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Novel Bulk Iron Garnets for Magneto-Optic Magnetic Field Sensing 

M. N. Deeter, S. Milian Bon, and G. W. Day 
Electromagnetic Technology Division, National Institute of Standards and Technology 

325 Broadway, Boulder, Colorado, 80303 

G. Diercks and S. Samuelson 
Deltronic Crystals, Inc., 60 Harding Ave., Dover, NJ 07801 

Abstract- We report measurements of the magneto-optic 
response function and frequency response for three bulk 
iron garnet crystals grown by a flux technique. The samples 
were the product of an intensive effort to develop iron 
garnet compositions with properties specifically optimized 
for magnetic field sensing. Sensitivity enhancement was 
achieved through both bismuth substitution (for increasing 
the saturation Faraday rotation) and gallium substitution 
(for reducing the saturation magnetization). One sample 
exhibited a value of magneto-optic sensitivity of 25° /mT for 
1.3 µm light. Frequency response measurements indicate 
that bismuth substitution actually improves performance 
(compared to unsubstituted yttrium iron garnet) in contrast 
with gallium, which causes substantial degradation. 

I. INTRODUCTION 

This paper describes an effort to improve the suitability of 
iron garnets for Faraday effect magnetic field sensing by 
enhancing the magneto-optic properties through compositional 
modification. Historically, these studies have been carried out 
through the investigation of iron garnet films grown by liquid 
phase epitaxy (LPE). The main motivation for this work is the 
optimization of materials grown by the high temperature 
solution growth method. 

In bulk form, both yttrium iron garnet (YIG) and gallium­
substituted yttrium iron garnet (Ga:YIG) crystals have been 
characterized for magneto-optic magnetic field sensing [ 1,2 J. 
However, even better sensing performance should be possible 
by using alternative garnet compositions. The primary sensor 
materials parameters, including magneto-optic sensitivity (the 
differential Faraday rotation per unit magnetic field), frequency 
response, and temperature sensitivity, vary widely with 
composition. For example, bismuth substitution in various iron 
garnet hosts increases the specific Faraday rotation substantially 
(3). The substitution of gallium for iron reduces the saturation 
magnetization (3,4]. Lanthanum has been added to a terbium 
iron garnet host to improve its temperature sensitivity [5]. 

Unfortunately, however, substitutions made for one purpose 
invariably and unpredictably influence other properties of the 
crystal. For example, gallium substitution in YIG has the 
beneficial effect of reducing the saturation magnetization but 

Manuscript received April 4, 1994. 
M. N. Deeter, e-mail deeter@bldrdoc.gov, fax 303-497-7621. 
S. Milian Bon acknowledges support from the University ofTwente in the 

Netherlands. 

also reduces both the specific Faraday rotation and the 
frequency response [2,6]. This example shows the difficulty of 
choosing an iron garnet composition for a specific application 
without a model or database to indicate the effect of various 
substitutions on all of the various sensor material parameters. 
The strategy employed for this research was to grow a wide 
array of compositions with a variety of substituents from which 
a database could be established to identify the appropriate 
composition for any particular application. From this array, we 
identified three compositions which effectively represent the 
variety of characteristics observed in the larger set. 

IL IRON GARNET CRYSTAL GROWTH AND FABRICATION 

Bulk single crystals of various garnet compositions were 
grown by spontaneous nucleation from a Bi20/B20 3 flux. The 
high purity powders were charged into a platinum crucible and 
heated to a soak temperature of 1300-1330°C. The solution was 
allowed to cool over several days at 0.7-l.5°C/h through the _.· 
crystallization region of 1330 to 1050°C. The molten flux was 
decanted from the crucible at a temperature of around 1050°C, 
revealing garnet crystals attached to the crucible wall. The 
crystals were mechanically extracted and cleaned in acid to 
remove residual flux. 

The raw crystals were fabricated into a usable geometry in the 
form of right cylinders. First, plates of (100) orientation were 
cut and polished from the crystals. These slices were inspected 
using a microscope equipped with an infrared video camera .. 
Areas of the crystal which exhibited no visible defects under 
1 OOx magnification were selected for further fabrication. These 
preferred sections of the slices were cubed and machined into 
cylinders of 2 mm diameter and 0.5-1.2 mm length. Finally, the 
cylinder endfaces were optically polished to better than 20/10 
scratch/dig. 

Ill. EXPERIMENT AL RES UL TS 

The three samples selected to represent the array of materials 
grown for this project are represented by the formulas 
Y3_xBixFe50 12 (Sample A), Gd3_x-yBixLayfe50 12 (Sample B), 
and Gd3_xBixFe5_p~o 12 (Sample C). The sample lengths 
were 1.18, 1.16, and 1.02 mm, respectively. The sample 
diameters were all 2.0 mm. 

The magneto-optic response function 8io{H) of each sample 
was measured at 1.3 µm using a polarization modulation 
technique [7]. In each case, the field was swept through one 

0018-9464,'()4$4.00 © 1994 IEEE 
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Fig. 1. Magneto-optic response function of Sample A. 

complete cycle in order to expose any hysteresis. Frequency 
response measurements between 40 kHz and 1 GHz were 
conducted with the samples placed inside a dielectric-filled 
coaxial transmission cell which generated the high frequency 
magnetic fields. Holes in the cell permitted the transmission of 
a collimated beam through the sample after which the beam was 
coupled to a fiber-pigtailed high speed receiver for detection. 
The magneto-optic response function and frequency response of 
the Bi:YIG sample (Sample A) are shown in;Figs. land 2. The 
response functions of Samples B and C are shown in Figs. 3 and 
4. The main features of the data are summarized in Table I. 
Values for YIG and Ga: YIG (Y 3Fe4.0Ga1,00 d are included in 
the table for comparison. The tabulated material sensing 
parameters include the specific rotation (saturation Faraday 
rotation per unit length), the geometry-independent normalized 
magneto-optic sensitivity S ', and a qualitative assessment of 
each material's frequency response. S' is calculated as 

s' = (1) 

10------~---------, 

Fig. 2. Normalized frequency response data for the three 
bulk samples described in the text. 

446) 

150 -0 - 100 
C: 
0 50 :.::: 
«1 -0 0 a: 
>- -50 «1 

"O as 
-100 ... 

tU u.. 
-150 

-100 -50 0 50 100 
µ 0 H (mT) 
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where S is the measured magneto-optic sensitivity (Faraday 
rotation per unit magnetic field), N0 is the geometrical 
demagnetization factor, and Lis the sample length.2 

IV. DISCUSSION 

Samples A and B demonstrate the effect of bismuth 
substitution into yttrium- and gadolinium-iron garnet hosts, 
respectively. Both samples exhibit values of specific rotation in 
excess of 100 °/mm. The higher sensitivity of Sample B is a 
direct result of a smaller value of saturation magnetization [8]. 
The frequency response of Sample A, which is virtually flat up 
to 1 GHz, exceeds that of all the other bulk samples and is 
matched only by the frequency response of iron garnet films 
exploited in an optical waveguide geometry [9]. The wide 
bandwidth of this sample may be related to measurements 
showing narrower FMR (ferromagnetic resonance) linewidths 
(indicating less damping) in YIG hosts substituted with bismuth 
[10]. The resonance exhibited by Sample B near 700 MHz may 
be associated with domain rotation [ 11 J. One effect which is yet 
unexplained is the low-field hysteresis observed in the response 
function of Sample A but not in the response function of Sample 
B. 
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Fig. 4. Magneto-optic response function of Sample C. 
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TABLE! 
COMPARISON OF MEASURED SENSING PARAME1cRS 

-------------------
eF.sat/L ( 0 /mm) S' ( 0 /A) Freq. Resp. 

Y!Ga 22 0.14 exc. 

Ga:Y!Ga 14 0.6 poor 

Sample A 106 0.8 exc. 

Sample B 114 3.3 good 

SampleC 32 12.6 poor 

•vatues for YIG and Ga:YIG (Y3Fe4.0Ga1.00 12) from Refs. 1 and 2. 

Sample C is an example of an attempt to produce the highest 
magneto-optic sensitivity by simultaneously employing bismuth 
and gallium substitution. As suggested by the low saturation 
field evident in Fig. 4, the gallium content in this composition 
was close to the compensation composition at which M 

. SH 
vamshes. Nevertheless, the response function exhibits a linear 
region for fields I µ0H I < 1 mT, over which the magneto-optic 
sensitivity is approximately 25 ° /mT. A potential drawback to 
this composition is seen in the frequency response (Fig. 2) 
which exhibits monotonic rolloff for frequencies greater than a 
few megahertz. 

V. CONCLUSION 

Among the many classes of magneto-optic materials, the 
ferrimagnetic iron garnets offer by far the greatest magneto­
optic sensitivity for magnetic field sensing [1,2). Iron garnet 
single crystals in the form of both bulk-grown specimens and 
epitaxial films have been employed as sensing elements. Each 
of these morphologies enjoys unique advantages. High quality 
bulk YIG crystals are commercially available with dimensions 
from millimeters up to several centimeters and weighing over 
200 g. Physically, these dimensions facilitate the integration of 
these crystals into optical systems using micro-optic lenses 
(such as those used in fiber optic sensors) but also permit the 
efficient magnetic coupling of these crystals to flux 
concentration devices (12). The chief advantage of epitaxial 
films has historically been the wider range of available garnet 
compositions and, as a result, larger values of saturation 
Faraday rotation 8F,sat· On the other hand, taking full advantage 
of these large saturation rotation values requires that the films 
be used in an optical waveguide geometry, which poses other 
problems including low coupling efficiency and birefringence 
[9]. 

The results of this paper demonstrate that iron garnet 
compositions yielding high values of saturation Faraday rotation 
can be grown in bulk form suitable for magneto-optic magnetic 
field sensors. The availability of these materials will permit the 
construction of magneto-optic magnetic field and electric 
current sensors which are both faster and substantially more 
sensitive than sensors based on currently available materials. 

This paper represents work of the U. S. Government and is 
not subject to copyright. 
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