 28, C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, Eds.
Curran Associates, Inc., 2015, pp. 3123–3131.

[36] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low
precision weights and activations,” The Journal of Machine Learning

Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[37] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan,
“Deep learning with limited numerical precision,” in Proceedings of

the 32Nd International Conference on International Conference on

Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015,
pp. 1737–1746. [Online]. Available: http://dl.acm.org/citation.cfm?
id=3045118.3045303

[38] P. Lindstrom, “Universal coding of the reals using bisection,” in
Proceedings of the Conference for Next Generation Arithmetic 2019

(CoNGA’19), 2019, pp. 7:1–7:10.

[39] J. Johnson, “Rethinking floating point for deep learning,” CoRR, vol.
abs/1811.01721, 2018. [Online]. Available: http://arxiv.org/abs/1811.
01721

[40] M. G. Arnold, J. Garcia, and M. J. Schulte, “The interval logarithmic
number system,” in Proceedings 2003 16th IEEE Symposium on

Computer Arithmetic, 2003, pp. 253–261.

[41] J. Gustafson, “Posits and quires: Freeing programmers from mixed-
precision decisions,” in in 34th International Supercomputing Confer-

ence (ISC) High Performance (ISC’19), Frankfurt, 16-20 June, 2019.

[42] E. Ruffaldi, “cppPosit,” https://github.com/eruffaldi/cppPosit.

[43] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “A fast
approximation of the hyperbolic tangent when using posit numbers
and its application to deep neural networks,” in Applications in

Electronics Pervading Industry, Environment and Society. Cham:
Springer International Publishing, 2020, pp. 213–221.

[44] M. K. Jaiswal and H. K.-. So, “Universal number posit arithmetic
generator on FPGA,” in 2018 Design, Automation Test in Europe

Conference Exhibition (DATE), 2018, pp. 1159–1162.

[45] A. Podobas and S. Matsuoka, “Hardware implementation of posits
and their application in FPGAs,” in 2018 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 2018,
pp. 138–145.

[46] R. Chaurasiya, J. Gustafson, R. Shrestha, J. Neudorfer, S. Nam-
biar, K. Niyogi, F. Merchant, and R. Leupers, “Parameterized posit
arithmetic hardware generator,” in 2018 IEEE 36th International

Conference on Computer Design (ICCD), 2018, pp. 334–341.

[47] M. K. Jaiswal and H. K.-. So, “Pacogen: A hardware posit arithmetic
core generator,” IEEE Access, vol. 7, pp. 74 586–74 601, 2019.

[48] L. van Dam, J. Peltenburg, Z. Al-Ars, and H. P. Hofstee, “An
accelerator for posit arithmetic targeting posit level 1 blas routines
and pair-hmm,” in Proceedings of the Conference for Next Generation

Arithmetic 2019 (CoNGA’19), 2019, pp. 5:1–5:10.

[49] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, p. 436, 2015.

[50] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “Fast approx-
imations of activation functions in deep neural networks when using
posit arithmetic,” Sensors, vol. 20, no. 5, 2020.

[51] “Cephes mathematical function library,” http://www.netlib.org/
cephes/.

[52] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L.
Gustafson, and D. Kudithipudi, “Performance-efficiency trade-off of
low-precision numerical formats in deep neural networks,” in Pro-

ceedings of the Conference for Next Generation Arithmetic 2019

(CoNGA’19), 2019, pp. 3:1–3:9.

[53] U. Kulisch, “An axiomatic approach to rounded computations,”
Numerische Mathematik, vol. 18, no. 1, pp. 1–17, 1971. [Online].
Available: https://doi.org/10.1007/BF01398455

[54] B. D. de Dinechin, “Consolidating High-Integrity, High-Performance,
and Cyber-Security Functions on a Manycore Processor,” in 56th

ACM/IEEE Design Automation Conference (DAC’19), 2019, p. 154.

[55] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. G. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training of neural
networks for efficient integer-arithmetic-only inference,” in 2018 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2018,

Salt Lake City, UT, USA, June 18-22, 2018, 2018, pp. 2704–2713.

[56] N. Brunie, “Modified fused multiply and add for exact low precision
product accumulation,” in 2017 IEEE 24th Symposium on Computer

Arithmetic (ARITH), July 2017, pp. 106–113.

[57] Z. Carmichael, H. F. Langroudi, C. Khazanov, J. Lillie, J. L.
Gustafson, and D. Kudithipudi, “Deep positron: A deep neural net-
work using the posit number system,” in Design, Automation & Test

in Europe Conference & Exhibition (DATE’19), 2019, pp. 1421–1426.
[58] https://github.com/tiny-dnn/tiny-dnn.
[59] K. Simonyan and A. Zisserman, “Very deep convolutional networks

for large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.
[60] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Ander-

son, and J. Frahm, “Re-thinking cnn frameworks for time-sensitive
autonomous-driving applications: Addressing an industrial challenge,”
in 2019 IEEE Real-Time and Embedded Technology and Applications

Symposium (RTAS), 2019, pp. 305–317.
[61] S. Goel, A. Baghel, A. Srivastava, A. Tyagi, and P. Nagrath, “Detec-

tion of emergency vehicles using modified yolo algorithm,” in Intelli-

gent Communication, Control and Devices, S. Choudhury, R. Mishra,
R. G. Mishra, and A. Kumar, Eds. Singapore: Springer Singapore,
2020, pp. 671–687.

[62] H. Tabani, L. Kosmidis, J. Abella, F. J. Cazorla, and G. Bernat,
“Assessing the adherence of an industrial autonomous driving frame-
work to iso 26262 software guidelines,” in 56th ACM/IEEE Design

Automation Conference (DAC’19), 2019, pp. 1–6.
[63] M. Cococcioni, F. Rossi, E. Ruffaldi, and S. Saponara, “Novel

arithmetics to accelerate machine learning classifiers in autonomous
driving applications,” in in Proc. of the 26th IEEE International

Conference on Electronics Circuits and Systems (ICECS’19), 2019.
[64] “European Processor Initiative, an H2020 project,” https://www.

european-processor-initiative.eu/, 2019-2021.

Marco Cococcioni (IEEE Senior Member) is an Associate Professor
at the Department of Information Engineering of the University of Pisa
since 2016. He has been the general chair of three IEEE conferences and
program committee member of 50+ international conferences in the area
of computational intelligence. He is in the editorial board of four journals
indexed by Scopus. He is member of three IEEE task forces: Genetic
Fuzzy Systems, Computational Intelligence in Security and Defense, and
Intelligent System Applications. Prof. Cococcioni has co-authored more
than 90 scientific contributions and he is a Senior Member of both IEEE
and ACM.

Federico Rossi is a Ph.D student of the Information Engineering
Department at University of Pisa. In 2019 he received his Master Degree
in Computer Engineering magna cum laude. He is currently involved in
the European Processor Initiative (EPI) project. His research topics include
alternative real number representations and their applications to Deep
Neural Networks for the automotive environment.

Emanuele Ruffaldi is senior software engineer at MMI S.p.A. (IT)
working on robotic assisted microsurgery. Formerly he has been Assistant
Professor at Scuola Superiore Sant’Anna in the Perceptual Robotics
laboratory, Pisa, Italy. His research interests are in the field of machine
learning for HRI and embedded artificial intelligence. He is Senior IEEE
Member and has served IEEE as Publicity Chair for the Haptics TC. He
co-authored more than 100 scientific publications and 1 patent.

Sergio Saponara is Full Professor at University of Pisa, responsible
of Automotive Electronics, Hardware Security and Embedded System
activities as well as President of BSc and MSc degrees in Electronic
Engineering. He is also director of a summer school on Industrial IoT
and a specialization course on Automotive powertrain electrification. He
is responsible for University of Pisa of the European Processor Initiative
(EPI) project. He is IEEE Distinguished Lecturer and Associate Editor
of many peer-reviewed journals. He co-authored more than 300 scientific
publications and about 20 patents.

Benoı̂t Dupont de Dinechin is CTO of Kalray. He is the main architect
of the Kalray VLIW cores, and the co-architect of the MPPA processors.
Benot defined the Kalray software roadmap and still contributes to its
implementation. Before joining Kalray, Benoı̂t was leading R&D for the
Software Tools division at STMicrelectronics, becoming a Fellow in 2008.
Prior to STMicrelectronics, Benoı̂t developed the software pipeliner of the
Cray T3E production compilers at the Cray Research park, MN, USA.
Benot earned an engineering degree from ISAE-SUPAERO (Toulouse),
and a doctoral degree in computer systems from the University Pierre et
Marie Curie (Paris). He completed his post-doctoral studies at the McGill
University, Canada.

http://dl.acm.org/citation.cfm?id=3045118.3045303
http://dl.acm.org/citation.cfm?id=3045118.3045303
http://arxiv.org/abs/1811.01721
http://arxiv.org/abs/1811.01721
https://github.com/eruffaldi/cppPosit
http://www.netlib.org/cephes/
http://www.netlib.org/cephes/
https://doi.org/10.1007/BF01398455
https://github.com/tiny-dnn/tiny-dnn
https://www.european-processor-initiative.eu/
https://www.european-processor-initiative.eu/

	Introduction
	State-of-the-art review of DNN signal processing in autonomous driving
	Low-precision DNNs

	Alternative Representations for Reals
	BFLOAT16
	FlexPoint
	Type-III Uniform numbers: Posits
	Universal Coding of the Reals using Bisection
	Logarithmic Numbers and the Kulisch Accumulator

	A deeper investigation on Posits
	Posit advantages over Floats and industrial adoption

	Software and Hardware Implementations of Posits
	Software Implementations
	SoftPosit
	bfp (beyond floating point)
	StillWater
	cppPosit

	Hardware Implementations of the Posit Processing Unit

	Posit-based DNNs for Signal Processing
	DNN Activation Functions
	Sigmoid
	Hyperbolic Tangent

	The Look-up-table approach
	Look-up-tables for Posits

	MAC: Multiply and Accumulate
	Fused/Exact Dot Product
	Fused Dot Product
	Exact Dot Product

	Kalray MPPA approach
	Vectorization of Posit operations (tested on random images)

	DNN Signal Processing performance: accuracy and complexity
	Benchmark Datasets and Examples of Achievable Results
	MNIST, Fashion-MNIST hland CIFAR-10
	Automotive Benchmarks: The traffic sign recognition problem
	k-Nearest Neighbours results
	Next Experiments

	Conclusions and roadmaps
	References

