772 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 8, AUGUST 2001

Novel Bayesian Multiscale Method for Speckle
Removal in Medical Ultrasound Images

Alin Achim*, Student Member, IEEEAnastasios Bezeriano®ember, IEEE and
Panagiotis Tsakalide8lember, IEEE

Abstract—A novel speckle suppression method for medical ul- since it degrades image quality and it affects the tasks of human
trasound images is presented. First, the logarithmic transform of interpretation and diagnosis. As a result, speckle filtering is a

the original image is analyzed into the multiscale wavelet domain. ¢yitical pre-processing step for feature extraction, analysis, and
We show that the subband decompositions of ultrasound images e S
recognition from medical imagery measurements.

have significantly non-Gaussian statistics that are best described .
by families of heavy-tailed distributions such as the alpha-stable. ~ Current speckle reduction methods are based on temporal av-

Then, we design a Bayesian estimator that exploits these statistics.eraging [2], [3], median filtering [4], [5], and Wiener filtering.
We use the alpha-stable model to develop a blind noise-removal The adaptive weighted median filter, first introduced in [6], can
processor that performs_ a nonl_inear operation on the data. Finally, effectively suppress speckle but it fails to preserve many useful
we compare our technique Wlth_ current state-of-the-art soft e_md details. bei | low- filter. The classical Wi

hard thresholding methods applied on actual ultrasound medical .e ails, .elng .r.nere y a low-pass fhiter. . e_ classica lener
images and we quantify the achieved performance improvement. filter, which utilizes the second-order statistics of the Fourier
decomposition, is not adequate for removing speckle since it is
designed mainly for additive noise suppression. To address the
multiplicative nature of speckle noise, Jain developed a homo-
morphic approach, which by taking the logarithm of the image,
. INTRODUCTION converts the multiplicative into additive noise, and consequently

OR MORE than two decades, ultrasonography has be@pplies the Wiener filter [1].

F considered as one of the most powerful techniques forRecently, there has been considerably interest in using the
imaging organs and soft tissue structures in the human boma_velettransform as a powerful tool for recovering signals from
Today, it is being used at an ever-increasing rate in the figh@isy data [7]-{12]. The main reason for the choice of multi-
of medical diagnostic technology. Ultrasonography is oftesFale bases of decompositions is that the statistics of many nat-
preferred over other medical imaging modalities because it4&2! Signals, when decomposed in such bases, are significantly
noninvasive, portable, and versatile, it does not use ionizig§nplified. More specifically, methods based on multiscale de-
radiations, and it is relatively low-cost. The images producé‘@mpositions consist of three main steps: First, the raw data are
by commercial ultrasound systems are usually optimized fapalyzed by means of the wavelet transform, then the empirical
visual interpretation, since they are mostly used in real-tinygavelet coefficients are shrunk, and finally, the denoised signal
diagnostic situations. However, the main disadvantage igfsynthesized from the processed wavelet coefficients through
medical ultrasonography is the poor quality of images, whidhe inverse wavelet transform. These methods are generally re-
are affected by multiplicative speckle noise [1]. ferred to aswavelet shrinkage techniquds. [9], Zong et al.

Imaging speckle is a phenomenon that occurs when a &5€ @ logarithmic transform to separate the noise from the orig-
herent source and a noncoherent detector are used to inteft8l image. They adopt regularized soft thresholding (wavelet
gate a medium, which is rough on the scale of the Wave|eng§k,1_rinkage) to remove noise energy within the finer scales and
Speckle occurs especially in images of the liver and kidn&pnlinear processing of feature energy for contrast enhance-
whose underlying structures are too small to be resolved by laf§€nt- A similar approach applied to synthetic aperture radar

wavelength ultrasound. The presence of speckle is undesirdist&R) images is presented in [10]. The authors perform a com-
parative study between a complex wavelet coefficient shrinkage

. . _ fiI}er and several standard speckle filters that are largely used
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Fig. 1. Block diagram of the proposed multiscale homomorphic Bayesian-based algorithm for speckle suppression. Our proposed novel waiegglet coeffic
statistical characterization and Bayesian processing modules result in a more accurate ultrasound image reconstruction.

subband statistics of the signal and developed a noise-remawvglanular pattern due to image formation under coherent waves.
algorithm, which performs a “coring” operation to the datarhe basic properties of speckle are described by Goodman in [2]
The term “coring” refers to a widely used technigue for noisehile the main differences between ultrasound and laser speckle
suppression, which preserves high-amplitude observaticare discussed in [3]. A general model for speckle noise proposed
while suppressing low-amplitude values from the high-pady Jain [1] was also used by Zong [9]. In the following, we for-
bands of a signal decomposition. mulate the ultrasound speckle removal problem starting with a
It is recognized that parametric Bayesian processing presiypief essential overview of the speckle model.
poses proper modeling for the prior probability density function Denote byI(z, y) a noisy observation (i.e., the recorded
(PDF) of the signal. In a recent work, Tsakalidgsl. showed ultrasound image) of the two-dimensional (2-D) function
that alpha-stable distributions, a family of heavy-tailed dens#{z, ¥) (i.e., the noise-free image that has to be recovered) and
ties, are sufficiently flexible and rich to appropriately modeby #,,.(x, y) and n,(z, v) the corrupting multiplicative and
wavelet coefficients of images in coding applications [14]. ladditive speckle noise components, respectively. One can write
this paper, we present a novel speckle suppression method for y
medical ultrasound images. The proposed processor consists@t ¥) =5, y) - (z, y)+n.(z, y), (. y)eZ” (1)
two major modules: 1) a subband representation function t
ut|||_zes the wavelet transform; an_d 2)a Baygsmn de_n0|smg firasound images is less significant than the effect of the multi-
gorithm based on an alpha-stabléor for the signal. First, the

original image is logarithmically transformed to change mult _I|ca_t|ve component. Thus, ignoring the ter(z, y), one can
2 - d . ewrite (1) as
plicative speckle to additive white noise. Then, the transformed
image is analyzed into a multiscale wavelet domain. We show I(z, y) = S(z, y) - mlz, ¥). 2)
that the subband decompositions of actual ultrasound images
have significantly non-Gaussian statistics that are best descri@dransform the multiplicative noise model into an additive one,
by families of heavy-tailed distributions like the alpha-stablave apply the logarithmic function on both sides of (2)
Motivated by our modeling results, we design a Bayesian es-
timator that exploits these statistics. We use the alpha-stable log I(z, y) = log 5(z, y) + logm(, v)- ©)
model to develqp a blind speckle—suppression processor tﬁ%ression (3) can be rewritten as
performs a nonlinear operation on the data, and we relate this
nonlinearity to the degree of non-Gaussianity of the data. flz,y) =gz, v) + (=, v) (4)
The paper is organized as follows: In Section Il, we define
the ultrasound speckle suppression problem by outlining thé&eref(-), a(-), ande(-) are the logarithms of (-), S(-), and
speckle noise model and common preprocessing steps slielt’). respectively. In fact, this logarithmic transform consti-
as the logarithmic and the wavelet transforms. Section ytes the first preprocessing step of our proposed algorithm as
provides some necessary preliminaries on alpha-stable ptBoOWn in the block diagram depicted in Fig. 1.
cesses and presents results on the modeling of the subbarfif this stage, one can consider:, y) to be white noise and
coefficients of actual medical ultrasound images indicatirgjPsequently apply any conventional additive noise suppres-
their heavy-tailed nature. The design of a Bayesian estimaf" technique, such as Wiener filtering. However, it is recog-
that exploits the signal alpha-stable statistics is describBfed thatstandard noise filtering methods often resultin blurred
in Section IV. Section V compares the performance of oiftage features. Indeed, single-scale representations of signals,
proposed algorithm with the performance of current denoisiffher in time or in frequency, are often inadequate when at-
methods applied to actual ultrasound images and quantifies {BPting to separate signals from noisy data. The wavelet trans-
achieved performance improvement. Finally, conclusions afim has been proposed as a useful processing tool for signal

future work directions are drawn in Section VI. recovery [15]-[17]. _ _ _
The wavelet transform expands a signal using a set of basis

functions, which are obtained from a single prototype function
called the “mother wavelet.” The result of the expansion is a
Speckle noise affects all coherent imaging systems includiegquence of signal approximations at successively coarser res-
laser, SAR imagery, and ultrasound. Speckle may appear diistions. The so-called “detail signal” is the difference in in-
tinct in different imaging systems but it is always manifested iformation between approximations at two consecutive resolu-

énerally, the effect of the additive component of the speckle in

Il. PROBLEM FORMULATION
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tions, and it can be represented by another series expansio
we consider an original 2-D signal of siZé x N, N usually

being a power of ZN = 27), such a decomposition schem ﬂ

is mathematically referred to as tkgadic wavelet transform
(DWT). In image processing applications, the above schem
applied along both the abscissa and the ordinate. Thus, the D
decomposes images with a multiresolution scale factor of t
providing at each resolution level one low-resolution appro
mation and three spatially oriented wavelet details [17], [1
which are referred asnage subbands.

The wavelet transform is a linear operation. Consequen
after applying the DWT to (4) we get, in each of the three d
rections, sets of noisy wavelet coefficients written as the sum
the transformations of the signal and of the noise

d; E= 33 kT 53 k 5)

wherek = 0,...,27% —land-1 < j < —J refer to
the decomposition level or scale and= 1, 2, 3 refers to the
three spatial orientations. In Fig. 2, we show an example o
three-scale decomposition of an ultrasound image.

Current state-of-the-art multiscale techniques for ultrasonic . . .
Fig.2. Three-scale decomposition of an ultrasound image. The horizontal (H),

speckle suppression are based on various thre;holt_ﬂ_ng SChe\?g(lt%t?aI (V), and diagonal (D) details are shown in each scale. The upper-left
[9], [19]. These methods try to address the inability of thiage represents the approximation at level 3.

original soft thresholding technique to balance between speckle

suppression and signal detail preservation. In principle, a siégable models in the context of ultrasound images has been al-
cessful ultrasound imaging algorithm should achieve both nOi@ady noticed in [24] and [25]1 but they were used to process
reduction and feature preservation if it takes into consideratigfie ultrasound RF echoes, rather than the recorded images. A
the true statistics of the signal and noise components. Previgggiew of the state of the art on stable processes from a statis-
studies related to wavelet shrinkage using Bayesian theory hg@eal point of view is provided by a collection of papers edited
underlined the need for prior model that accurately approx-py Cambanis, Samorodnitsky and Taqqu [26], while textbooks
imates the probability density function of the signal and noisg the area have been written by Samorodnitsky and Taqqu [27],
wavelet coefficients [8], [11], [20], [21]. For example, (1)—(4)and by Nikias and Shao [28].

suggest the use of a multiplicative random field as speckle

noise model. It has been shown that, if the number of scatterérsBasic Properties of the Alpha-Stable Family

per resolution cell is large, a'fully developed speckle patte_rn-l—he appeal of symmetric alpha-stabf&S) distributions as
can be modeled as the magnitude of a complex Gaussian figlgyatistical model for signals derives from some important theo-
with independent and identically distributed (i.i.d.) real anghtical and empirical reasons. First, stable random variables sat-
imaginary components (see [2], [22], and references thereiky the stability property which states thatlinear combinations of
In order to generate spatially correlated speckle noise for us&diy stable variables are indeed stable. The vatadbleis used
simulations, one can lowpass filter a complex Gaussian randggase the shape of the distribution is unchanged (or stable)
field and take the magnitude of the filtered output [23]. under such linear combinations. Second, stable processes arise as

The Bayesian approach for ultrasound speckle noise remoYgahiting processes of sums of ii.d. random variables via the gen-
which we propose in this paper, is based on a novel heavy-tailgdized central limit theorem. Actually, tholy possible non-
family of distributions that better models the prior statistics Qfjyia| limit of normalized sums of i.i.d. terms is stable. On the
the sign_al component. In Section _III, we present the_fu_ndamengi!her hand, strong empirical evidence suggests that many data
properties of the model and we justify its use by fitting actu@lsts in several physical and economic systems exhibit heavy tail
ultrasonic signals. features that justify the use of stable models [29].

The S«aS distribution is best defined by its characteristic
[ll. ALPHA-STABLE MODELING OF ULTRASOUND WAVELET function
COEFFICIENTS

w) = exp(jbw — vy|w|* 6
This section is intended to provide an introduction on the o) Pl el ©)
alpha-stable statistical model used to characterize the waveliere
subband coefficients of logarithmic transforms of actual ultra- « characteristic exponentaking values
sound images. The model is suitable for describing signals that 0<a<?

have highly non-Gaussian statistics and its parameters can bé (—oo < 6 < ) location parameter
estimated from noisy observations. The appearance of alphay (v > 0) dispersionof the distribution.
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For values ofv in the interval(1, 2], the location parameter
corresponds to the mean of the.S distribution, while for0 <
a < 1, 6 corresponds to its median. The dispersion parame %%}
~ determines the spread of the distribution around its locatis
parameteé, similar to the variance of the Gaussian distributior 0025
The characteristic exponeatis the most important param-
eter of theS«.S distribution and it determines the shape of th .02
distribution. The smaller the characteristic exponeris, the &
heavier the tails of th&«.S density. This implies that random 015
variables followingSa.S distributions with small characteristic
exponents are highly impulsive. Gaussian processes are sti 4,1
processes withy = 2 while Cauchy processes result whea-
1. In fact, no closed-form expressions for the gensrab PDF
are known except for the Gaussian and the Cauchy member
Although the SaS density behaves approximately like &
Gaussian density near the origin, its tails decay at a low
rate than the Gaussian density tails [27]. Indeed ,Nebe a

0.005-

non-Gaussialw«S random variable. Then, as— oo Fig. 3. Tail behavior of theSa S probability density functions forx = 0.5,
1.0 (Cauchy), 1.5, and 2.0 (Gaussian). The dispersion parameter is kept constant
aty = 1.
PX >z)~cpa™@ @)

B. Modeling Results of Ultrasound Image Subbands

wherec, = D(a)(sin(ra/2))/m, [(z) = [ t*te " dtis In the past, several authors have pointed out that, in a sub-
the Gamma function, and the stateme@it) ~ g(z) asz — oo band representation of images, histograms of wavelet coeffi-
means thatim , ... h(z)/g(z) = 1. Hence, the tail probabil- cients have heavier tails and more sharply peaked modes at zero
ities are asymptotically power laws. In other words, while thgyan what is assumed by the Gaussian distribution [13], [14],
Gaussian density has exponential tails, the stable densities ha@. In this section, we study whether the stable family pro-
algebraic tails. Fig. 3 shows the tail behavior of sevedalS vides a flexible and appropriate tool for modeling the coeffi-
densities including the Cauchy and the Gaussian. We shouglénts within the framework of multiscale wavelet analysis of
note that because expression (7) gives exactly the tail prolpggarithmically transformed ultrasound images.
bility of the Pareto distribution, the ternstable Paretian law'’s Two sets of test images, obtained from two different sources,
is used to distinguish between the fast decay of the Gaussian lgw included in this research. The first set consists of a series
and the Pareto like tail behavior when< 2. of 44 abdominal ultrasound images (DICOM format) including
The alpha-stable tail power law provided one of the earliegfer, kidney, gall bladder, and pancreas images. These images
approaches in estimating the stability indexf real measure- were acquired from the same patient with a 4-MHz transducer
ments [27]. The empirical distribution of the data, plotted oftequency on a GE LOGIQ 500 system. They have been made
a log-log scale, should approach a straight line with slepe available to us by the IT Lab at the Medical University of South
if the data is stable. Another approach is based on quantilesrolina. The second set of test data comes from a directory con-
[30]. Maximum likelihood (ML) methods developed by Du-taining example DICOM image files that were donated by var-
Mouchel [31] and by Brorsen and Yang [32] are asymptoticaligus vendors for the DICOM demonstrations held at the annual
efficient but were considered difficult to compute. Recentlyneetings of the Radiological Society of North America from
Nolan showed that ML estimation of stable parameters is feg993 to 1996 (ftp://wuerlim.wustl.edu/pub/dicom/images/). We
sible by designing an efficient program [33]. considered two criteria for selecting images for our test set.
One consequence of heavy tails is that only moments of ordefst, we looked for good quality images in order to be able to
less thany exist for the non-Gaussian alpha-stable family mentonsider them as noise-free. Moreover, since speckle appears to
bers, i.e., some extentin any ultrasound image, we have first processed the
actual images using the homomorphic Wiener filter [1] and con-
E|XF <0 forp < a. (8) sideredthe resultingimages as reasonable approximations of the
speckle free data. Also, we were interested in performing exper-
As a result, stable Paretian laws have infinite variance. In timaents on images of different organs and from various sources in
past, the infinite variance property of the&xS family has order to be able to obtain modeling results, which we can claim
caused skeptics to dismiss the stable model. With the satoebe general enough. Because of limited space, in this paper
reasoning, one could argue that the routinely used Gaussies describe the modeling of eight representative images. Each
distribution, which has infinite support, should also be dismage is referred with the name of the organ that was imaged.
missed as a model of bounded measurements. In practice, Allef them have a 256 gray-level resolution.
should remember that it is important to capture the shape ofWe proceed in two steps: First, we assess whether the data de-
the distribution and that the variance is only one measure \0&te from the normal distribution and if they have heavy tails.
the spread of a density [33]. To determine that, we make use of the normal probability plots.
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Fig. 4. Normal probability plot of the vertical subband at the first level o‘S:ig. 5. Stabilized p-p plot foSaS fit of data set GLBD_Vsbd_1lvl. The

decomposition of the gallbladder image (GLBD_Vsbd_1lvl data for short). >, : . o . -
- 90 by — 4" marks, denoting the empirical probability density, are in a curve that very
Characterization of data non-Gaussianity. Thé fharks correspond to the é:curately follows the straighta.S line corresponding tor — 1.069.

empirical probability density versus the data value for each point in the samp"il .
Since the circles are in a curve that does not follow the straight Gaussian line,

1

the normality assumption is violated for this data. 10 . T T T T T T T T

Then, we check if the data is in the stable domain of attractit
by estimating the characteristic exponemtdirectly from the
data and by providing the related confidence intervals. Seve ¢ |
methods have been proposed for estimating stable paramet
Here, we use the ML method described by Nolan in [33], whicb
gives reliable estimates and provides the most tight confiderz
intervals. As further stability diagnostics, we employ probabilitg o
density plots that give a good indication of whether thes fit
matches the data near the mode and on the tails of the distri
tion.

Fig. 4 depicts the normal probability plot of the vertica
subband at the first level of decomposition of the gallbladd
image (data denoted by “GLBD_Vsbd_1Ivl,” for short). The
plot provides strong evidence that the underlying distributic 5 _
is not normal. The circles in the plot show the empirice. Data, x
probability versus the data value for each point in the Samplﬁg. 6. Modeling of the ultrasound image wavelet -coefficients
The circles are in a curve that does not follow the straigl BD Vsbd 1ivi with the SaS and the generalized Laplacian density
Gaussian line and thus, the normality assumption is violated fgpctions, depicted in solid and dashed lines, respectively. BheS
this data. While non-Gaussian stable densities are heavy-tai 12 ,”bu“on has characteristic exponent= 1.069 and d'SperSm - 0.0

. TN g . e the generalized Laplacian has paramegers- 0.498 ands = 0.022
not all heavy-tailed distributions are stable. Hence, in Figs.[&. (9)]. The dotted line denotes the empirical PDF. Note thatthes PDF
and 6 we assess the stability of the data. First, the characterigtitvides a better fit to both the mode and the tails of the empirical density
exponent is estimated and the data sample is fitted with tAig"e 2ctual da@.
corresponding stable distribution. For the particular case shown
here, the characteristic exponent of S distribution which whereZ(s, p) = 2(s/p)I'(1/p). The parametersandp can be
best fits the data was estimated tobe- 1.069. The stabilized computed from the second and fourth moments of the data

p-p SaS plot in Fig. 5 shows a highly accurate stable fit for

25

this data set. s <§) r <1> r <3>
Naturally, the real question is whether the stable fit describes ot= N/ = _ P/ \P/ (10)

the data more accurately than other PDF functions proposed in r <1> 2 <§>

the literature. Here, we compare thexS fits with those pro- D D

vided by the generalized Laplacian density function proposed o o ) o
by Mallat in [18] and also used by Simoncelli in [13] wheres< is the distribution variance, arkds the kurtosis. Fig. 6

shows that theS«.S distribution is superior to the generalized
e~le/sl” Laplacian distribution because it provides a better fit to both the

Fsnle) = Z(s, p) ©) mode and the tails of the empirical density of the actual data.




ACHIM et al: NOVEL BAYESIAN MULTISCALE METHOD FOR SPECKLE REMOVAL IN MEDICAL ULTRASOUND IMAGES 77

TABLE |
ALPHA-STABLE MODELING OF WAVELET SUBBAND COEFFICIENTS OFACTUAL ULTRASOUND IMAGES. ML PARAMETER ESTIMATES AND 95% GONFIDENCE
INTERVALS FOR THE.S .S CHARACTERISTIC EXPONENT, «v. THE TABULATED KEY PARAMETER «v DEFINES THEDEGREE OFNON-GAUSSIANITY AS DEVIATIONS
FROM THE VALUE o = 2, WHICH CORRESPONDS TO THESAUSSIAN CONDITION. THE SIZE OF EACH IMAGE IS GIVEN IN PARENTHESES

Image Subbands

IMAGE Level

Horizontal

Vertical

Diagonal

1.279 £ 0.016

0.965 = 0.013

1.128 £ 0.015

breast (361 x 361)

1.380 £ 0.032

1.178 £ 0.028

1.248 £+ 0.031

1.349 £ 0.059

1.073 £ 0.053

1.303 % 0.058

1.349 £ 0.022

1.069 £ 0.020

0.974 £+ 0.019

gallbladder (256 x 256)

1.516 £ 0.044

1.265 £ 0.043

1.352 £+ 0.040

1.508 £ 0.081

1.295 £+ 0.077

1.181 £ 0.075

1.382 £ 0.019

1.121 £ 0.018

1.124 & 0.017

kidney (293 x 293)

1.494 £ 0.038

1.308 + 0.038

1.427 £ 0.039

1.348 £ 0.071

1.126 + 0.067

1.495 £ 0.074

1.469 £ 0.020

1.197 £ 0.021

1.269 4 0.022

liver (256 x 256)

1.482 £ 0.045

1.254 £ 0.042

1.546 £ 0.045

1.112 £ 0.072

1.008 £ 0.068

1.391 £ 0.080

1.443 £ 0.023

1.159 £ 0.023

1.264 £+ 0.023

pancreas (230 x 230)

1.491 + 0.050

1.230 £ 0.045

1.523 &+ 0.050

1.237 £ 0.085

0.936 + 0.071

1.501 £+ 0.091

1.253 + 0.022

1.110 £ 0.020

1.196 £ 0.021

spinal cord (256 x 256)

1.416 + 0.044

1.298 £ 0.043

1.528 4 0.045

1.424 £ 0.081

1.116 + 0.072

1.487 £+ 0.082

1.167 £ 0.027

1.008 £ 0.026

1.002 £ 0.027

urinary bladder (190 x 190)

1.279 £ 0.056

1.167 £+ 0.054

1.141 £ 0.053

1.408 £ 0.101

1.006 £ 0.088

0.958 £ 0.085

1.417 £ 0.020

1.104 £+ 0.020

1.178 = 0.021

spline (256 x 256)

1.470 £ 0.041

1.046 £ 0.038

1.306 £ 0.043

W b | o b = [ ol 2o ] | b = ol B ] Lo| O] =l o] B | Lo B

1.154 £+ 0.073

0.922 + 0.064

1.197 + 0.075

For every image we iterated three times the separable wavaletinkage by soft and hard thresholding together with a gener-
decomposition described in Section Il and we modeled tlaéized adaptive gain (GAG) for feature emphasis (see [9] and
coefficients of each subband by using tGe.S family. The references therein). In particular, Zoatal. apply soft thresh-
wavelet decomposition was done using Daubechies’ Symmigtiing at fine scales (levels 1 and/or 2) and hard thresholding
4 basis wavelet because we found this basis to be the mostgithin middle levels 3 and/or 4 to eliminate noise, followed
fective in decorrelating the data. The results are summarizgg nonlinear processing of feature energy to enhance contrast.
in Table I, which shows the ML estimates of the characteristithe regularized threshold parameter used in [9] is related to the
exponentx together with the corresponding 95% confidence imojse level, orientation, and scale through a judiciously chosen
tervals. It can be observed that the confidence interval depempg$ at the same timed hoc linearly decreasing function.
on the size of the images and on the particular level of decofpreover, the five parameters which determine the empirical

position. The confidence i.nterval becgmes larger as the size @gxG function in [9] are tuned experimentally to achieve the
creases and as the level increases since the number of sa opriate nonlinear stretching of wavelet coefficients that

used for estimatingr gets smaller. The table demonstrates th%chomplishes the desired contrast enhancement.
the coefficients of different subbands and decomposition levels|, his section. our goal is the design of a formal Bayesian

exhibit various degrees of non-Gaussianity. The important 0Dssimator that recovers the signal component of the wavelet co-
servation is that all subbands exhibit distinctly non-Gaussigi iants in ultrasound images by using an alpha-stable signal

chara<f:ter|s:|k(]:s,GW|th v.alues pttve;rZ|r;g getweeg ?.'9 and 1I£6’prior distribution. The proposed processor is motivated by the
away from the L>aussian point af = 2. DUr modeling results modeling studies in Section lll, it is based on solid statistical

clearly point to the need for the design of Bayesian process%%ory, and it does not depend on the usadhocthresholding

that take into consideration the non-Gaussian heavy-tailed char- .
and stretching parameters.

acter of the data to achieve close to optimal speckle mmgatlonm a Bayesian framework, referring to (&), x, s, 1, ad¢; «
performance. . 7 y
are considered as samples of the random variahlesandé,

respectively. The signal componeris modeled according to a
SasS distribution with zero location parameter, while the noise
component is modeled as a zero-mean Gaussian random vari-

Current state-of-the-art wavelet-based denoising and imagjde. Our goal is to find the Bayes risk estimasothat mini-
enhancement techniques employ a combination of waveteizes the conditional risk, which is the loss averaged over the

IV. A BAYESIAN PROCESSOR FORJLTRASOUND SPECKLE
REMOVAL
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conditional distribution ofs, given the set of wavelet coeffi- Motivated by our modeling results in Section 1lI-B, we use
cients,d a two-parameteS«.S model for the signal component while
we use a zero-mean Gaussian model for the noise component.
3(d) = arg mjn/L[s, 5(d)] Py a(s|d) ds. (11) In other words, the observed signal is a mixture5efS signal
i and Gaussian noise. Moreover, we consider the signal and
The Bayes risk estimator under a quadratic cost function mineise components to be independent. Because of the lack of
imizes the mean-square error (mse) and is given by the conelpsed-form expressions for the genefalS PDF, we propose

tional mean ofs, givend a method that is based on characteristic functions. In particular,
since the PDF of the measured coefficients is the convolution

3(d) = /SPsld(3|d)'d3- (12) between the PDFs of the signal and noise components, the
associated characteristic function of the measurements is given

Of course, the mse metric is defined for random variables ﬂl%)f_the product of the characteristic functions of the signal and
possess finite second-order moments. In this work, the sigf&lS€
component of the wavelet coefficients is modeled as an alpha-
stable random variable that does not have finite second-order
statistics. Hence, we use the absolute grer5(d)| as the loss \\ here
function in expression (11). Under this loss function, expression
(11) is well defined for allS«.S random variables with char- P, (w) = exp(—,|w
acteristic exponent grater than one. The Bayesian estimator

that we consider minimizes the mean absolute error and canépel

shown to be the conditional mediangfivend [34]. But, since o2
the conditional density’;4(s|d) is symmetric around zero, the D¢ (w) = exp <—— |w|2> .
conditional median coincides with the conditional mean. Hence,
the Bayesian estimator for the absolute error cost functionUging expression (15), we estimate the parametersy,, and
again given by (12). o by fitting the Fourier transform of the empirical PDF of the

Bayes’ theorem gives tha posteriori probability density measured coefficients with functichy(w) in the least-squares
function of s based on the measured set of wavelet coefficien{sS) sense

Pd|9(d|S)PS(S)

where P;(s) is the prior PDF of the signal component of thavhered,_(w) denotes the empirical characteristic function. In

wavelet coefficients of the ultrasound image aRg, (d|s) is ~Practice, we first estimate the level of noisgand we optimize

thelikelihood function. Substituting (13) into (12), we get  (16) only with respect to thé«.S parameters;, andy,. As pro-
posed in [35], a robust estimate of the noise standard deviation,

/Pdls(d|3)-PS(3)3 - ds /Pf(d — 8)Py(s)s - ds o, is obtained in the finest decomposition scale by the measured
3(d) = =

Cy(w) = Ps(w) - Pe(w) (15)

Pija(sld) = (13)

s, Vs, O

{ds, 45, 6} =arg min_ Z [@4(wi) — Pa, (W) (16)

wavelet coefficients as

/Pd'S(d|S)PS(S) s /Pf(d_ $)Fu(s) - ds 6= L MAD ({dsr, 0<k<2'})  (17)
[r@rs)s as

S

0.6745

where the operator MAD signifies thmedian absolute devi-
(14) . ; .
PAEP d ation and J denotes the highest level of wavelet decomposi-
£(§)Pa(s) - ds tion. We found that this method for estimating tfieS param-
, . eters gives reliable estimates, it is not computationally expen-
where F(¢) is the PDF of the wavelet coefficients corre;ye and, more importantly, it allows us to estimate the param-
sponding to the noise.

i . _eters from the noisy measurements. We should note here that
In order to be able to construct the Bayesian processor in (1ﬁ ulsoret al. used a similar approach to estimate the parame-

first we estimate the parameters of the prior distributions of thgq ¢ 51pha-stable densities and observed that LS fitting in the

signal §) and noise{) components of the wavelet coefficients,, 5 acteristic function domain produces estimates within two

(d). Then, we use the parameters to “build” the two prior PDF§,nard errors of the actual values and with a bias that is in-

f’f(g) andPS(_s) and the nonlinear (in general)_I/O relationshiplerse'y proportional to the sample size [36].
5(d). Observing (14), we note that the denominator, referred Opg expected, in the general case the Bayesian processor de-

as the “evidence” is the PDF of the noisy observatigrzom- Ecribed in (14) does not have a closed-form expression. Only

puted as the convolution between the noise and signal PD of-the case of Gaussian signal in Gaussian noise a well-known

Hence, we need a parameterized model for the two PDFs tc%tsed-form solution exists

provides a good fit to the statistics of the ultrasound images. Fur-
thermore, the distribution parameters should be estimated from a2

the noisy observations in an efficient manner. 5(d) = 02 4 o2 d (18)
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Fig. 7. Bayesian processor input—output (I/O) curves for alpha-stable sigral ¢ < 2) and Gaussian noise prior distributions. The straight line with
indicates the identity function. (a) Bayesian curves for constajit ratio and four different signal statistics correspondingrte= 2 (Gaussian signal, solid

line), o = 1.95 (slightly non-Gaussian signal, dash-dotted line}s 1.5, andx = 1.05 (considerably heavy-tailed signal, dashed and dotted lines, respectively).
(b) Bayesian curves fof«a.S signala = 1.5 and four differenty, /o ratios: 0.1 (solid), 0.12 (dash-dotted), 0.14 (dashed), and 0.2 (dotted). Note the processor
nonlinear “coring” operation, which preserves large-amplitude observations and suppresses small-amplitude values in a statisticallgtoptimal fa

whereo? is the Gaussian signal variance. In other words, tisponding to low signal-to-noise ratio (SNR). As the resolution
processing is a simple linear rescaling of the measurement. Becreases, in general the noise level decreases and the nonlin-
the general non-Gaussigfw.S signal case, we computed nu-earity applied to the wavelet coefficients corresponds to the high
merically the Bayesian processor function in (14). Fig. 7(a) d8NR curvesin Fig. 7(b) gradually approaching the identity func-
picts the Bayesian 1/O curves for four different values of thigon as the SNR becomes very high.
signal characteristic exponent, namely,aa = 2 (Gaussian
data),ac = 1.95 (slightly non-Gaussian data)—= 1.5, andx = V. EXPERIMENTAL RESULTS
1.05 (considerably heavy—ta_iled data):AIIcurvesgxcgptthe Cas&ye tested our proposed multiscale Bayesian speckle sup-
a = 2, correspond to a nonlinear “coring” operation, i.e., larggsessing algorithm on the ultrasound images modeled in
amplitude observations are essentially preserved while smalls tion 111I-B. In order to obtain speckle images, we degraded
amplitude values are suppressed. This is expected since S'?F@'original test images by multiplying them with unit-mean
measurement values are assumed to come from signal valyggiom fields, as shown in expression (2). We generated
close to zero. Fig. 7(a) also illustrates the processor dependeggytially correlated speckle noisg (x, v) by lowpass filtering
on the parameter of the signal prior PDF. Specifically, for a3 complex Gaussian random field and taking the magnitude
given ratiov, /o, the amount of shrinkage decreasesxade- of the filtered output. We controlled the correlation length of
creases. The intuitive explanation for this behavior is that th]@e Speck|e by appropriate|y Setting the size of the kernel used
smaller the value of, the heavier the tails of the signal PDRo introduce correlation to the underlying Gaussian noise. A
and the greater the probability that the measured value is du&énel size of one corresponds to white noise. On the other
the signal. hand, in order to allow the noise correlation to taper gradually
On the other hand, Fig. 7(b) shows how the processor nap-zero we could not set the kernel size arbitrarily large. Thus, a
linearity is varied for certain signal statistica (= 1.5) and short-term correlation obtained with a kernel of size three was
various noise levels. It is evident from the curves that as tkafficient to model reality. In our experiments, we considered
noise level increases, the amount of shrinkage also increasbeee different levels of simulated speckle noise.
We should note at this point that curves similar to the ones inWe compared the results of our approach with other speckle
Fig. 7 are chosen adaptively by our processor since the PEfeuction techniques including median filtering, homomorphic
parameters are estimated by means of (16) and (17) at e¥dkener filtering, and wavelet shrinkage denoising using soft and
level of wavelet decomposition and for each orientation. In abard thresholding. All the parameters involved in these methods
tual ultrasound images, at the first decomposition levels whesere selected by trial-and-error in order to get an optimal result
the wavelet coefficients arising from noise are predominarfitpm each method. Specifically, for the median filter we used
the Bayesian shrinkage function would resemble to that cori@3x 3 mask for the lowest level of noise anck® masks for
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TABLE I
IMAGE ENHANCEMENT MEASURESOBTAINED BY THE FIVE DENOISING METHODS TESTED ON THEKIDNEY-ULTRASOUND IMAGE. THE S/mse § GIVEN IN dB.
V ALUES OF THE CORRELATION MEASURE, 3, CLOSE TOUNITY DENOTE OPTIMAL EDGE PRESERVATION PERFORMANCE

Method || MSE S/MSE | 3 H MSE | S/MSE [ 8 H MSE | S/MSE 8

Without Filtering 26.0528 5.61 0.2872 || 16.2945 9.69 0.4336 || 7.2111 | 16.77 | 0.7357
Median Filtering 13.7002 | 11.19 | 0.2138 || 9.7630 14.13 | 0.3449 || 6.6770 | 17.43 | 0.5708
Homomorphic Wiener || 13.8381 11.10 | 0.1776 || 8.8103 15.03 | 0.4988 || 6.3944 17.81 0.6287
Soft Thresholding 13.6370 | 11.23 | 0.3364 || 8.9242 14.91 | 0.5880 || 6.1133 | 18.20 | 0.8062
Hard Thresholding 13.5001 | 11.32 | 0.3160 || 8.6400 15.20 | 0.5576 | 5.5608 | 19.02 | 0.7569
Bayesian Denoising 12,7398 | 11.82 | 0.4559 || 8.2037 15.65 | 0.6253 | 4.8869 | 20.15 | 0.8249

the other two levels. The homomorphic Wiener filter was implder edge preservation. More specifically, we used a paranteter
mented using a window of sizex55 pixels for the highest level originally defined in [19] and [23]

of noise and X 3 pixels in all the other cases. For soft thresh-
olding we used a threshold= 1.5, while for hard thresh-
olding we have chosenh = 30,4, o4 being the standard devia- 3 —
tion of the wavelet coefficients. Both wavelet shrinkage soft an[d o _ _ e T
hard thresholding schemes were developed using Daubechies’ \/F (AS—A& AS—AS) L (AS—AS’ AS—AS)
Symmlet 8 mother wavelet. Denoising results using this basis (21)
wavelet have been found to be less affected by pseudo-Gibbs

phenomena [9]. Moreover, in order to minimize such side efyhereAS andAS are the high-pass filtered versionsbénds
fects, we have embedded all wavelet-based methods (includiggpectively, obtained with a:3 3 pixel standard approximation

the Bayesian approach) into the cycle spinning algorithm [3df the Laplacian operator, and
This consists in averaging the result of the wavelet shrinkage

method over all circulant shifts of the input image. In practice )
yve found that a number of8translat!9ns is sufficient. The max- I(S), S5) = Z Sy, - Ss.. (22)
imum number of wavelet decompositions we used was 5.

In order to quantify the achieved performance improvement,
three different measures were computed based on the origihBf correlation measurg, should be close to unity for an op-
and the denoised data. For quantitative evaluation, an extéfal effect of edge preservation.
sively used measure is the mse defined as The obtained values of mse, S/mse, grfdr all methods ap-
plied to the kidney image are given in Table Il. It is evident from
the table that the three wavelet-based methods (i.e., soft and

r (AS—E, ’Es-ﬁ)

i=1

4 2 hard thresholding and our proposed Bayesian denoising tech-

mse= K Z (Si B Si) (19) nigue) are more successful in speckle noise suppression than
=t median and homomorphic Wiener filtering. In terms of mse and

where S/mse, the soft thresholding scheme achieves comparable per-
S original image; formance with the homomorphic Wiener filter, but the visual

g denoised image: quality of the soft threshold processed image seems to be better

(cf. Fig. 8). This is due to the fact that the soft thresholding ap-
proach is not intended to minimize the mse, the result being an
The standard signal to noise ratio (SNR) is not adequate to ev@dtimator which achieves a low variance at the expense of bias
uate the noise suppression in case of multiplicative noise. I35]. Observing thed metric values, we see that the multireso-
stead, a common way to achieve this in coherent imaging isj{gion techniques exhibit a clearly better performance in terms
calculate the signal-to-mse (S/mse) ratio, defined as [10] ¢ edge preservation, as expected. Among them, our proposed
Bayesian approach exhibits the best performance according to
K K ) all three metrics.
Simse= 10log;, <Z 52 Z (5*7 — Si) ) . (20 Fig. 8 shows a representative result from the processing of
P i1 the noisy kidney image. The simulated speckle image shown in
Fig. 8(b) corresponds to a S/mse value of 9.69 dB. For this noise
This measure corresponds to the classical SNR in the casgeQtl, all the methods that we tested achieved a good speckle
additive noise. suppression performance. However, the median and homomor-
Remember that in ultrasound imaging, we are interestedphic Wiener filters loose many of the signal details and the re-
suppressing speckle noise while at the same time preservingghiing images are blurred [cf. Fig. 8(c) and (d)]. On the other
edges of the original image that often constitute features of inand, the images processed by soft and hard thresholding are
terest for diagnosis. Thus, in addition to the above quantitatiseersmoothed [cf. Fig. 8(e) and (f)]. Clearly, as it can be seenin
performance measures, we also consider a qualitative meastige 8(g), our proposed Bayesian processor effectively reduces

K image size.
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Fig. 8. Results of various speckle suppressing methods. (a) Original kidney ultrasound image. (b) Image degraded with simulated speckle 868 B/mse
(c) Median filtering. Results of various speckle suppressing methods. (d) Homomorphic Wiener filtering. (e) Soft thresholding. (f) Harditly ggf)dtdoposed
Bayesian denoising.
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Fig. 9. (a) Noisy ultrasound image of the bladder. (b) Image denoised using translation-invariant soft thresholding. (c) Image denoisedatsingitnaaréant
hard thresholding. (d) Image enhanced using our Bayesian algorithm.

speckle, it preserves step edges, and it enhances fine signalsitailarly to existing multiresolution techniques [9],[19], the log-
tails, better than the other methods. arithm of the image is decomposed into several scales through a
Indeed, the problem with the mse, S/mse, ghoheasures, multiresolution analysis employing the 2-D wavelet transform.
or with any other metric, is their connection to the visual infhis step guarantees that the speckle is transformed from mul-
terpretation of an human observer. A radiologist, in analyzirtgplicative into additive and its characteristics are differentiated
ultrasound images, does not compute any of the above mfam the signal characteristics in each decomposition level. The
sures. Hence, in order to visually study the merit of the preecond and third steps differentiate our technique from existing
posedSa.S subband coefficient modeling and the Bayesian prenes. After decomposing the originalimage, the signal and noise
cessor, we chose a noisy ultrasound image, applied the algomponents in various scales are modelefi@$ and Gaussian
rithm without artificially adding noise, and visually evaluategrrocesses, respectively. The parameters of the distributions are
the denoised image. The results of this experiment are showrestimated from the measurements by means of a LS fitting in
Fig. 9. The figure only shows results obtained using the wavetée characteristic function domain. We showed that the class of
based schemes, which were proved to give better results fatS distributions is more effective in modeling detailimage his-
simulated speckle noise. Although qualitative evaluation in thisgrams than other exponentially tailed densities.
case is highly subjective, the results of this experiment seemin the third step, a Bayesian processor based$nssignal
to be consistent with the simulation results. It appears that theor is built at each scale for statistically optimal signal feature
Bayesian processor performs like a feature detector, retainigraction and speckle suppression. The main advantage of our
the features that are clearly distinguishable in the speckled dateethod is that the obtained 1/O shrinkage functions are optimal
in the Bayesian sense. As a result, a more accurate signal recon-
struction is achieved in each scale. Our processor was tested and
found to be more effective than thresholding methods, which are
In this paper, we introduced a novel multiscale nonlinear had hocin the sense that they do not allow for an exact matching
momorphic method for speckle suppression in ultrasound imf the signal and noise distributions at different scales and ori-
ages. Three are the main processing stages of our approach. Férdgtions. The method could be easily adapted for the purpose

VI. CONCLUSION
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of denoising other types of biomedical images where the noisg2]
can be (eventually after an appropriate transformation) modeled
as additive Gaussian and signal-independent. Naturally, our apr
proach is more computationally expensive due to the fact that
the prior distribution parameters need to be estimated at each
scale of interest. However, this is not a serious problem fofi4;
off-line processing.

Currently, we are addressing several issues related to the work;
we presented in this paper. One major issue is the choice of a sta-
tistical model for the speckle noise component of the waveletl6l
coefficients that is more appropriate than the currently usegm
Gaussian model. It is to be tested whether $hes family is
a good model also for the noise component. In this case, out8l
problem will be formulated as Bayesian signal detection from
measurements that are mixtures%t.S signal inSa.S noise  [19]
with different characteristic exponents, in general. Research in
this direction is under way and it will be presented in a futurep
correspondence.

[21]

ACKNOWLEDGMENT 2]

The authors would like to thank Dr. C. F. Starmer and the IT
Lab at the Medical University of South Carolina for providing [23]

the ultrasound images used in this paper.
[24]
REFERENCES
[1] A. K. Jain, Fundamental of Digital Image ProcessingEnglewood [29]
Cliffs, NJ: Prentice-Hall, 1989.
[2] J. W. Goodman, “Some fundamental properties of speclledpt. Soc.
Amer, vol. 66, pp. 1145-1150, Nov. 1976.
[3] J. G. Abbott and F. L. Thurstone, “Acoustic speckle: Theory and exper-
imental analysis,Ultrason. Imag, vol. 1, pp. 303-324, 1979.
[4] A. loannidis, D. Kazakos, and D. D. Watson, “Application of median
filtering on nuclear medicine scintigram images,’Rroc. 7th Int. Conf.
Pattern Recognition1984, pp. 33-36.
E. R. Ritenour, T. R. Nelson, and U. Raff, “Application of the median
filter to digital radiographic images,” iRroc. IEEE Int. Conf. Acoust.
Speech, Signal ProcessintP84, pp. 23.1.1-23.1.4.
[6] T.Loupas, W. N. Mcdicken, and P. L. Allan, “An adaptive weighted me-
dian filter for speckle suppression in medical ultrasonic imag&EE
Trans. Circuits Systvol. 36, pp. 129-135, Jan. 1989.
D. L. Donoho, “Denoising by soft-thresholdinglEEE Trans. Inform.
Theory vol. 41, pp. 613-627, May 1995.
E. P. Simoncelli and E. H. Adelson, “Noise removal via Bayesian
wavelet coring,” inThird Int Conf. Image Processingol. 1, September
1996, pp. 379-382.
[9] X.Zong, A. F. Laine, and E. A. Geiser, “Speckle reduction and contrast
enhancement of echocardiograms via multiscale nonlinear processingy34]
IEEE Trans. Med. Imagvol. 17, pp. 532-540, Aug. 1998.
L. Gagnon and A. Jouan, “Speckle filtering of SAR images—A com- [35]
parative study between complex-wavelet based and standard filters,” in
SPIE Proc, vol. 3169, 1997, pp. 80-91. [36]
M. Popescu, P. Cristea, and A. Bezerianos, “Multiresolution distributed
filtering: A novel technique that reduces the amount of data required37]
in high-resolution electrocardiographyuture Gen. Comput. Sysho.
15, pp. 195-209, 1999.

[26]

(27]

(28]
[5] [29]
[30]
[31]
[71

(8]

[32]

(33]

(20]

(11]

783

S. Papadimitriou and A. Bezerianos, “Multiresolution analysis and de-
noising of computer performance evaluation data with the wavelet trans-
form,” J. Syst. Architectvol. 42, pp. 55-65, 1996.

E. P. Simoncelli, “Bayesian denoising of visual images in the wavelet
domain,” inBayesian Inference in Wavelet Based Mogel#uller and

B. Vidakovic, Eds. New York: Springer-Verlag, June 1999, ch. 18, pp.
291-308.

P. Tsakalides, P. Reveliotis, and C. L. Nikias, “Scalar quantization of
heavy-tailed signals,lEE Proc.—Vision, Imag. Signal processjngl.

147, pp. 475-484, Oct. 2000.

Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algébre
d’opérateurs,” irProc. Bourbaki Seminarl985-1986, Paper 662.

|. Daubechies, “Orthonormal bases of compactly supported wavelets,”
Commun. Pure Appl. Mathvol. 41, pp. 909-996, 1988.

S. Mallat,A Wavelet Tour of Signal ProcessingNew York: Academic
Press, 1998.

S. G. Mallat, “A theory for multiresolution signal decomposition: The
wavelet representationlEEE Trans. Pattern Anal. Machine Inteliol.

11, pp. 674-692, July 1989.

X.Hao, S. Gao, and X. Gao, “A novel multiscale nonlinear thresholding
method for ultrasonic speckle suppressingsEE Trans. Med. Imag.
vol. 18, pp. 787-794, Sept. 1999.

H. A. Chipman, E. D. Kolaczyk, and R. E. McCulloch, “Adaptive
Bayesian wavelet shrinkageJ. Amer. Statist. Assqcvol. 92, pp.
1413-1421, 1997.

B. Vidakovic, “Nonlinear wavelet shrinkage with Bayes rules and Bayes
factors,”J. Amer. Statist. Assqazol. 93, pp. 173-179, 1998.

R. N. Czerwinski, D. L. Jones, and W. D. O'Brien, Jr., “Line and
boundary detection in speckle imagelsEE Trans. Image Processing
vol. 7, pp. 1700-1714, Dec. 1998.

F. Sattar, L. Floreby, G. Salomonsson, and B. Lovstrom, “Image en-
hancement based on a nonlinear multiscale metHB&E Trans. Image
Processingvol. 6, pp. 888—895, June 1997.

M. A. Kutay and A. P. Petropulu, “Power-law shot noise model for the
ultrasound RF echo,” ifProc. IEEE Int. Conf. Acoust. Speech Signal
ProcessingJune 2000, pp. 3787-3790.

M. A. Kutay, A. P. Petropulu, and C. W. Piccoli, “On modeling biomed-
ical ultrasound RF echoes using a power-law shot noise molietE
Trans. Ultrason., Ferroelect. Freq. Contduly 2001.

S. Cambanis, G. Samorodnitsky, and M. S. Tagqu, Bdable Processes
and Related Topics Boston, MA: Birkhauser, 1991.

G. Samorodnitsky and M. S. Taqdstable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variancé&lew York: Chapman
and Hall, 1994.

C. L. Nikias and M. ShadSignal Processing with Alpha-Stable Distri-
butions and Applications New York: Wiley, 1995.

R. Adler, R. Feldman, and M. S. Taqqd Guide to Heavy Tails: Statis-
tical Techniques and Applications Boston, MA: Birkhauser, 1998.

E. F. Fama and R. Roll, “Some properties of symmetric stable distribu-
tions,” J. Amer. Statist. Assqazol. 63, pp. 817-836, 1968.

W. H. DuMouchel, “Stable distributions in statistical inference,” Ph.D.
dissertation, Dept. Statistics, Yale Univ., New Haven, CT, 1971.

B. W. Brorsen and S. R. Yang, “Maximum likelihood estimates of sym-
metric stable distribution parameter€bmmun. Statist.-Simulatol.

19, pp. 1459-1464, 1990.

J. P. Nolan, “Maximum likelihood estimation and diagnostics for
stable distributions,” Tech. Rep., Dept. Math. Statist., Amer. Univ.,
Washington, DC, June 1999.

L. L. Scharf, Statistical Signal Processing: Detection, Estimation and
Time Series Analysis Menlo Park, CA: Addison Wesley, 1991.

D. L. Donoho and I. M. Johnstone, “Ideal spatial adaptation by wavelet
shrinkage,"Biometrika vol. 81, pp. 425-455, 1994.

A. S. Paulson, E. W. Holcomb, and R. A. Leitch, “The estimation of the
parameters of the stable law&lometrika vol. 62, pp. 163-170, 1975.

R. R. Coifman and D. L. Donoho, “Translation-invariant de-noising,” in
Wavelets and Statistics, Lecture Notes in Statistics 20Zntoniadis
and G. Oppenheim, Eds. Berlin, Germany: Springer-Verlag, 1995.



