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Abstract—A novel speckle suppression method for medical ul-
trasound images is presented. First, the logarithmic transform of
the original image is analyzed into the multiscale wavelet domain.
We show that the subband decompositions of ultrasound images
have significantly non-Gaussian statistics that are best described
by families of heavy-tailed distributions such as the alpha-stable.
Then, we design a Bayesian estimator that exploits these statistics.
We use the alpha-stable model to develop a blind noise-removal
processor that performs a nonlinear operation on the data. Finally,
we compare our technique with current state-of-the-art soft and
hard thresholding methods applied on actual ultrasound medical
images and we quantify the achieved performance improvement.

Index Terms—Alpha-stable distributions, Bayesian estimation,
ultrasound speckle, wavelet decomposition.

I. INTRODUCTION

FOR MORE than two decades, ultrasonography has been
considered as one of the most powerful techniques for

imaging organs and soft tissue structures in the human body.
Today, it is being used at an ever-increasing rate in the field
of medical diagnostic technology. Ultrasonography is often
preferred over other medical imaging modalities because it is
noninvasive, portable, and versatile, it does not use ionizing
radiations, and it is relatively low-cost. The images produced
by commercial ultrasound systems are usually optimized for
visual interpretation, since they are mostly used in real-time
diagnostic situations. However, the main disadvantage of
medical ultrasonography is the poor quality of images, which
are affected by multiplicative speckle noise [1].

Imaging speckle is a phenomenon that occurs when a co-
herent source and a noncoherent detector are used to interro-
gate a medium, which is rough on the scale of the wavelength.
Speckle occurs especially in images of the liver and kidney
whose underlying structures are too small to be resolved by large
wavelength ultrasound. The presence of speckle is undesirable

Manuscript received October 25, 2000; revised June 8, 2001. The work of
A. Achim was supported by a grant from the State Scholarship Foundation of
Greece. The work of P. Tsakalides was supported by the Greek General Secre-
tariat for Research and Technology under Program E�ET II, Code 97E� - 152.
The Associate Editor responsiblle for coordinating the review of this paper and
recommending its publication was M. Insana.Asterisk indicates corresponding
author.

*A. Achim is with the Biosignal Processing Group, Medical Physics Depart-
ment, University of Patras, 265 00 Rio, Greece (e-mail: amarian@heart.med.up-
atras.gr).

A. Bezerianos is with the Biosignal Processing Group, Medical Physics De-
partment, University of Patras, 265 00 Rio, Greece.

P. Tsakalides is with the VLSI Design Laboratory, Department of Electrical
and Computer Engineering, University of Patras, 261 10 Rio, Greece.

Publisher Item Identifier S 0278-0062(01)07083-5.

since it degrades image quality and it affects the tasks of human
interpretation and diagnosis. As a result, speckle filtering is a
critical pre-processing step for feature extraction, analysis, and
recognition from medical imagery measurements.

Current speckle reduction methods are based on temporal av-
eraging [2], [3], median filtering [4], [5], and Wiener filtering.
The adaptive weighted median filter, first introduced in [6], can
effectively suppress speckle but it fails to preserve many useful
details, being merely a low-pass filter. The classical Wiener
filter, which utilizes the second-order statistics of the Fourier
decomposition, is not adequate for removing speckle since it is
designed mainly for additive noise suppression. To address the
multiplicative nature of speckle noise, Jain developed a homo-
morphic approach, which by taking the logarithm of the image,
converts the multiplicative into additive noise, and consequently
applies the Wiener filter [1].

Recently, there has been considerably interest in using the
wavelet transform as a powerful tool for recovering signals from
noisy data [7]–[12]. The main reason for the choice of multi-
scale bases of decompositions is that the statistics of many nat-
ural signals, when decomposed in such bases, are significantly
simplified. More specifically, methods based on multiscale de-
compositions consist of three main steps: First, the raw data are
analyzed by means of the wavelet transform, then the empirical
wavelet coefficients are shrunk, and finally, the denoised signal
is synthesized from the processed wavelet coefficients through
the inverse wavelet transform. These methods are generally re-
ferred to aswavelet shrinkage techniques.In [9], Zong et al.
use a logarithmic transform to separate the noise from the orig-
inal image. They adopt regularized soft thresholding (wavelet
shrinkage) to remove noise energy within the finer scales and
nonlinear processing of feature energy for contrast enhance-
ment. A similar approach applied to synthetic aperture radar
(SAR) images is presented in [10]. The authors perform a com-
parative study between a complex wavelet coefficient shrinkage
filter and several standard speckle filters that are largely used
by SAR imaging scientists, and show that the wavelet-based ap-
proach is among the best for speckle removal.

Thresholding methods have two main drawbacks: 1) the
choice of the threshold, arguably the most important design
parameter, is done in anad hocmanner; and 2) the specific
distributions of the signal and noise may not be well matched at
different scales. To address these disadvantages, Simoncelliet
al. developed nonlinear estimators, based on formal Bayesian
theory, which outperform classical linear processors and simple
thresholding estimators in removing noise from visual images
[8], [13]. They used a generalized Laplacian model for the
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Fig. 1. Block diagram of the proposed multiscale homomorphic Bayesian-based algorithm for speckle suppression. Our proposed novel wavelet coefficient
statistical characterization and Bayesian processing modules result in a more accurate ultrasound image reconstruction.

subband statistics of the signal and developed a noise-removal
algorithm, which performs a “coring” operation to the data.
The term “coring” refers to a widely used technique for noise
suppression, which preserves high-amplitude observations
while suppressing low-amplitude values from the high-pass
bands of a signal decomposition.

It is recognized that parametric Bayesian processing presup-
poses proper modeling for the prior probability density function
(PDF) of the signal. In a recent work, Tsakalideset al.showed
that alpha-stable distributions, a family of heavy-tailed densi-
ties, are sufficiently flexible and rich to appropriately model
wavelet coefficients of images in coding applications [14]. In
this paper, we present a novel speckle suppression method for
medical ultrasound images. The proposed processor consists of
two major modules: 1) a subband representation function that
utilizes the wavelet transform; and 2) a Bayesian denoising al-
gorithm based on an alpha-stableprior for the signal. First, the
original image is logarithmically transformed to change multi-
plicative speckle to additive white noise. Then, the transformed
image is analyzed into a multiscale wavelet domain. We show
that the subband decompositions of actual ultrasound images
have significantly non-Gaussian statistics that are best described
by families of heavy-tailed distributions like the alpha-stable.
Motivated by our modeling results, we design a Bayesian es-
timator that exploits these statistics. We use the alpha-stable
model to develop a blind speckle-suppression processor that
performs a nonlinear operation on the data, and we relate this
nonlinearity to the degree of non-Gaussianity of the data.

The paper is organized as follows: In Section II, we define
the ultrasound speckle suppression problem by outlining the
speckle noise model and common preprocessing steps such
as the logarithmic and the wavelet transforms. Section III
provides some necessary preliminaries on alpha-stable pro-
cesses and presents results on the modeling of the subband
coefficients of actual medical ultrasound images indicating
their heavy-tailed nature. The design of a Bayesian estimator
that exploits the signal alpha-stable statistics is described
in Section IV. Section V compares the performance of our
proposed algorithm with the performance of current denoising
methods applied to actual ultrasound images and quantifies the
achieved performance improvement. Finally, conclusions and
future work directions are drawn in Section VI.

II. PROBLEM FORMULATION

Speckle noise affects all coherent imaging systems including
laser, SAR imagery, and ultrasound. Speckle may appear dis-
tinct in different imaging systems but it is always manifested in

a granular pattern due to image formation under coherent waves.
The basic properties of speckle are described by Goodman in [2]
while the main differences between ultrasound and laser speckle
are discussed in [3]. A general model for speckle noise proposed
by Jain [1] was also used by Zong [9]. In the following, we for-
mulate the ultrasound speckle removal problem starting with a
brief essential overview of the speckle model.

Denote by a noisy observation (i.e., the recorded
ultrasound image) of the two-dimensional (2-D) function

(i.e., the noise-free image that has to be recovered) and
by and the corrupting multiplicative and
additive speckle noise components, respectively. One can write

(1)

Generally, the effect of the additive component of the speckle in
ultrasound images is less significant than the effect of the multi-
plicative component. Thus, ignoring the term , one can
rewrite (1) as

(2)

To transform the multiplicative noise model into an additive one,
we apply the logarithmic function on both sides of (2)

(3)

Expression (3) can be rewritten as

(4)

where , , and are the logarithms of , , and
, respectively. In fact, this logarithmic transform consti-

tutes the first preprocessing step of our proposed algorithm as
shown in the block diagram depicted in Fig. 1.

At this stage, one can consider to be white noise and
subsequently apply any conventional additive noise suppres-
sion technique, such as Wiener filtering. However, it is recog-
nized that standard noise filtering methods often result in blurred
image features. Indeed, single-scale representations of signals,
either in time or in frequency, are often inadequate when at-
tempting to separate signals from noisy data. The wavelet trans-
form has been proposed as a useful processing tool for signal
recovery [15]–[17].

The wavelet transform expands a signal using a set of basis
functions, which are obtained from a single prototype function
called the “mother wavelet.” The result of the expansion is a
sequence of signal approximations at successively coarser res-
olutions. The so-called “detail signal” is the difference in in-
formation between approximations at two consecutive resolu-
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tions, and it can be represented by another series expansion. If
we consider an original 2-D signal of size , usually
being a power of 2 , such a decomposition scheme
is mathematically referred to as thedyadic wavelet transform
(DWT). In image processing applications, the above scheme is
applied along both the abscissa and the ordinate. Thus, the DWT
decomposes images with a multiresolution scale factor of two,
providing at each resolution level one low-resolution approxi-
mation and three spatially oriented wavelet details [17], [18],
which are referred asimage subbands.

The wavelet transform is a linear operation. Consequently,
after applying the DWT to (4) we get, in each of the three di-
rections, sets of noisy wavelet coefficients written as the sum of
the transformations of the signal and of the noise

(5)

where and refer to
the decomposition level or scale and 1, 2, 3 refers to the
three spatial orientations. In Fig. 2, we show an example of a
three-scale decomposition of an ultrasound image.

Current state-of-the-art multiscale techniques for ultrasonic
speckle suppression are based on various thresholding schemes
[9], [19]. These methods try to address the inability of the
original soft thresholding technique to balance between speckle
suppression and signal detail preservation. In principle, a suc-
cessful ultrasound imaging algorithm should achieve both noise
reduction and feature preservation if it takes into consideration
the true statistics of the signal and noise components. Previous
studies related to wavelet shrinkage using Bayesian theory have
underlined the need for aprior model that accurately approx-
imates the probability density function of the signal and noise
wavelet coefficients [8], [11], [20], [21]. For example, (1)–(4)
suggest the use of a multiplicative random field as speckle
noise model. It has been shown that, if the number of scatterers
per resolution cell is large, a fully developed speckle pattern
can be modeled as the magnitude of a complex Gaussian field
with independent and identically distributed (i.i.d.) real and
imaginary components (see [2], [22], and references therein).
In order to generate spatially correlated speckle noise for use in
simulations, one can lowpass filter a complex Gaussian random
field and take the magnitude of the filtered output [23].

The Bayesian approach for ultrasound speckle noise removal,
which we propose in this paper, is based on a novel heavy-tailed
family of distributions that better models the prior statistics of
the signal component. In Section III, we present the fundamental
properties of the model and we justify its use by fitting actual
ultrasonic signals.

III. A LPHA-STABLE MODELING OF ULTRASOUND WAVELET

COEFFICIENTS

This section is intended to provide an introduction on the
alpha-stable statistical model used to characterize the wavelet
subband coefficients of logarithmic transforms of actual ultra-
sound images. The model is suitable for describing signals that
have highly non-Gaussian statistics and its parameters can be
estimated from noisy observations. The appearance of alpha-

Fig. 2. Three-scale decomposition of an ultrasound image. The horizontal (H),
vertical (V), and diagonal (D) details are shown in each scale. The upper-left
image represents the approximation at level 3.

stable models in the context of ultrasound images has been al-
ready noticed in [24] and [25], but they were used to process
the ultrasound RF echoes, rather than the recorded images. A
review of the state of the art on stable processes from a statis-
tical point of view is provided by a collection of papers edited
by Cambanis, Samorodnitsky and Taqqu [26], while textbooks
in the area have been written by Samorodnitsky and Taqqu [27],
and by Nikias and Shao [28].

A. Basic Properties of the Alpha-Stable Family

The appeal of symmetric alpha-stable ( ) distributions as
a statistical model for signals derives from some important theo-
retical and empirical reasons. First, stable random variables sat-
isfy thestabilitypropertywhichstates that linearcombinationsof
jointly stable variables are indeed stable. The wordstableis used
because the shape of the distribution is unchanged (or stable)
undersuch linearcombinations. Second, stable processesariseas
limiting processes of sums of i.i.d. random variables via the gen-
eralized central limit theorem. Actually, theonly possible non-
trivial limit of normalized sums of i.i.d. terms is stable. On the
other hand, strong empirical evidence suggests that many data
sets in several physical and economic systems exhibit heavy tail
features that justify the use of stable models [29].

The distribution is best defined by its characteristic
function

(6)

where
characteristic exponent,taking values

;
( ) location parameter;
( ) dispersionof the distribution.
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For values of in the interval , the location parameter
corresponds to the mean of the distribution, while for

, corresponds to its median. The dispersion parameter
determines the spread of the distribution around its location

parameter , similar to the variance of the Gaussian distribution.
The characteristic exponentis the most important param-

eter of the distribution and it determines the shape of the
distribution. The smaller the characteristic exponentis, the
heavier the tails of the density. This implies that random
variables following distributions with small characteristic
exponents are highly impulsive. Gaussian processes are stable
processes with 2 while Cauchy processes result when
1. In fact, no closed-form expressions for the general PDF
are known except for the Gaussian and the Cauchy members.

Although the density behaves approximately like a
Gaussian density near the origin, its tails decay at a lower
rate than the Gaussian density tails [27]. Indeed, letbe a
non-Gaussian random variable. Then, as

(7)

where , is
the Gamma function, and the statement as
means that 1. Hence, the tail probabil-
ities are asymptotically power laws. In other words, while the
Gaussian density has exponential tails, the stable densities have
algebraic tails. Fig. 3 shows the tail behavior of several
densities including the Cauchy and the Gaussian. We should
note that because expression (7) gives exactly the tail proba-
bility of the Pareto distribution, the term “stable Paretian laws”
is used to distinguish between the fast decay of the Gaussian law
and the Pareto like tail behavior when .

The alpha-stable tail power law provided one of the earliest
approaches in estimating the stability indexof real measure-
ments [27]. The empirical distribution of the data, plotted on
a log-log scale, should approach a straight line with slope
if the data is stable. Another approach is based on quantiles
[30]. Maximum likelihood (ML) methods developed by Du-
Mouchel [31] and by Brorsen and Yang [32] are asymptotically
efficient but were considered difficult to compute. Recently,
Nolan showed that ML estimation of stable parameters is fea-
sible by designing an efficient program [33].

One consequence of heavy tails is that only moments of order
less than exist for the non-Gaussian alpha-stable family mem-
bers, i.e.,

for (8)

As a result, stable Paretian laws have infinite variance. In the
past, the infinite variance property of the family has
caused skeptics to dismiss the stable model. With the same
reasoning, one could argue that the routinely used Gaussian
distribution, which has infinite support, should also be dis-
missed as a model of bounded measurements. In practice, one
should remember that it is important to capture the shape of
the distribution and that the variance is only one measure of
the spread of a density [33].

Fig. 3. Tail behavior of theS�S probability density functions for� = 0.5,
1.0 (Cauchy), 1.5, and 2.0 (Gaussian). The dispersion parameter is kept constant
at 
 = 1.

B. Modeling Results of Ultrasound Image Subbands

In the past, several authors have pointed out that, in a sub-
band representation of images, histograms of wavelet coeffi-
cients have heavier tails and more sharply peaked modes at zero
than what is assumed by the Gaussian distribution [13], [14],
[18]. In this section, we study whether the stable family pro-
vides a flexible and appropriate tool for modeling the coeffi-
cients within the framework of multiscale wavelet analysis of
logarithmically transformed ultrasound images.

Two sets of test images, obtained from two different sources,
are included in this research. The first set consists of a series
of 44 abdominal ultrasound images (DICOM format) including
liver, kidney, gall bladder, and pancreas images. These images
were acquired from the same patient with a 4-MHz transducer
frequency on a GE LOGIQ 500 system. They have been made
available to us by the IT Lab at the Medical University of South
Carolina. The second set of test data comes from a directory con-
taining example DICOM image files that were donated by var-
ious vendors for the DICOM demonstrations held at the annual
meetings of the Radiological Society of North America from
1993 to 1996 (ftp://wuerlim.wustl.edu/pub/dicom/images/). We
considered two criteria for selecting images for our test set.
First, we looked for good quality images in order to be able to
consider them as noise-free. Moreover, since speckle appears to
some extent in any ultrasound image, we have first processed the
actual images using the homomorphic Wiener filter [1] and con-
sidered the resulting images as reasonable approximations of the
speckle free data. Also, we were interested in performing exper-
iments on images of different organs and from various sources in
order to be able to obtain modeling results, which we can claim
to be general enough. Because of limited space, in this paper
we describe the modeling of eight representative images. Each
image is referred with the name of the organ that was imaged.
All of them have a 256 gray-level resolution.

We proceed in two steps: First, we assess whether the data de-
viate from the normal distribution and if they have heavy tails.
To determine that, we make use of the normal probability plots.
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Fig. 4. Normal probability plot of the vertical subband at the first level of
decomposition of the gallbladder image (GLBD_Vsbd_1lvl data for short).
Characterization of data non-Gaussianity. The “�” marks correspond to the
empirical probability density versus the data value for each point in the sample.
Since the circles are in a curve that does not follow the straight Gaussian line,
the normality assumption is violated for this data.

Then, we check if the data is in the stable domain of attraction
by estimating the characteristic exponent,, directly from the
data and by providing the related confidence intervals. Several
methods have been proposed for estimating stable parameters.
Here, we use the ML method described by Nolan in [33], which
gives reliable estimates and provides the most tight confidence
intervals. As further stability diagnostics, we employ probability
density plots that give a good indication of whether the fit
matches the data near the mode and on the tails of the distribu-
tion.

Fig. 4 depicts the normal probability plot of the vertical
subband at the first level of decomposition of the gallbladder
image (data denoted by “GLBD_Vsbd_1lvl,” for short). The
plot provides strong evidence that the underlying distribution
is not normal. The circles in the plot show the empirical
probability versus the data value for each point in the sample.
The circles are in a curve that does not follow the straight
Gaussian line and thus, the normality assumption is violated for
this data. While non-Gaussian stable densities are heavy-tailed,
not all heavy-tailed distributions are stable. Hence, in Figs. 5
and 6 we assess the stability of the data. First, the characteristic
exponent is estimated and the data sample is fitted with the
corresponding stable distribution. For the particular case shown
here, the characteristic exponent of the distribution which
best fits the data was estimated to be 1.069. The stabilized
p-p plot in Fig. 5 shows a highly accurate stable fit for
this data set.

Naturally, the real question is whether the stable fit describes
the data more accurately than other PDF functions proposed in
the literature. Here, we compare the fits with those pro-
vided by the generalized Laplacian density function proposed
by Mallat in [18] and also used by Simoncelli in [13]

(9)

Fig. 5. Stabilized p-p plot forS�S fit of data set GLBD_Vsbd_1lvl. The
“+” marks, denoting the empirical probability density, are in a curve that very
accurately follows the straightS�S line corresponding to� = 1.069.

Fig. 6. Modeling of the ultrasound image wavelet coefficients
GLBD_Vsbd_1lvl with the S�S and the generalized Laplacian density
functions, depicted in solid and dashed lines, respectively. TheS�S
distribution has characteristic exponent� = 1.069 and dispersion
 = 0.051
while the generalized Laplacian has parametersp = 0.498 ands = 0.022
[cf. (9)]. The dotted line denotes the empirical PDF. Note that theS�S PDF
provides a better fit to both the mode and the tails of the empirical density
of the actual data.

where . The parametersand can be
computed from the second and fourth moments of the data

(10)

where is the distribution variance, andis the kurtosis. Fig. 6
shows that the distribution is superior to the generalized
Laplacian distribution because it provides a better fit to both the
mode and the tails of the empirical density of the actual data.
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TABLE I
ALPHA-STABLE MODELING OF WAVELET SUBBAND COEFFICIENTS OFACTUAL ULTRASOUND IMAGES. ML PARAMETER ESTIMATES AND 95% CONFIDENCE

INTERVALS FOR THES�S CHARACTERISTIC EXPONENT, �. THE TABULATED KEY PARAMETER � DEFINES THEDEGREE OFNON-GAUSSIANITY AS DEVIATIONS

FROM THE VALUE � = 2, WHICH CORRESPONDS TO THEGAUSSIAN CONDITION. THE SIZE OF EACH IMAGE IS GIVEN IN PARENTHESES

For every image we iterated three times the separable wavelet
decomposition described in Section II and we modeled the
coefficients of each subband by using the family. The
wavelet decomposition was done using Daubechies’ Symmlet
4 basis wavelet because we found this basis to be the most ef-
fective in decorrelating the data. The results are summarized
in Table I, which shows the ML estimates of the characteristic
exponent together with the corresponding 95% confidence in-
tervals. It can be observed that the confidence interval depends
on the size of the images and on the particular level of decom-
position. The confidence interval becomes larger as the size de-
creases and as the level increases since the number of samples
used for estimating gets smaller. The table demonstrates that
the coefficients of different subbands and decomposition levels
exhibit various degrees of non-Gaussianity. The important ob-
servation is that all subbands exhibit distinctly non-Gaussian
characteristics, with values of varying between 0.9 and 1.6,
away from the Gaussian point of 2. Our modeling results
clearly point to the need for the design of Bayesian processors
that take into consideration the non-Gaussian heavy-tailed char-
acter of the data to achieve close to optimal speckle mitigation
performance.

IV. A B AYESIAN PROCESSOR FORULTRASOUND SPECKLE

REMOVAL

Current state-of-the-art wavelet-based denoising and image
enhancement techniques employ a combination of wavelet

shrinkage by soft and hard thresholding together with a gener-
alized adaptive gain (GAG) for feature emphasis (see [9] and
references therein). In particular, Zonget al.apply soft thresh-
olding at fine scales (levels 1 and/or 2) and hard thresholding
within middle levels 3 and/or 4 to eliminate noise, followed
by nonlinear processing of feature energy to enhance contrast.
The regularized threshold parameter used in [9] is related to the
noise level, orientation, and scale through a judiciously chosen
but at the same timead hoc linearly decreasing function.
Moreover, the five parameters which determine the empirical
GAG function in [9] are tuned experimentally to achieve the
appropriate nonlinear stretching of wavelet coefficients that
accomplishes the desired contrast enhancement.

In this section, our goal is the design of a formal Bayesian
estimator that recovers the signal component of the wavelet co-
efficients in ultrasound images by using an alpha-stable signal
prior distribution. The proposed processor is motivated by the
modeling studies in Section III, it is based on solid statistical
theory, and it does not depend on the use ofad hocthresholding
and stretching parameters.

In a Bayesian framework, referring to (5), , , and
are considered as samples of the random variables, , and ,
respectively. The signal componentis modeled according to a

distribution with zero location parameter, while the noise
component is modeled as a zero-mean Gaussian random vari-
able. Our goal is to find the Bayes risk estimatorthat mini-
mizes the conditional risk, which is the loss averaged over the



778 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 8, AUGUST 2001

conditional distribution of , given the set of wavelet coeffi-
cients,

(11)

The Bayes risk estimator under a quadratic cost function min-
imizes the mean-square error (mse) and is given by the condi-
tional mean of , given

(12)

Of course, the mse metric is defined for random variables that
possess finite second-order moments. In this work, the signal
component of the wavelet coefficients is modeled as an alpha-
stable random variable that does not have finite second-order
statistics. Hence, we use the absolute error as the loss
function in expression (11). Under this loss function, expression
(11) is well defined for all random variables with char-
acteristic exponent grater than one. The Bayesian estimator
that we consider minimizes the mean absolute error and can be
shown to be the conditional median of, given [34]. But, since
the conditional density is symmetric around zero, the
conditional median coincides with the conditional mean. Hence,
the Bayesian estimator for the absolute error cost function is
again given by (12).

Bayes’ theorem gives thea posteriori probability density
function of based on the measured set of wavelet coefficients

(13)

where is the prior PDF of the signal component of the
wavelet coefficients of the ultrasound image and is
the likelihood function. Substituting (13) into (12), we get

(14)

where is the PDF of the wavelet coefficients corre-
sponding to the noise.

In order to be able to construct the Bayesian processor in (14),
first we estimate the parameters of the prior distributions of the
signal ( ) and noise () components of the wavelet coefficients
( ). Then, we use the parameters to “build” the two prior PDFs

and and the nonlinear (in general) I/O relationship
. Observing (14), we note that the denominator, referred to

as the “evidence” is the PDF of the noisy observation,, com-
puted as the convolution between the noise and signal PDFs.
Hence, we need a parameterized model for the two PDFs that
provides a good fit to the statistics of the ultrasound images. Fur-
thermore, the distribution parameters should be estimated from
the noisy observations in an efficient manner.

Motivated by our modeling results in Section III-B, we use
a two-parameter model for the signal component while
we use a zero-mean Gaussian model for the noise component.
In other words, the observed signal is a mixture of signal
and Gaussian noise. Moreover, we consider the signal and
noise components to be independent. Because of the lack of
closed-form expressions for the general PDF, we propose
a method that is based on characteristic functions. In particular,
since the PDF of the measured coefficients is the convolution
between the PDFs of the signal and noise components, the
associated characteristic function of the measurements is given
by the product of the characteristic functions of the signal and
noise

(15)

where

and

Using expression (15), we estimate the parameters, , and
by fitting the Fourier transform of the empirical PDF of the

measured coefficients with function in the least-squares
(LS) sense

arg (16)

where denotes the empirical characteristic function. In
practice, we first estimate the level of noise, and we optimize
(16) only with respect to the parameters and . As pro-
posed in [35], a robust estimate of the noise standard deviation,

, is obtained in the finest decomposition scale by the measured
wavelet coefficients as

MAD (17)

where the operator MAD signifies themedian absolute devi-
ation and denotes the highest level of wavelet decomposi-
tion. We found that this method for estimating the param-
eters gives reliable estimates, it is not computationally expen-
sive and, more importantly, it allows us to estimate the param-
eters from the noisy measurements. We should note here that
Paulsonet al. used a similar approach to estimate the parame-
ters of alpha-stable densities and observed that LS fitting in the
characteristic function domain produces estimates within two
standard errors of the actual values and with a bias that is in-
versely proportional to the sample size [36].

As expected, in the general case the Bayesian processor de-
scribed in (14) does not have a closed-form expression. Only
for the case of Gaussian signal in Gaussian noise a well-known
closed-form solution exists

(18)
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(a) (b)

Fig. 7. Bayesian processor input–output (I/O) curves for alpha-stable signal (1 < � � 2) and Gaussian noise prior distributions. The straight line with�s
indicates the identity function. (a) Bayesian curves for constant
 =� ratio and four different signal statistics corresponding to� = 2 (Gaussian signal, solid
line),� = 1.95 (slightly non-Gaussian signal, dash-dotted line),� = 1.5, and� = 1.05 (considerably heavy-tailed signal, dashed and dotted lines, respectively).
(b) Bayesian curves forS�S signal� = 1.5 and four different
 =� ratios: 0.1 (solid), 0.12 (dash-dotted), 0.14 (dashed), and 0.2 (dotted). Note the processor
nonlinear “coring” operation, which preserves large-amplitude observations and suppresses small-amplitude values in a statistically optimal fashion.

where is the Gaussian signal variance. In other words, the
processing is a simple linear rescaling of the measurement. For
the general non-Gaussian signal case, we computed nu-
merically the Bayesian processor function in (14). Fig. 7(a) de-
picts the Bayesian I/O curves for four different values of the
signal characteristic exponent,, namely, 2 (Gaussian
data), 1.95 (slightly non-Gaussian data), 1.5, and
1.05 (considerably heavy-tailed data). All curves except the case

2, correspond to a nonlinear “coring” operation, i.e., large-
amplitude observations are essentially preserved while small-
amplitude values are suppressed. This is expected since small
measurement values are assumed to come from signal values
close to zero. Fig. 7(a) also illustrates the processor dependency
on the parameter of the signal prior PDF. Specifically, for a
given ratio , the amount of shrinkage decreases asde-
creases. The intuitive explanation for this behavior is that the
smaller the value of , the heavier the tails of the signal PDF
and the greater the probability that the measured value is due to
the signal.

On the other hand, Fig. 7(b) shows how the processor non-
linearity is varied for certain signal statistics ( 1.5) and
various noise levels. It is evident from the curves that as the
noise level increases, the amount of shrinkage also increases.
We should note at this point that curves similar to the ones in
Fig. 7 are chosen adaptively by our processor since the PDF
parameters are estimated by means of (16) and (17) at each
level of wavelet decomposition and for each orientation. In ac-
tual ultrasound images, at the first decomposition levels where
the wavelet coefficients arising from noise are predominant,
the Bayesian shrinkage function would resemble to that corre-

sponding to low signal-to-noise ratio (SNR). As the resolution
decreases, in general the noise level decreases and the nonlin-
earity applied to the wavelet coefficients corresponds to the high
SNR curves in Fig. 7(b) gradually approaching the identity func-
tion as the SNR becomes very high.

V. EXPERIMENTAL RESULTS

We tested our proposed multiscale Bayesian speckle sup-
pressing algorithm on the ultrasound images modeled in
Section III-B. In order to obtain speckle images, we degraded
the original test images by multiplying them with unit-mean
random fields, as shown in expression (2). We generated
spatially correlated speckle noise by lowpass filtering
a complex Gaussian random field and taking the magnitude
of the filtered output. We controlled the correlation length of
the speckle by appropriately setting the size of the kernel used
to introduce correlation to the underlying Gaussian noise. A
kernel size of one corresponds to white noise. On the other
hand, in order to allow the noise correlation to taper gradually
to zero we could not set the kernel size arbitrarily large. Thus, a
short-term correlation obtained with a kernel of size three was
sufficient to model reality. In our experiments, we considered
three different levels of simulated speckle noise.

We compared the results of our approach with other speckle
reduction techniques including median filtering, homomorphic
Wiener filtering, and wavelet shrinkage denoising using soft and
hard thresholding. All the parameters involved in these methods
were selected by trial-and-error in order to get an optimal result
from each method. Specifically, for the median filter we used
a 3 3 mask for the lowest level of noise and 55 masks for
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TABLE II
IMAGE ENHANCEMENT MEASURESOBTAINED BY THE FIVE DENOISINGMETHODSTESTED ON THEKIDNEY-ULTRASOUND IMAGE. THE S/mse IS GIVEN IN dB.

V ALUES OF THECORRELATION MEASURE, �, CLOSE TOUNITY DENOTE OPTIMAL EDGE PRESERVATIONPERFORMANCE

the other two levels. The homomorphic Wiener filter was imple-
mented using a window of size 55 pixels for the highest level
of noise and 3 3 pixels in all the other cases. For soft thresh-
olding we used a threshold , while for hard thresh-
olding we have chosen , being the standard devia-
tion of the wavelet coefficients. Both wavelet shrinkage soft and
hard thresholding schemes were developed using Daubechies’
Symmlet 8 mother wavelet. Denoising results using this basis
wavelet have been found to be less affected by pseudo-Gibbs
phenomena [9]. Moreover, in order to minimize such side ef-
fects, we have embedded all wavelet-based methods (including
the Bayesian approach) into the cycle spinning algorithm [37].
This consists in averaging the result of the wavelet shrinkage
method over all circulant shifts of the input image. In practice
we found that a number of 8 translations is sufficient. The max-
imum number of wavelet decompositions we used was 5.

In order to quantify the achieved performance improvement,
three different measures were computed based on the original
and the denoised data. For quantitative evaluation, an exten-
sively used measure is the mse defined as

mse (19)

where
original image;

denoised image;

image size.

The standard signal to noise ratio (SNR) is not adequate to eval-
uate the noise suppression in case of multiplicative noise. In-
stead, a common way to achieve this in coherent imaging is to
calculate the signal-to-mse (S/mse) ratio, defined as [10]

S/mse (20)

This measure corresponds to the classical SNR in the case of
additive noise.

Remember that in ultrasound imaging, we are interested in
suppressing speckle noise while at the same time preserving the
edges of the original image that often constitute features of in-
terest for diagnosis. Thus, in addition to the above quantitative
performance measures, we also consider a qualitative measure

for edge preservation. More specifically, we used a parameter
originally defined in [19] and [23]

(21)

where and are the high-pass filtered versions ofand
respectively, obtained with a 33 pixel standard approximation
of the Laplacian operator, and

(22)

The correlation measure,should be close to unity for an op-
timal effect of edge preservation.

The obtained values of mse, S/mse, andfor all methods ap-
plied to the kidney image are given in Table II. It is evident from
the table that the three wavelet-based methods (i.e., soft and
hard thresholding and our proposed Bayesian denoising tech-
nique) are more successful in speckle noise suppression than
median and homomorphic Wiener filtering. In terms of mse and
S/mse, the soft thresholding scheme achieves comparable per-
formance with the homomorphic Wiener filter, but the visual
quality of the soft threshold processed image seems to be better
(cf. Fig. 8). This is due to the fact that the soft thresholding ap-
proach is not intended to minimize the mse, the result being an
estimator which achieves a low variance at the expense of bias
[35]. Observing the metric values, we see that the multireso-
lution techniques exhibit a clearly better performance in terms
of edge preservation, as expected. Among them, our proposed
Bayesian approach exhibits the best performance according to
all three metrics.

Fig. 8 shows a representative result from the processing of
the noisy kidney image. The simulated speckle image shown in
Fig. 8(b) corresponds to a S/mse value of 9.69 dB. For this noise
level, all the methods that we tested achieved a good speckle
suppression performance. However, the median and homomor-
phic Wiener filters loose many of the signal details and the re-
sulting images are blurred [cf. Fig. 8(c) and (d)]. On the other
hand, the images processed by soft and hard thresholding are
oversmoothed [cf. Fig. 8(e) and (f)]. Clearly, as it can be seen in
Fig. 8(g), our proposed Bayesian processor effectively reduces
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 8. Results of various speckle suppressing methods. (a) Original kidney ultrasound image. (b) Image degraded with simulated speckle noise S/mse9.69 dB.
(c) Median filtering. Results of various speckle suppressing methods. (d) Homomorphic Wiener filtering. (e) Soft thresholding. (f) Hard thresholding. (g) Proposed
Bayesian denoising.
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Fig. 9. (a) Noisy ultrasound image of the bladder. (b) Image denoised using translation-invariant soft thresholding. (c) Image denoised using translation-invariant
hard thresholding. (d) Image enhanced using our Bayesian algorithm.

speckle, it preserves step edges, and it enhances fine signal de-
tails, better than the other methods.

Indeed, the problem with the mse, S/mse, andmeasures,
or with any other metric, is their connection to the visual in-
terpretation of an human observer. A radiologist, in analyzing
ultrasound images, does not compute any of the above mea-
sures. Hence, in order to visually study the merit of the pro-
posed subband coefficient modeling and the Bayesian pro-
cessor, we chose a noisy ultrasound image, applied the algo-
rithm without artificially adding noise, and visually evaluated
the denoised image. The results of this experiment are shown in
Fig. 9. The figure only shows results obtained using the wavelet
based schemes, which were proved to give better results for
simulated speckle noise. Although qualitative evaluation in this
case is highly subjective, the results of this experiment seem
to be consistent with the simulation results. It appears that the
Bayesian processor performs like a feature detector, retaining
the features that are clearly distinguishable in the speckled data.

VI. CONCLUSION

In this paper, we introduced a novel multiscale nonlinear ho-
momorphic method for speckle suppression in ultrasound im-
ages. Three are the main processing stages of our approach. First,

similarly to existing multiresolution techniques [9], [19], the log-
arithm of the image is decomposed into several scales through a
multiresolution analysis employing the 2-D wavelet transform.
This step guarantees that the speckle is transformed from mul-
tiplicative into additive and its characteristics are differentiated
from the signal characteristics in each decomposition level. The
second and third steps differentiate our technique from existing
ones. After decomposing the original image, the signal and noise
components in various scales are modeled as and Gaussian
processes, respectively. The parameters of the distributions are
estimated from the measurements by means of a LS fitting in
the characteristic function domain. We showed that the class of

distributions is more effective in modeling detail image his-
tograms than other exponentially tailed densities.

In the third step, a Bayesian processor based on asignal
prior is built at each scale for statistically optimal signal feature
extraction and speckle suppression. The main advantage of our
method is that the obtained I/O shrinkage functions are optimal
in the Bayesian sense. As a result, a more accurate signal recon-
struction is achieved in each scale. Our processor was tested and
found to be more effective than thresholding methods, which are
ad hocin the sense that they do not allow for an exact matching
of the signal and noise distributions at different scales and ori-
entations. The method could be easily adapted for the purpose
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of denoising other types of biomedical images where the noise
can be (eventually after an appropriate transformation) modeled
as additive Gaussian and signal-independent. Naturally, our ap-
proach is more computationally expensive due to the fact that
the prior distribution parameters need to be estimated at each
scale of interest. However, this is not a serious problem for
off-line processing.

Currently, we are addressing several issues related to the work
we presented in this paper. One major issue is the choice of a sta-
tistical model for the speckle noise component of the wavelet
coefficients that is more appropriate than the currently used
Gaussian model. It is to be tested whether the family is
a good model also for the noise component. In this case, our
problem will be formulated as Bayesian signal detection from
measurements that are mixtures of signal in noise
with different characteristic exponents, in general. Research in
this direction is under way and it will be presented in a future
correspondence.
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