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Abstract The natural interspecies Saccharomyces cerevisiae
× Saccharomyces eubayanus hybrid yeast is responsible for
global lager beer production and is one of the most impor-
tant industrial microorganisms. Its success in the lager
brewing environment is due to a combination of traits not
commonly found in pure yeast species, principally low-
temperature tolerance, and maltotriose utilization. Parental
transgression is typical of hybrid organisms and has been
exploited previously for, e.g., the production of wine yeast
with beneficial properties. The parental strain S. eubayanus
has only been discovered recently and newly created lager
yeast strains have not yet been applied industrially. A num-
ber of reports attest to the feasibility of this approach and
artificially created hybrids are likely to have a significant
impact on the future of lager brewing. De novo
S. cerevisiae × S. eubayanus hybrids outperform their parent
strains in a number of respects, including, but not restricted
to, fermentation rate, sugar utilization, stress tolerance, and
aroma formation. Hybrid genome function and stability, as
well as different techniques for generating hybrids and their
relative merits are discussed. Hybridization not only offers
the possibility of generating novel non-GM brewing yeast
strains with unique properties, but is expected to aid in
unraveling the complex evolutionary history of industrial
lager yeast.
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Introduction

Beer and other fermented beverages have been produced for
thousands of years and have played an important part in most
human societies (Hornsey 2003, 2012). Yeast (primarily of the
Saccharomyces genus) play a vital role in beer production and
quality; during fermentation, they not only convert wort car-
bohydrates into ethanol and CO2, but also synthesize various
key flavor compounds. Traditionally, brewer’s yeasts have
been divided into top- and bottom-fermenting strains depend-
ing on their fermentation behavior, but modern molecular
techniques have revealed high diversity between yeast strains
used for brewing (Gallone et al. 2016; Legras et al. 2007; Liti
et al. 2005; Steensels et al. 2014).Moreover, many of the yeast
strains that brewers have used for centuries have now been
shown to be interspecific hybrids. In particular, lager yeast or
Saccharomyces pastorianus, the workhorse of the modern
brewing industry, is known to be an interspecific hybrid be-
tween Saccharomyces cerevisiae and the cold-tolerant
Saccharomyces eubayanus (de Barros Lopes et al. 2002;
Dunn and Sherlock 2008; Libkind et al. 2011; Liti et al.
2005; Nilsson-Tillgren et al. 1981; Tamai et al. 1998). In ad-
dition, natural hybrids between S. cerevisiae and
Saccharomyces kudriavzevii have been isolated from
Belgian Trappist beers (González et al. 2008), while natural
hybrids between S. cerevisiae and Saccharomyces uvarum are
used frequently in winemaking (Le Jeune et al. 2007). The
hybrid state appears to confer a competitive advantage in the
fermentation environment. In the case of the lager yeast, suc-
cess has been due to a fortunate combination of phenotypes.
Low-temperature fermentation was enabled by the inheritance
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of cryotolerance from S. eubayanus, while efficient
maltotriose utilization and other beneficial fermentation prop-
erties were inherited from S. cerevisiae (Hebly et al. 2015;
Krogerus et al. 2015). Despite the industrial importance of
lager yeasts, much of their natural history remains obscure.

The hybrid nature of S. pastorianus had been suspected for
some time. Early research, particularly from the Carlsberg
Laboratory in Copenhagen, showed that the lager yeast ge-
nome included genetic material derived from S. cerevisiae and
a non-S. cerevisiae yeast (Nilsson-Tillgren et al. 1981;
Pedersen 1985; Hansen et al. 1994). As early as 1944,
Øjvinde Winge had described the poor sporulation ability of
lager yeast; an indication that they did not represent a pure
species (Winge 1944). The exact composition of the hybrid in
terms of parentage and ploidy did not begin to become
properly resolved until the application of genomic studies to
lager yeast. In key papers, Liti et al. (2005) and Dunn and
Sherlock (2008) showed that the lager yeast could be divided
into two genetically distinct groups and that these
corresponded exactly with the traditional Saaz and Frohberg
designations used by brewers (Glendinning 1899). Both
groups contained S. cerevisiae and Saccharomyces bayanus-
like DNA, though the Saaz or group 1 yeast contained propor-
tionally more S. bayanus-type DNA. The Frohberg (group II)
yeast contained relatively more DNA, appearing to be triploid
rather than diploid based on the CGH-array analysis. Whole-
genome analysis later revealed the Saaz and Frohberg groups
to be triploid and tetraploid, respectively (Nakao et al. 2009;
Walther et al. 2014). A further breakthrough came in 2011
with the first report of S. eubayanus, which had been isolated
from Patagonia, where it was found associated with
Nothofagus (Libkind et al. 2011). Genetic analysis revealed
that the non-S. cerevisiae moiety of the lager yeast genome
was almost certainly derived from S. eubayanus.

It has generally been assumed that the initial hybridiza-
tion between the parental strains occurred when
S. eubayanus contaminated a traditional brewery fermenta-
tion (Gibson and Liti 2015). This scenario is supported by
the fact the S. cerevisiae component of the lager yeast ge-
nome seems to more closely resemble ale strains of
S. cerevisiae than wild strains (Dunn and Sherlock 2008;
Monerawela et al. 2015), though definitive proof is still
lacking and it may be too early to discount the possibility
of the progenitor being, e.g., a wild S. cerevisiae ×
S. eubayanus hybrid. A further assumption is that this event
occurred in Central Europe in approximately the sixteenth
century, based on the advent of lager brewing in this area
and at this time. It is tempting to speculate that the 1533
prohibition of brewing in Bavaria during the summer
months (Dornbusch, 1997) provided the conditions neces-
sary for the competitive success of the cryotolerant
S. pastorianus hybrid relative to traditional ale strains. It
is, however, likely that such assumptions will be reassessed

or possibly discarded as more information on the lager yeast
genome and the ecology of the parental species becomes
available.

Since the original isolation of S. eubayanus in South
America, there have been a number of isolations elsewhere,
including from North America (Peris et al. 2014, 2016), East
Asia (Bing et al. 2014), and New Zealand (Gayevskiy and
Goddard 2015) but, interestingly, not as yet from Europe.
Recent sequence analysis suggests that there may be a
Northern Hemisphere, or BHolarctic,^ group of related strains
with a wide geographical distribution, comprised (so far) of
certain strains found in Tibet and in North America (Peris et al.
2016). Furthermore, it appears that it is a combination of the
standing variation found among the Tibetan and North
American strains that most closely matches the S. eubayanus
parent of lager yeast (Peris et al. 2016). It therefore cannot be
concluded with any certainty that the parental S. eubayanus
strain came directly from Asia as suggested by the BSilk
Road^ hypothesis (Bing et al. 2014). Rather, an undiscovered
population is most likely resident in Europe and individuals
from this population were probably involved in the original
hybridization event (or events) that gave rise to the lager yeast.
A comparable si tuat ion has been observed with
S. kudriavzevii which exists in Europe but was only found
after suitable methodology was developed for its isolation
(Sampaio and Gonçalves 2008; Lopes et al. 2010). Until this
time, the species had only been found in hybrid form with
S. cerevisiae in European vineyards and was only known to
occur in its pure form in Asia (Naumov et al. 2000). Our
understanding of the natural ecology of wild Saccharomyces
species is severely limited (Goddard and Greig 2015) and it is
probable that S. eubayanus (and other Saccharomyces spe-
cies) will eventually be uncovered in Europe from an unex-
plored ecological niche.

Interspecific hybrids are not only used in brewing, but are
commonly exploited in agriculture in order to significantly
improve animal and crop yields (Chen 2013; Fu et al. 2015;
Schnable and Springer 2013). This is because hybrid species
often exhibit superior phenotypic qualities relative to parent
strains, i.e., heterosis or hybrid vigor, and are chosen for their
improved growth rates and crop yields. Phenotype amplifica-
tion and heterosis have also been observed in studies on de
novo yeast hybrids, which have exhibited a range of improved
traits including faster fermentation rates, more complete sugar
use, greater stress tolerance, and increases in aroma compound
production (Bellon et al. 2011, 2013, 2015; Dunn et al. 2013;
Gamero et al. 2013; Hebly et al. 2015; Krogerus et al. 2015,
2016; Mertens et al. 2015; Piotrowski et al. 2012; Plech et al.
2014; Snoek et al. 2015; Steensels et al. 2014). Interspecific
hybridization can be seen as a powerful strain development
tool for brewing yeast, one which enables the combination
and enhancement of phenotypic features from different parent
strains. Moreover, these new hybrid strains can be generated
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without the use of targeted genetic modification, the use of
which in the brewing industry still remains limited as a result
of regulations and public opinion (Twardowski and Malyska
2015). In addition to their immediate industrial applications,
these new yeast hybrids may also help to elucidate the evolu-
tionary history of industrial hybrid yeast strains, which still
remains a subject of debate (Baker et al. 2015; Okuno et al.
2016; Peris et al. 2016).

This review will discuss the use of hybridization as a
strain development tool for brewery applications, with par-
ticular focus on the recent research that has been carried out
on de novo lager yeast. First, studies on the creation and use
of hybrid yeast in brewery environments will be summa-
rized. Then, specific industry-relevant phenotypes will be
described individually. In addition, hybrid genome regula-
tion and stability will also be discussed briefly. Finally,
methods for generating interspecific yeast hybrids will be
summarized and their relative merits discussed. Discussion
on natural lager yeast hybrids will be kept to a minimum, as
this topic has recently been reviewed elsewhere (Gibson and
Liti 2015; Wendland 2014).

Artificial hybrids

The generation of yeast hybrids, mainly for ale brewing pur-
poses, has been carried out for decades already (Hammond
and Eckersley 1984; Johnston 1965; Russell et al. 1983;
Spencer and Spencer 1977). Early work involved the breeding
of S. cerevisiae ale and laboratory strains in attempts to create
intraspecific hybrids with improved fermentation rates and
attenuation (Johnston 1965; Spencer and Spencer 1977).
However, applying classic yeast breeding to brewing yeast is
challenging, as industrial brewing strains often suffer from
poor sporulation efficiencies and viabilities, presumably as a
result of aneuploidy (Bilinski et al. 1986; Codón et al. 1995).
Low fertility can be overcome through the use of rare mating
or protoplast fusion, neither of which require the use of spores
or haploid cells. These techniques have been used, e.g., to
introduce dextrin fermentation from S. cerevisiae (syn.
S. cerevisiae var. diastaticus) to both ale and lager yeast
(Choi et al. 2002; Russell et al. 1983; Tubb et al. 1981), to
improve the flocculation of industrial brewing strains through
electrofusion (Urano et al. 1993), and to improve the ester
formation and fermentation rate of ale yeast through fusion
with a sake yeast (Mukai et al. 2001). More recently, selection
and breeding of intraspecific hybrids with superior aroma
compound production from pools of hundreds of parent
strains has been accomplished using modern robot-assisted
high-throughput techniques (Steensels et al. 2014).

Breeding of lager yeast has also been attempted previously,
but is relatively difficult due to their aneuploidy and hybrid
nature (Dunn and Sherlock 2008; Greig et al. 2002; Pfliegler

et al. 2012). These result in low sporulation efficiencies, spore
viabilities, and mating frequency, as was revealed by early
work on Saaz-type S. pastorianus at Carlsberg (Gjermansen
and Sigsgaard 1981). More recently, spore clones from pre-
sumably the same Saaz-type S. pastorianus strain were
crossed with an S. cerevisiae ale strain to yield hybrids with
improved growth at higher temperatures and resistance to high
ethanol concentrations (Garcia Sanchez et al. 2012). Breeding
with Frohberg-type S. pastorianus strains is also limited by
low sporulation frequencies (Ogata et al. 2011). Again, as was
previously discussed, these limitations can be overcome
through the use of rare mating or protoplast fusion, which
have also been successfully applied to lager yeast (Janderová
et al. 1990; Russell et al. 1983; Sato et al. 2002).

Another factor that limited the breeding of lager yeast was
the absence of the non-S. cerevisiae parent. However, the re-
cent discovery of S. eubayanus (Libkind et al. 2011) has per-
mitted the creation of novel artificial lager yeast hybrids
(Alexander et al. 2016; Hebly et al. 2015; Krogerus et al.
2015, 2016; Mertens et al. 2015). These hybrids possess great
potential value for the brewing industry, as it has been shown
that they may ferment faster, possess a broader temperature
tolerance range, and produce more diverse aroma compounds
than their parent strains. Recent studies on such hybrids have
been restricted mainly to hybridization with the S. eubayanus
type strain (CBS 12357), which alone has been shown to
perform poorly in wort fermentations relative to lager yeast
strains (Gibson et al. 2013). Nevertheless, it does possess
many traits advantageous for lager brewing, such as low-
temperature growth (down to 4 °C), efficient maltose use,
and production of desirable aroma compounds, which can
be inherited by the hybrids (Gibson et al. 2013; Hebly et al.
2015, Krogerus et al. 2015, 2016; Mertens et al. 2015). It is
expected that the diversity of new lager yeast strains will in-
crease in the near future as new isolates of S. eubayanus be-
come available for mating.

Aside from lager yeast hybrids, the use of de novo inter-
specific hybrids created from other species in the
Saccharomyces genus (i.e., Saccharomyces arboricola,
Saccharomyces kudriavzevii, Saccharomyces mikatae,
Saccharomyces paradoxus, or S. uvarum) for brewing pur-
poses has not been explored. However, recent studies on the
use of de novo S. cerevisiae interspecific hybrids with
S. kudriavzevii (Bellon et al. 2011; Lopandic et al. 2016),
S. mikatae (Bellon et al. 2013), S. paradoxus (Bellon et al.
2011), and S. uvarum (Bellon et al. 2015; Lopandic et al.
2016) for wine making have revealed the potential for increas-
ing aromatic diversity and fermentation performance. As
many of these Balternative^ Saccharomyces species are also
cold-tolerant, e.g., S. kudriavzevii and S. uvarum (Gonçalves
et al. 2011; López-Malo et al. 2013; Paget et al. 2014), they
represent feasible alternatives to S. eubayanus in interspecific
hybrids for lager brewing purposes and may compensate for
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the current paucity of S. eubayanus isolates. Another group of
hybrids, that currently remains poorly explored in relation to
brewing applications, is the intergeneric hybrid group. Such
hybrids have been successfully constructed through protoplast
fusion (Lucca et al. 2002; Spencer et al. 1983). Species be-
longing formerly to the Saccharomyces sensu lato group may
be of particular interest in this regard. Interest in the potential
of non-Saccharomyces yeasts in brewing has increased in re-
cent years (Basso et al. 2016; Canonico et al. 2016; Michel
et al. 2016). However, it remains to be seen if such strain
development approaches will find acceptance for industrial-
scale brewing.

In brief, de novo yeast hybrids have been used successfully
to improve beer fermentation in a number of respects, includ-
ing fermentation rate, aroma formation, and stress tolerance.
The following section will discuss in more detail how various
phenotypes important for beer fermentation can be affected in
these yeast hybrids. A list of recent and relevant studies inves-
tigating the use of de novo yeast hybrids for beer fermentation
has been compiled in Table 1.

Hybrid phenotypes

Aroma production

During wort fermentation, yeast produce a range of metabo-
lites which contribute to beer aroma. The main groups of

yeast-derived aroma-active compounds in beer are higher al-
cohols, esters, sulfur compounds, volatile phenols, vicinal
diketones, and aldehydes (for recent reviews, see Krogerus
and Gibson 2013; Landaud et al. 2008; Pires et al. 2014;
Vanderhaegen et al. 2006). However, not all yeast-derived
aroma compounds are desirable. Thus, the target of many
strain development strategies is to increase the production of
certain aroma compounds, such as esters, while decreasing the
production of off-aromas, such as vicinal diketones and sulfur
compounds. Hybridization offers a valuable alternative, as
diverse aroma phenotypes can be combined, and increased
aroma formation can be achieved through best-parent
heterosis.

Studies on yeast hybrids in beverage fermentation have
revealed the possibility of either increasing aroma production
or achieving mid-parent values in hybrids (Bellon et al. 2011,
2013; da Silva et al. 2015; Gamero et al. 2013; Krogerus et al.
2015, 2016; Mertens et al. 2015; Mukai et al. 2001; Steensels
et al. 2014). Early work byMukai et al. (2001) showed that the
concentrations of 2-methylpropyl acetate (fruit aroma) and
ethyl hexanoate (apple/aniseed aroma) in beer could be in-
creased by using an ale × sake intraspecific hybrid compared
to the ale parent strain. More recently, a large-scale breeding
study by Steensels et al. (2014) revealed that a 45 % increase
in 3-methylbutyl acetate (banana aroma) formation could be
achieved in intraspecific hybrids. Outbred hybrids, i.e., those
formed by hydridization between spores (segregants) from
two different parent strains, in particular tended to show a

Table 1 A summary of studies published since the year 2000 investigating the use of de novo yeast hybrids in beer fermentation

Parental strains Key results Reference

S. cerevisiae ale strain S. cerevisiae sake strain The hybrid had an increased fermentation rate and produced
increased concentrations of certain aroma compounds

Mukai et al. 2001

S. cerevisiae ale strain S. cerevisiae strain
(syn S. cerevisiae var. diastaticus)

Hybrids had higher attenuation levels (i.e., utilized a higher ratio
of the original wort carbohydrates) and ethanol yield than the
brewing parent strain

Choi et al. 2002

S. cerevisiae ale strain Cold-tolerant S. bayanus strain Hybrids had greater fermentation rates than the ale parent in low
temperature wort fermentations

Sato et al. 2002

S. cerevisiae ale strain Saaz-type S. pastorianus strain Hybrids showed improved osmo- and temperature tolerance and
fermentation performance compared to the lager parent strain

Garcia Sanchez et al.
2012

Various S. cerevisiae ale,
bakery, sake, and wine strains

Hybrids with higher acetate ester formation than the parent
strains were attained. Best-parent heterosis with regards to
aroma formation was more common in outbred hybrids than
in inbred hybrids

Steensels et al. 2014

S. cerevisiae laboratory strain S. eubayanus type strain The hybrid had improved sugar utilization and fermentation rate
compared to the parent strains in synthetic wort

Hebly et al. 2015

S. cerevisiae ale strain S. eubayanus type strain Hybrids exhibited increased fermentation rates and aroma
compound formation compared to parent strains

Krogerus et al. 2015

Various S. cerevisiae ale
and wine strains

S. eubayanus Hybrids produced a greater diversity of aroma compounds
compared to traditional lager yeast and parent strains

Mertens et al. 2015

S. cerevisiae ale strain S. eubayanus type strain Hybrids exhibited increased fermentation rates and aroma
compound formation compared to parent strains.
Fermentation performance and aroma formation of the
hybrids increased with ploidy. The aroma profile of de novo
lager yeast hybrids can be controlled based on the relative
contribution of parental DNA

Krogerus et al. 2016
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greater increase in ester production compared to inbred hy-
brids, i.e., those formed by hydridization between spores
(segregants) derived from a single parent strain. It has been
shown that heterosis in regard to the growth rates of yeast
hybrids formed from domesticated parent strains is positively
correlated with sequence divergence (Plech et al. 2014;
Shapira et al. 2014). However, Steensels et al. (2014) did not
see an increase in 3-methylbutyl acetate formation as the ge-
netic distance of the parent strains was increased.
Nevertheless, it is possible that this effect is more pronounced
in interspecific hybrids compared to intraspecific hybrids as
suggested, e.g., in the study by da Silva et al. (2015) with
regard to ethyl ester formation.

Probably due to the close relatedness of natural lager yeast
hybrids (Dunn and Sherlock 2008; Okuno et al. 2016), a lim-
ited aroma spectrum exists within this group (Gibson et al.
2013; Mertens et al. 2015). It was recently shown that this
diversity can be improved by generating new interspecies la-
ger hybrids (Mertens et al. 2015). Results revealed that the
aroma profiles of these strains ranged from worst- to best-
parent levels, with several of the hybrids producing higher
concentrations of aroma compounds than either of their par-
ents (especially 3-methylbutyl and 2-methylpropyl acetate). A
similar result was obtained in other work (Krogerus et al.
2015), where de novo lager hybrids produced beers with
higher overall concentrations of esters compared to the parent
strains. Certain esters, such as ethyl hexanoate, were formed at
higher concentrations than either parent strain, and above the
flavor threshold. In a follow-up study, during which hybrids
with different ploidy from the same parent strains were com-
pared, it was further shown that the aroma profile of hybrids
can be controlled based on the relative contribution of parental
DNA (Krogerus et al. 2016). The highest concentrations of
ethyl and acetate esters were produced by the tetraploid hybrid
(Figure 1), while the triploid hybrid (containing proportionally
more of the S. cerevisiae parent genome) formed lower
amounts of acetate esters which were associated with the
S. eubayanus parent strain. Transcriptional analysis and copy
number estimation of several key genes related to the synthe-
sis of these ethyl and acetate esters suggested that these ob-
served differences can be partly attributed to higher gene copy
numbers and transcription levels at higher ploidy. It was re-
cently revealed that orthologous alcohol acetyltransferases
(i.e., Atf1 and Atf2) derived from various Saccharomyces
species show differences in their functional properties
(Stribny et al. 2016), which may also contribute to the more
diverse aroma formation that has been observed in de novo
lager hybrids.

While hybridization can be used to modify the production
of desirable aroma compounds, one must be aware of the in-
herent risk of simultaneously increasing the formation of un-
desirable off-flavors. The formation of ethyl acetate, which is
unpleasant at high concentrations, is positively correlated with

3-methylbutyl acetate formation, and thus hybrids with in-
creased levels of the latter tend to show higher levels of the
former (Steensels et al. 2014). The formation of the unwanted
vicinal diketone diacetyl may also increase in hybrid strains
compared to their parents (Krogerus et al. 2016). However,
hybridization can also be used to decrease or completely re-
move unwanted aroma compounds associated with one of the
parent strains. For instance, Tubb et al. (1981) removed the
ability to produce 4-vinylguaiacol (phenolic off-flavor) from
a dextrin-fermenting S. cerevisiae strain by first mating it with
an ale strain and then screening meiotic segregants of this
hybrid for low 4-vinyl guaiacol production. The phenolic off-
flavor phenotype has been attributed to functional PAD1 and
FDC1 genes (Mukai et al. 2014), and recent whole-genome
sequencing of industrial brewing strains has revealed that
strains lacking this phenotype contain loss-of-function muta-
tions in either of these genes (Gallone et al. 2016; Gonçalves
et al. 2016). Gallone et al. (2016) also demonstrated that hybrid
strains lacking the ability to produce 4-vinyl guaiacol can be
constructed if both of the parent strains contain such loss-of-
function mutations in either PAD1 or FDC1. Similarly, Bizaj
et al. (2012) were able to decrease the formation of H2S (rotten
egg aroma) in hybrid wine strains by mating them with a low
H2S-producing S. cerevisiae wine strain. We have also ob-
served that the S. eubayanus type strain, which has been used
to create the majority of de novo lager hybrids, can produce
sulfuric off-aromas (e.g., ethanethiol and ethyl thioacetate) dur-
ing wort and must fermentations (our unpublished data). These
traits may also transfer to any hybrids formed from this strain.
However, such hybrids tend to produce decreased mid-parent
concentrations of these unwanted sulfuric compounds (our un-
published data). In conclusion, hybridization can be used as a
means to increase the production of desirable aroma com-
pounds and decrease the production of unpleasant volatiles
relative to the parent strains.

Temperature tolerance

The ability to tolerate low temperatures is one of the defining
characteristics of lager yeast and permits the low-temperature
fermentation necessary for production of lager beer. This style
is characterized by a clean aroma relative to the more intense
fruit and floral notes characteristic of ales, a difference that is
mostly due to the different fermentation temperatures
employed. Low-temperature lager fermentations require the
yeast to be able to survive and stay metabolically active in
the cold (Gibson and Liti 2015). It is known that the cold
tolerance of S. pastorianus is a result of its hybrid nature.
However, the mechanisms by which this yeast and its cold-
tolerant parent S. eubayanus cope with low temperatures are
not known. As S. eubayanus has only recently been discov-
ered, we have a limited understanding of the metabolic pro-
cesses responsible for its superior cryotolerance. Gibson et al.
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(2013) showed with lager yeast that the more dominant the
S. eubayanus genome portion is, the more cold-tolerant the
strain is. For instance, Saaz-type strains are better adapted to
cold than Frohberg-type. The presence of α-glucoside trans-
porters that function better at lower temperatures, such as
Mtt1, could play a role in the yeast performance at these tem-
peratures (Vidgren et al. 2010 2014; Magalhães et al. 2016).
Artificial interspecific hybrids of S. cerevisiae and
S. eubayanus strains clearly have the ability to efficiently fer-
ment wort at temperatures as low as 12 °C (Krogerus et al.
2015; Hebly et al. 2015; Mertens et al. 2015). How the hybrid
genomes cooperate to produce this kind of phenotype is not
yet clear.

In addition to S. eubayanus, other members of the
Saccharomyces genus, such as S. kudriavzevii and
S. uvarum, are also adept at growing and fermenting at low
temperatures (González et al. 2006; Masneuf-Pomarède et al.
2010). These species are usually associated with wine and
cider fermentation (González et al. 2006; Naumov et al.
2001). In the case of S. kudriavzevii, only interspecific hybrids
have been found in fermentation conditions (Sampaio and
Gonçalves 2008; Lopes et al. 2010). Cold-tolerant S. uvarum
strains show higher ethanol sensitivity in wine fermentations
at warmer temperatures (25 °C) than they do at low

temperatures (13 °C), possibly due to a different fatty acid
composition of the cell (Kishimoto et al. 1994; Masneuf-
Pomarède et al. 2010). We have observed a similar behavior
from the S. eubayanus-type strain, with it being sensitive to
ethanol at warm temperatures but not affected in the cold
(unpublished data). The response of these species to the com-
bined effect of temperature and ethanol in the cell membrane
deserves further investigation.

Low temperature is known to affect the efficiency of
protein translation, fluidity of the membrane, lipid composi-
tion, protein folding, stability of messenger RNA (mRNA)
structures and enzymatic activities (Aguilera et al. 2007;
Sahara et al. 2002; Schade et al. 2004; Tai et al. 2007).
Salvadó et al. (2011) showed, prior to the discovery of
S. eubayanus, that S. kudriavzevii had the lowest optimal
growth temperature of all the Saccharomyces species.
Gonçalves et al. (2011) compared the rate of adaptation
between S. cerevisiae and S. uvarum and found that groups
of genes associated with cell wall mannoproteins, ribosomal
stalk, translation elongation factors, and glycolysis have un-
dergone Baccelerated^ evolution. Paget et al. (2014) identi-
fied genes associated with glycerol and acetaldehyde metab-
olism as being responsible for the cryotolerance of
S. kudriavzevii and were able to replicate this effect by

Fig. 1 The a alcohol content, b
percentage of maltotriose
consumed, c final 3-methylbutyl
acetate concentration (mg/L), and
d final ethyl hexanoate
concentration (mg/L) of a 15 °P
all-malt wort fermented at 15 °C
with an S. cerevisiae A81062 ale
strain, the S. eubayanus C12902
type strain, and an allotetraploid
interspecific lager hybrid (hybrid
C4) between the two. Values are
means from two independent
fermentations and error bars
where visible represent the
standard deviation. A solution of
X °P has the same density as an
aqueous sucrose solution
containing X g of sucrose in 100 g
of solution. The figure was
recreated using data from
Krogerus et al. (2016)
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overexpressing the genes in S. cerevisiae. García-Ríos et al.
(2016) further observed that S. kudriavzevii is better adapted
to grow at low temperatures due to more efficient protein
translation. This is true also for cold-adapted S. cerevisiae
strains (Salvadó et al. 2016). None of these studies has how-
ever included S. eubayanus, and although similar mecha-
nisms may be involved in the cold tolerance of this species,
different species are known to react differently to variations
in temperature. For example, S. uvarum improves respiration
rates at low temperatures while S. kudriavzevii has superior
ethanol production under similar conditions (Gonçalves
et al. 2011).

Lager yeast hybrids clearly benefit from the cryotolerance
conferred by S. eubayanus. The exceptional cold tolerance of
this species is illustrated by the fact that even a cold-tolerant
species like S. uvarum can benefit from the relationship.
Almeida et al. (2014) have shown that domesticated strains
of S. uvarum, i.e., those used in low-temperature cider and
wine fermentations, contain introgressed DNA from
S. eubayanus. Such introgressions are typically absent in wild
strains of S. uvarum and the genetic contribution from
S. eubayanus appears to be the main differentiating factor
between wild and domesticated strains of the species. The
origin of this genetic material has yet to be determined, i.e.,
directly from a natural population of S. eubayanus or indirect-
ly via interaction with an existing S. eubayanus hybrid.

Sugar utilization

Maltose and maltotriose are the main fermentable sugars of
wort. The parent strains of lager hybrids have different sugar
utilization characteristics. Brewing strains of S. cerevisiae are
usually able to utilize both maltose and maltotriose efficiently,
whereas S. eubayanus appears able to utilize only maltose
(Gallone et al. 2016; Gibson et al. 2013; Hebly et al. 2015).
This seems to be due to a lack of maltotriose transporters
(Hebly et al. 2015; Baker et al. 2015). However, so far, only
one Patagonian isolate, the S. eubayanus type strain
CBS12357, has been characterized in terms of maltotriose
utilization (Gibson et al. 2013; Hebly et al. 2015) and newly
found strains, e.g., Northern Hemisphere isolates from China
and North America (Bing et al. 2014; Peris et al. 2016) and the
New Zealand isolate (Gayevskiy and Goddard 2016) remain
to be characterized. The two subgroups of the lager yeasts,
Saaz and Frohberg, also differ in their sugar utilization char-
acteristics. Frohberg strains can utilize both maltose and
maltotriose, whereas the more S. eubayanus-like Saaz strains
are in general unable to ferment maltotriose, resulting in lower
growth and fermentation rates (Gibson et al. 2013; Magalhães
et al. 2016). This might be because Saaz strains lost significant
portions of their S. cerevisiae genome after hybridization
(Dunn and Sherlock 2008; Walther et al. 2014) and possibly
lost genes needed for maltotriose utilization during this

reorganization of the genome. On the other hand, some au-
thors suggest that Saaz and Frohberg lineages were created by
two distinct hybridization events between different ale strains
(Dunn and Sherlock 2008; Baker et al. 2015; Monerawela
et al. 2015) or even between different S. eubayanus strains
(Baker et al. 2015) possibly possessing different maltotriose
utilization genes, which might explain differences in
maltotriose utilization seen between the groups.

In general, at the low temperatures used for lager brewing
(8–15 °C), de novo lager hybrids outperform the parental
strains in terms of maltose and, especially, maltotriose utiliza-
tion rates (Krogerus et al. 2015, 2016; Mertens et al. 2015). De
novo interspecific hybrids have even displayed similar fer-
mentation efficiencies to S. pastorianus strains currently used
for commercial beer production (Krogerus et al. 2015;
Mertens et al. 2015). The majority of the 31 interspecific lager
hybrids created by Mertens et al. (2015) outperformed the
parental strains in regards to ethanol production during fer-
mentations at 16 °C. Three of the hybrids (all from different
S. cerevisiae parents crossed with the Y567 Patagonian isolate
of S. eubayanus) showed an ethanol production capacity sim-
ilar or higher to the best reference S. pastorianus strains. The
difference in ethanol production between strains was shown to
be largely due to the ability to efficiently ferment maltotriose
present in the wort. Strains producing less than 5 % alcohol by
volume only fermented 50–60 % of the available maltotriose,
whereas strains producing more than 5 % ethanol fermented
up to 70 % of the maltotriose.

In the studies of Krogerus et al. (2015, 2016), lager hybrids
resulting from a cross between an ale strain and the
S. eubayanus type strain were also observed to ferment more
efficiently than the parental strains (Figure 1). All hybrids had
inherited the maltotriose uptake ability of the S. cerevisiae
parent as well as the cold tolerance of S. eubayanus, enabling
successful growth and fermentation at low temperatures (12
and 15 °C). The sugar profiles of the original wort and the
beers produced revealed that the greater sugar uptake relative
to the S. eubayanus parent was a result of efficient maltotriose
utilization. The S. cerevisiae parent had only limited ability to
utilize wort sugars at lower temperatures and there was a
significant amount of residual maltose in the resulting beer.
Krogerus et al. (2016) also revealed that the ploidy of de novo
lager hybrids influences fermentation performance, as the hy-
brid strains with higher DNA content (i.e., the allotetraploid
hybrid followed by the allotriploid hybrid) were clearly supe-
rior to lower ploidy hybrids in the fermentation of wort at
15 °C. There was a clear link between fermentation perfor-
mance of hybrids and different sugar consumption abilities
during fermentation, as strains fermenting fastest also con-
sumed maltose and maltotriose fastest. As it is the uptake of
maltose and maltotriose that tends to limit fermentation capac-
ity during brewing (Alves et al. 2007; Rautio and
Londesborough 2003), higher ploidy of hybrids would
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provide for a greater number of maltose/maltotriose transport-
er genes in hybrid genomes, which could account for im-
proved uptake of these sugars. The interspecific hybrid be-
tween S. eubayanus type strain and the S. cerevisiae
IMK439 laboratory strain studied by Hebly et al. (2015) also
inherited the cryotolerance of S. eubayanus and maltotriose
utilization ability of the S. cerevisiae parent. Additionally, it
was able to grow more rapidly on maltose at 20 °C, resulting
in a fermentation time that was 10 h shorter compared to
S. cerevisiae parent.

So far, only the Patagonian S. eubayanus isolates and, in
particular, the type strain CBS12357, have been used as the
non-S. cerevisiae parent in S. cerevisiae × S. eubayanus
crosses (Hebly et al. 2015; Krogerus et al. 2015, 2016;
Mertens et al. 2015). As S. eubayanus apparently cannot use
maltotriose, industrial lager strains seem to have inherited this
trait from the original S. cerevisiae parent. However, as
discussed in the BIntroduction^ section, results from whole-
genome sequencing of recently discovered S. eubayanus
strains have shown that isolates from the Northern hemi-
sphere, North America and Tibet in particular, seem to be
the closest relatives to the domesticated S. eubayanus half of
the lager hybrid (Bing et al. 2014; Peris et al. 2016). This
raises the question of whether there may exist S. eubayanus
lineages capable of maltotriose uptake. Interestingly, analysis
of the genome sequence of the Tibetan S. eubayanus isolate
(Bing et al. 2014) identified ORFs that exhibited better simi-
larity with AGT1 than with MAL31 (Hebly et al. 2015) sug-
gesting that the Tibetan S. eubayanusmight actually possess a
maltotriose transporter gene (AGT1) found to be missing from
the complete genome assembly of the Patagonian
S. eubayanus strain (Baker et al. 2015). However, the ability
of newly isolated North American strains and of the Tibetan
strain to grow on maltotriose remains to be assessed (Bing
et al. 2014; Peris et al. 2016).

Aside from fermentable sugars such as maltose and
maltotriose, wort contains a large share of non-fermentable
carbohydrates, the most abundant of which is dextrin. Its uti-
lization during fermentation would result in higher ethanol
yields and lower-carbohydrate beer. Some strains of
S. cerevisiae (syn. S. cerevisiae var. diastaticus) have been
shown to ferment dextrin, and this ability has been transferred
to both ale and lager yeast through hybridization (Choi et al.
2002; Russell et al. 1983; Tubb et al. 1981). These hybrids
showed higher fermentation degrees and ethanol yields than
the brewing yeast parents.

Hybrid genome function and stability

It might be expected that in newly formed interspecific hy-
brids, there is a certain level of functional disorder due to the
clash of different regulatory networks, and consequently, that

this disorder has an influence on the evolution of the genome.
Relatively little is known of the transregulation of gene
activity in de novo hybrids. Bolat et al. (2013) have shown
that removal of the S. eubayanus allele of the regulator ARO80
from a production strain of S. pastorianus did not significantly
affect expression of the S. eubayanus form of the target gene
ARO10. Results suggested that the S. cerevisiae regulator
could compensate entirely for the loss and, that at least in
natural S. pastorianus strains, cooperative mechanisms exist
between subgenomes. Proteome and transcriptome studies
have, however, shown that significant differences in
subgenome activity can occur in lager yeast (Caesar et al.
2007; Horinouchi et al. 2010; Minato et al. 2009; Yoshida
et al. 2007), suggesting that gene regulation in interspecies
hybrids is not seamlessly integrated across subgenomes.
Gibson et al. (2015) showed that differences in expression of
the two different alleles of the regulatory gene ILV6 in
S. pastorianus could influence strain phenotypes (in this case,
the production of α-acetolactate). Otherwise, there was no
functional difference between the gene products as determined
by their over-expression with the same promoter. In other
cases, functional divergence has been observed for many gene
products that influence brewing properties (Iijima and Ogata
2010; Ogata et al. 2013; He et al. 2014). Similar investigations
must be carried out with newly created hybrids to determine
the level of initial regulatory disorder and also how regulatory
issues are resolved over time. Tirosh et al. (2009) measured
gene activity in de novo S. cerevisiae × S. paradoxus hybrids
and found that both cis- and transregulation could be observed
and that this was influenced by the environmental conditions
to which the hybrids were exposed. It would be of interest to
determine how subgenome activity in new S. cerevisiae ×
S. eubayanus hybrids is influenced by environmental condi-
tions, particularly those conditions, such as temperature ex-
tremes, that have the greatest differential impact on the phys-
iology of the parent strains. Wendland (2014) has suggested
that differences in fermentation temperature may have molded
the genomes of the Saaz and Frohberg strains, which display
differences in their tolerance to low-temperatures (Gibson
et al. 2013; Walther et al. 2014). This hypothesis could be
tested by adapting cultures of the same hybrid strain in parallel
to either high or low temperatures and assessing the genetic
changes occurring in each case.

Extensive chromosome loss and intrachromosomal trans-
locations, sequence divergence, and chromosome copy num-
ber variation in the genomes of lager yeast (van den Broek
et al. 2015) indicate that the S. pastorianus genome is inher-
ently unstable. Such instability is not unexpected given the
high level of regulatory incompatibilities (Landry et al.
2007) and functional redundancy that are associated with
polyploid hybrids (Kumaran et al. 2013; Selmecki et al.
2015). The lager yeast genome is certainly amenable to
change via evolutionary engineering, which has been applied
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to improve stress tolerance (Blieck et al. 2007; Ekberg et al.
2013; Huuskonen et al. 2010; James et al. 2008) and modify
beer flavor profile (Mikkelsen et al. 1979; Strejc et al. 2013).
As the possibility of creating artificial lager hybrids has
existed for only a short time, we have limited information
about the stability or adaptability of newly formed genomes.
Previous research has indicated that one subgenome in a
laboratory-made hybrid is often more susceptible to change
or elimination. This was the case for example with
S. cerevisiae × S. uvarum hybrids, where the S. uvarum moi-
ety was gradually reduced after successive meiotic
(Antunovics et al. 2005) or mitotic (Masneuf-Pomarède
2007; Sebastiani et al. 2002) divisions. Likewise, Lopandic
et al. (2016) noted the loss of S. kudriavzevii chromosomes
from an artificial S. cerevisiae × S. kudriavzevii hybrid, par-
ticularly after these fertile hybrids underwent meiosis. A sim-
ilar reduction in S. kudriavzevii DNA has been observed in
natural wine and beer hybrids (González et al. 2008; Peris
et al. 2012). There is evidence that this differential DNA loss
can be due to environmental conditions. Piotrowski et al.
(2012) showed that during adaptation to high temperature,
there was a progressive loss of S. uvarum chromosomes from
a laboratory S. cerevisiae × S. uvarum hybrid. This suggests
that parental physiologymay direct the evolution of the hybrid
genome with, in this example, progressive loss of the cold-
tolerant subgenome at high temperature, leaving a greater pro-
portion of the high-temperature-tolerant S. cerevisiae DNA.
Whether this can explain the greater contribution of
S. eubayanus DNA in the cold-tolerant Saaz lager yeast re-
mains to be seen.

Hybrid generation

Saccharomyces hybrids can be generated through a variety of
methods, including spore-to-spore mating, mass mating, rare
mating, and protoplast fusion among others (Figure 2). Here,
these methods will be discussed briefly together with an as-
sessment of their advantages and disadvantages. Sexual hy-
bridization occurs when haploid cells of opposite mating type
(a or α) meet and fuse (for a recent review on the subject see
Merlini et al. (2013)). The traditional approach to yeast breed-
ing is through the mating of cells derived from spores. Spores
from the two parent strains can be placed adjacent to one
another on an agar plate with the aid of a micromanipulator,
i.e., spore-to-spore mating, or randomly mixed together on
solid or in liquid growth media, i.e., mass mating. These tech-
niques have been used in the majority of the studies listed in
Table 1 (Hebly et al. 2015; Krogerus et al. 2016; Mertens et al.
2015; Sanchez et al. 2012). These approaches have several
advantages, including high hybridization frequencies, possi-
ble use without selection markers (with spore-to-spore mat-
ing), and typically greater genetic stability in the resulting

hybrids. However, the parent strains must be able to produce
viable spores and physiological traits may be lost or altered
through meiotic recombination during spore formation. In the
case of mass mating, selection markers (e.g., auxotrophies) or
other screening methods are also required to isolate hybrids
from the population of parent cells. Steensels et al. (2014)
utilized a variant of this approach, where parent strains were
first screened for heterothallism (i.e., the spore clones exhibit a
stable mating type, and thus do not self-mate) prior to mating.
Hybrid status of any isolates can be confirmed through various
PCR (e.g., using ITS, interdelta or species-specific primers) or
karyotyping techniques (e.g., pulsed-field gel electrophoresis)
(Fernández-Espinar et al. 2000; Legras and Karst 2003; Muir
et al. 2011).

If either or both of the parent strains one wishes to hybrid-
ize are unable to form viable spores, one can apply rare mat-
ing. Diploid (or higher ploidy) strains generally have a/αmat-
ing type (i.e., a heterozygous mating type locus) and do not
directly mate. However, spontaneous loss of heterozygosity at
the mating type locus can occur at low frequencies (10−4),
resulting in the formation of diploid (or higher) cells with a
or α mating types (Hiraoka et al. 2000). These cells may then
mate to form polyploid hybrids, which may contain more or
less the full genomes of both parent strains. This approach has
also been used in many of the studies listed in Table 1 (Choi
et al. 2002; Krogerus et al. 2015, 2016; Sato et al. 2002). The
most recent of these studies (Krogerus et al. 2016) suggested
that higher ploidy lager hybrids produced through rare mating
outperformed (in regards to fermentation rate and aroma for-
mation) a diploid lager hybrid formed through spore-to-spore
mating. However, as the name implies, these matings occur
rarely and the hybridization frequencies are typically low.
Furthermore, because of the low mating frequency, selection
markers (e.g., auxotrophies) are required to isolate hybrids
from the population of parent cells. The genomes of hybrids
formed from rare mating also tend to be less stable than those
formed from mating of spores (Pérez-Través et al. 2012).

To overcome the disadvantages of low hybridization
frequencies and requirement for selection markers, various
strategies have been developed. Alexander et al. (2016) de-
scribe a technique that can be used to force mating type
change in diploid cells by transformation with a plasmid car-
rying the HO gene under the control of an inducible promoter
(this gene is repressed in a/α diploid cells). Expression of HO
in a/α diploid cells results in mating type change to a- or α-
type, allowing for rare mating with higher hybridization fre-
quencies. The plasmids also carry drug-resistance markers,
which allow for the selection of hybrids. Fukuda et al.
(2016) describe another approach for selecting diploid cells
with either an a or α mating type. In their technique, a/α
diploid cells are transformed with a plasmid carrying either
the a1 or α2 gene from the mating-type locus together with
drug-resistance markers with promoters specific to either the
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a1 or α2 gene products. When cells containing these plasmids
are grown on media containing the particular drug, only cells
with an a or α mating type are able to grow (as the a1-α2
dimer will repress the transcription of the drug-resistance
gene). Hence, this technique also increased the hybridization
frequency of rare mating. However, both these techniques
require the transformation of cells with plasmids carrying
drug-resistance markers. These plasmids are easily lost from
the yeast though, resulting in cells with no exogenous DNA
remaining.

The final approach to generating hybrids that will be
discussed in this review is protoplast fusion. With this ap-
proach, the cell walls of the parent strains are first digested
(i.e., protoplasts are formed), after which the cells or proto-
plasts are brought together and undergo fusion, followed by
the regeneration of the cell wall (van Solingen and van der
Plaat 1977). As with rare mating, this technique is particularly
advantageous for mating strains that rarely form viable spores.
Furthermore, protoplast fusion allows for the mating of sexu-
ally incompatible cells, e.g., in the formation of intergeneric
hybrids (Lucca et al. 2002). Of the studies listed in Table 1,
only Mukai et al. (2001) used protoplast fusion. The disad-
vantages of protoplast fusion are low hybridization frequen-
cies, the need for selection markers, and typically low genome
stability in the resulting hybrids. Also, hybrids resulting from
protoplast fusion may be considered genetically modified in
some regions of the world.

Future prospects and concluding remarks

The interspecific yeast hybrid S. pastorianus already plays a
vital role in the modern brewing industry, but its phenotypic
potential is limited due to it containing genetic material from
only two or three individual yeast strains. To overcome this,
the creation of novel brewing yeast hybrids has been shown
to be a promising strain development tool for brewing yeast.
Hybridization enables the combination and enhancement of
a range of phenotypic features from different and diverse
parent strains, and the technique has already been used to
create yeast hybrids with faster fermentation, more complete
sugar use, greater stress tolerance, and more diversified aro-
ma compound production. However, the use of hybridization
to improve on several other phenotypic traits still remains
unexplored. These include encouraging the formation of an-
tioxidants to increase flavor stability, decreasing the forma-
tion of unwanted off-flavors to enhance beer quality, and
increasing glycerol formation for better mouthfeel in low-
alcohol beer. Furthermore, studies on the use of de novo
hybrids for brewing purposes have been mainly limited to
hybrids created with S. cerevisiae or S. eubayanus strains as
parents. Many other species in the Saccharomyces genus
possess traits desirable for brewing, including cold tolerance
and high ester formation, and thus represent feasible alterna-
tives to S. eubayanus in interspecific hybrids for lager
brewing purposes.

Fig. 2 An overview of different hybridization methods. During a spore-
to-spore mating, the diploid (2n) parent strains are first sporulated, after
which haploid spores of opposite mating type derived from the two parent
strains are brought together and allowed to mate. A diploid (2n) hybrid is
formed. During b rare mating, the diploid (2n) parent strains are brought
together without any prior sporulation. The cells are not able to directly
mate, but rare spontaneous loss of heterozygosity at the mating-type locus

can occur in a fraction of the population. As a result, diploid cells with a
single mating type, which are able to mate, are formed. A tetraploid (4n)
hybrid is formed. During c protoplast fusion, the cell walls of the diploid
(2n) parent strains are first digested, after which the protoplasts are
brought together and undergo fusion, followed by the regeneration of
the cell wall. A tetraploid (4n) hybrid is formed
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While hybrids possess various enhanced phenotypes in
comparison to the parent strains, the molecular mechanisms
that control and contribute to the hybrid phenotypes are not
fully understood. These phenotypes include the cold and
stress tolerance of lager hybrids and heterosis effect observed
for aroma formation. With the greater application of sequenc-
ing in hybrid studies, it is expected that questions regarding
the stability of hybrid genomes, subgenome cooperation and
regulation, and the evolutionary history of S. pastorianus will
become clearer in the future. There is also the potential for
exploiting the inherent instability of hybrid genomes for ad-
vanced strain development through adaptive evolution.
Hybridization can therefore be explored and utilized further
in several ways, yielding powerful and diverse yeast strains
for the brewing industry.
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