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Abstract

Background and Purpose

Colorectal and prostate cancers are two of the most common types and cause of a high

rate of deaths worldwide. Therefore, any strategy to stop or at least slacken the develop-

ment and progression of malignant cells is an important therapeutic choice. The aim of the

present work is the identification of novel cancer chemotherapy agents. Nowadays, many

different drug discovery approaches are available, but this paper focuses on Molecular To-

pology, which has already demonstrated its extraordinary efficacy in this field, particularly in

the identification of new hit and lead compounds against cancer. This methodology uses

the graph theoretical formalism to numerically characterize molecular structures through

the so called topological indices. Once obtained a specific framework, it allows the construc-

tion of complex mathematical models that can be used to predict physical, chemical or

biological properties of compounds. In addition, Molecular Topology is highly efficient in se-

lecting and designing new hit and lead drugs. According to the aforementioned, Molecular

Topology has been applied here for the construction of specific Akt/mTOR and β-catenin in-

hibition mathematical models in order to identify and select novel antitumor agents.

Experimental Approach

Based on the results obtained by the selected mathematical models, six novel potential in-

hibitors of the Akt/mTOR and β-catenin pathways were identified. These compounds were

then tested in vitro to confirm their biological activity.
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Conclusion and Implications

Five of the selected compounds, CAS n° 256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor

n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4) and 431925-096 (Inhibitor

n°6) gave positive responses and resulted to be active for Akt/mTOR and/or β-catenin inhi-

bition. This study confirms once again the Molecular Topology’s reliability and efficacy to

find out novel drugs in the field of cancer.

Introduction

The US-National Institute of Health estimated the direct cost on oncology care to be $89 billion

in 2007 [1]. Surgery, hospitalization, physician visits, imaging, chemotherapy, radiation and bi-

ologic therapy are derived costs from oncology care [2]. In 2014, approximately 18% of US

gross domestic product has been spent on healthcare and 5% of that keeps being for cancer

care [3]. Ten to fifteen percent of total spending on oncology care is linked to cancer drugs [2].

Therefore, developing quality cost-saving strategies for cancer care is an imperative [3].

There are many approaches to fight cancer ranging from chemoprevention (strategy of

blocking or slowing the onset of premalignant tumors with relatively nontoxic chemical sub-

stances [4]) to chemotherapy, radiotherapy or finally surgical oncology.

Ones of the most common and deadly forms of cancer, colorectal cancer (CRC) and pros-

tate cancer (PtC) were selected as main targets for this study. In order to give an idea of the

importance of these forms of cancer, a brief description of their incidence and burden is

following.

Worldwide, about 2.1 million people were diagnosed with CRC in 2008, placing it second

among the most frequent cancer in women and third in men [5]. Moreover, it is the third most

common cause of cancer death worldwide, with more than 600,000 deaths per year [6]. The

prevalence of CRC is expected to increase significantly in most developed countries as a result

of the growing population belonging to the elderly, since the incidence of CRC increases with

age [5].

On the other hand, prostate cancer is the second most common malignancy in men, with

more than 900,000 newly diagnosed cancer cases and about 260,000 cancer deaths in 2008 [7].

The incidence of this deadly disease has significantly increased in recent years because of the

widespread screening for prostate-specific antigen (PSA), which allows early detection of tu-

mors that otherwise, might remain undetected. In the USA, 90% of patients with prostate

cancer who presented localized lesions at the diagnosis, usually have a good prognosis after

treatment. However, by 5 years, nearly 30% of treated patients exhibit a rise in PSA levels and

evidence of recurrent disease [7].

Considering what has been said up to now, it is not difficult to understand the importance

of trying to reduce the incidence and progression of CRC and PtC, so to prevent the inevitable

health-spending burden that their treatment and follow-up of patients would imply. Again, the

main objective of this work consists in try to discover novel drugs for cancer treatment.

There are many targets involved in CRC and PtC which could be potentially interesting in

order to select novel chemotherapeutic compounds. This work focused on two fundamental

signaling pathways: PI3K/Akt/mTOR andWnt/β-catenin (Fig 1).
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The PI3K/Akt/mTOR Pathway

Phosphatidylinositol-3-kinase (PI3K) is a key enzyme in the control of cell growth and prolif-

eration. The most common form of this enzyme is activated by the actions of growth factors re-

ceptors. By forming triply phosphorylated inositols attracts Akt which becomes

phosphorylated by phosphorinositide-dependent kinase (PDKs). Akt then proceeds to phos-

phorylate a variety of substrates, including the mammalian target of rapamycin (mTOR) regu-

lating cell proliferation, survival and size.

Several studies have shown changes in Akt activity or expression in human precancerous

tissues in precancerous prostatic intraepithelial neoplasia and neoplastic colonic epithelium

[8]. Moreover, the PI3K/Akt and mTOR signaling pathways are demonstrated to be hyper-acti-

vated signaling pathways in CRC and PtC cancers [8–15]. Therefore, these signaling pathways

are potent targets for inducing cancer cell death [12].

TheWnt/β-Catenin Pathway

In the absence of Wnt, β-catenin is associated with the multi-protein β-catenin destruction

complex that includes constitutively active glycogen synthase kinase 3 (GSK3). GSK3 phos-

phorylates β-catenin, triggering its degradation through the ubiquitin-proteasome pathway.

The presence of Wnt, induces β-catenin dissociation of the degradation complex and its trans-

location into the nucleus, where it binds to T-cell factor (TCF) transcription factors regulating

the expression of many genes including Cyclin D1 (CycD1).

Deregulation of Wnt/β-catenin signaling is a hallmark of the majority of sporadic forms of

colorectal cancer and results in increased stability of the protein β-catenin [16]. There are sev-

eral reasons for targeting the Wnt/β-catenin pathway in CRC and PtC. Approximately 90% of

colorectal cancers (CRCs) has mutations on the Wnt/β-catenin (canonical pathway). Those are

Fig 1. PI3K/Akt/mTOR pathway related to cancer onset and progression [11].

doi:10.1371/journal.pone.0124244.g001
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mainly found in the adenomatous polyposis coli (APC) and β-catenin genes and both lead to

pathway activation, although other pathway components can also harbor mutations [16]. Ac-

cumulation of β-catenin in the nucleus can be detected in> 80% of CRC tumors [16]. More-

over, high levels of nuclear β-catenin have been correlated with a poor prognosis in CRC

patients [16].

In PtC, it has been widely demonstrated how androgen receptor (AR) is the major therapeu-

tic target. However, targeting AR alone can result in drug resistance and disease recurrence. Si-

multaneous targeting of multiple pathways could in principle be an effective approach to

treating prostate cancer [17]. Growing evidence indicates that the canonical Wnt/β-catenin

pathway plays an important role in prostate tumor-genesis [18]. Especially because AR binds

β-catenin directly to stimulate AR-mediated gene transcription, and importantly, the AR gene

itself is a transcriptional target of β-catenin [17]. So, the inhibition of both the AR and β-cate-

nin–signaling pathways that are often unregulated in prostate cancer may represent an effective

way for PtC treatment.

Molecular Topology in Cancer

Once it is clear the importance to find new chemotherapy agents against CRC and PtC, the

question to be asked is: how could it be done? In the field of Computer Aided Drug Design

(CADD) and Quantitative structure–activity relationship (QSAR), the possibilities are many,

but the results obtained are seldom satisfactory, especially in the field of cancer. Since, the

Drug Design and Molecular Topology Research Unit at the University of Valencia (Spain), has

a consolidated background of achievements in cancer drug discovery [19–26], including several

patents [27–29], thanks to a computational methodology based on Molecular Topology. In ad-

dition to the identification of novel active molecules in PtC [26], our research unit also suc-

ceeded in finding new molecules active on the initial stages of colorectal cancer. Moreover, our

team has obtained significant results in IBD (inflammatory bowel disease) treatment, by the

identification of several compounds inhibiting inflammation mediators like IL-6, NF-ĸβ and

COX-2 [30–34].

The use of QSAR with topological indices as regression variables has proved to be an excel-

lent approach for a fast and accurate prediction of many physicochemical and biological prop-

erties [35–37]. Molecular Topology (MT) can be defined as a part of mathematical chemistry

consisting of the topological description of molecular structures. Such description deals basical-

ly with the connectivity of the atoms forming the molecule that must yield numerical values

which are invariant under deformation of the structure. Features such as bond lengths, dihedral

angles, energies or any other sort of physical or geometrical magnitudes are not being consid-

ered in this scenario. Molecular descriptors are ‘numbers that characterize a specific aspect of a

molecule’ [38]. That is, they are numbers containing information derived from the structural

representation of the molecule.

MT’s singularity lies in the following reasons:

a. Molecular structure is described within a mathematical framework [39].

b. It may find out new drugs, either by screening compound’s databases or by designing novel

compounds following the reverse process (properties! structure).

c. It can be easily computerized.

The use of MT as a tool for the design and selection of new drugs has been our team’s task

since the early 1980’s [38–42].
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Materials and Methods

Molecular Topology Model

Obtaining a MT-QSAR model for the identification of novel cancer chemotherapeutic agents

consists of the following steps (Fig 2):

• Step I: Creating an in-house database of compounds active on the selected targets (Akt and

β-catenin).

• Step II: Calculation of topological descriptors using Dragon software [43].

• Step III: Splitting data set into two groups: training and test set.

• Step IV: Models were built up following the linear discriminant analysis (LDA) approach-

ment just considering the training set. The model’ labels were:

• Model #1: Akt inhibition model for natural compounds.

Fig 2. Scheme of Akt and β-catenin inhibitors research throughMolecular Topology by virtual screening on SPECS databases.

doi:10.1371/journal.pone.0124244.g002
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• Model #2: Akt inhibition model for comercial compounds.

• Model #3: β-catenin inhibition model for natural compounds.

• Model #4: β-catenin inhibition model for comercial compounds.

• Step V: Development of an external model validation using the test set for each

discriminant function.

• Step VI: Carrying out a virtual screening in SPECS libraries. Search for potential Akt and β-

catenin inhibitors as novel chemotherapeutics cancer agents.

• Step VII: In vitro testing of the selected compounds in colorectal and prostate cancer

cell lines.

Compound analysis

Model #1: Akt inhibition for natural compounds. The QSAR model was developed from

a training set composed by 155 compounds (32 actives and 123 inactives) with heterogeneous

molecular structures. This model was then tested against a set of 39 compounds consisting of 8

natural Akt inhibitors and 31 Akt-inactive compounds.

While we are confident that the active group compounds have been tested and exhibit phar-

macological activity against Akt, regarding the inactive group compounds we don’t know for

sure if they have been tested against such pharmacological activity. However, given that the

number of compounds in the inactive set is significantly large, the risk of misclassification is

negligible.

All compounds were obtained from different sources [44–80] and from a database named

MicroSource Pure Natural Products Collection [81].

Model #2: Akt inhibition for comercial compounds. The QSAR model was developed

from a training set composed by 647 compounds (20 actives and 627 inactive) with significant

structural heterogeneity. External validation of this model was performed with a set of 205

compounds consisting of 6 active on Akt inhibition and 199 inactive.

As mentioned above, whereas we cannot ensure inactivity for all compounds belonging to

the inactive set, the risk of false inactive is very low.

All compounds were obtained from Akt Selleckchem database [82], literature [83–97] and

MicroSource US Drugs Collection [98].

Model #3: β-catenin inhibition for natural compounds. The QSAR model was devel-

oped from a structurally heterogeneous training setmade of 153 compounds (50 actives and

103 inactives). This model was validated against a set of 27 compounds consisting of 10 natural

β-catenin inhibitors and 17 17 inactive.

All compounds were obtained from literature [99–159] and from a database named Micro-

Source Pure Natural Products Collection [81].

Model #4: β-catenin inhibition for comercial compounds. Finally, the last QSAR model

developed was formed by a training set composed by 1047 commercial compounds (93 actives

and 954 inactive). External validation of the model was made on a test set of 207 compounds

consisting of 17 β-catenin inhibitors and 190 inactive compounds.

As in the previous cases, the probability of activity within the inactive set is negligible due to

its size.

All compounds were obtained from β-catenin Selleckchem database [143], literature

[160–201] and the database MicroSource US Drugs Collection [98].
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Molecular descriptors

Topological descriptors codify information about molecular structure in a purely numerical

way. This numerical format significantly eases the search of other molecules showing similar

properties, thereby making easier the discovery of new drugs.

The 2D structure of each compound was drawn using the ChemDraw Ultra package (ver-

sion 10.0) [202]. Every compound was characterized by a set of descriptors including constitu-

tional and topological descriptors. Among the last stand the edge adjacency indices, walk and

path counts, connectivity indices and topological charge indices [203]. Other graph-theoretical

descriptors were also calculated but are not depicted here because their lack of effectiveness. All

indices were calculated with Dragon software version 5.4 [43] and their values for every com-

pound included in this study (training, test, and virtual screening set) are shown in the Supple-

mentary Material.

Other complementary models (not shown here) were also applied to find molecules show-

ing drug-like profiles. Among the properties considered in these models stand water solubility,

toxicity, oral absorption, etc. . . (details on these additional models can be disclosed under re-

quest). Dragon software version 5.4 and in-house software were used to obtain the models.

Modeling techniques

Linear discriminant analysis (LDA) was used to distinguish between the active and inactive

compounds. It is a statistical method to find the best linear combination of variables (TIs in

our case) that better distinguish between two or more categories or objects (in our case active

or inactive as Akt or β-catenin inhibition). We start from a training set of compounds in which

everyone is classified either as active or inactive. LDA was then applied to these two groups to

get the discriminant function (DF) that better separate the two categories. The software used

was Statistica 9.0 [204].

TIs were used as the independent variables and the two groups were balanced so that both

(active and inactive) show the same weight, regardless of the number of compounds in

each one.

The discriminant capability was assessed as the percentage of correct classifications in each

set of compounds. The classification criterion was based on the minimumMahalanobis dis-

tance (distance of each case to the mean of all the cases in a category) [205] and the quality of

the discrimination was evaluated using the Wilks’ parameter, λ [206], which was obtained by

multivariate analysis of variance that tests the equality of group means for the variable in the

discriminant model. The shorter the Wilks’ parameter value, the smaller the overlap of the ac-

tive and inactive (λ = 0 would mean a perfect separation between the groups).

The descriptors’ selection was carried out according to the value of the Fisher–Snedecor pa-

rameter (F) [207], which establishes the relevance of candidate variables. The descriptors input

to compute the linear classification function are chosen in a stepwise-manner: at each step, the

variable making the largest contribution to the division of the groups is introduced into the dis-

criminant equation (or the variable that makes the smallest contribution is removed).

The validation of the selected function was done using an external test set. Approximately

20% of the data set was randomly selected as test set and therefore they were not used to create

the model.

Pharmacological activity distribution diagrams

A pharmacological distribution diagram (PDD) is a graphical representation that provides a di-

rect way of visualizing the zones of minimum overlap between active and inactive compounds,

as well as the region in which the probability of finding active compounds is maximum [208].
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From a different perspective, a PDD is a frequency distribution diagram of dependent vari-

ables in which the ordinate represents the expectancy (probability of activity) and the abscissa

the DF values in the range. For an arbitrary range of values of a given function, the expectancy

of activity can be defined as Ea = a/(i +1), where a is the number of active compounds in the

range divided by the total number of active compounds and i is the number of inactive com-

pounds in the interval divided by the total number of inactive compounds. The expectancy of

inactivity is defined likewise as Ei = i/(a+1). By means of these diagrams, it is easy to visualize

the intervals in which there is a maximum probability to find new active compounds as well as

the minimum probability to find inactive compounds.

Topological virtual screening

Once the models are set up, it is possible to carry out a virtual screening in databases to select

novel Akt and β-catenin inhibitors. Two commercial SPECS databases were screened, the first

was made of some one thousand natural compounds and the second containing about 200 000

drug-like small molecules [209].

This screening led to the identification of 6 compounds showing potential chemotherapeu-

tic activity as Akt and β-catenin inhibitors. Later on, the selected molecules underwent in vitro

tests to confirm the expected activity.

In Vitro Assays

Reagents and antibodies. Chemicals compounds with CAS n° 256378-54-8 (Inhibitor

n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3), 689769-86-6 (Inhibitor n°4),

15940-61-1 (Inhibitor n°5) and 431925–096 (Inhibitor n°6) were obtained from Specs (Zoeter-

meeer, The Netherlands) and dissolved in DMSO. LY294002 and AT7519 were supplied by

Deltaclon (Madrid, Spain) a Selleckchem supplier. Akt inhibitor IV and FH535 were obtained

from Sigma-Aldrich (Madrid, Spain). Recombinant HumanWnt-3a (R&D Systems, Minneap-

olis, USA) was reconstituted at 200 μg/mL in sterile PBS containing 0.1% bovine serum

albumin. The polyclonal antibodies against phospho-mTOR, mTOR, phospho-Akt-ser473,

Akt and anti-rabbit IgG were from Cell Signaling Technology (Danvers, MA, USA) and anti-

β-catenin was obtained from Santa Cruz Biotechnology (Bergheimer, Heidelberg, Germany).

Monoclonal antibody against cyclin D1 was from EMDMillipore (Darmstadt, Germany) and

anti-β-tubulin and anti-mouse IgG were from Sigma (Madrid, Spain). Anti-rabbit IgG conju-

gated to Alexa488 was from Invitrogen (Life Technologies, Alcobendas, Spain).

Cell cultures. PC3 cell line derived fron human prostate adenocarcinoma was obtained

from ATCC (CRL-1435, Rockville, MD, USA) and maintained in RPMI medium containing

10% foetal bovine serum and 1% penicillin/streptomycin. Cells were used between passages 10

and 20 and seeded at a density of 20,000 cells/cm2. Sixteen hours post-seeding, medium was

changed to serum free medium and treatments were performed 24 hours later. HT-29 cell line

derived from a human colon adenocarcinoma (ATCC, Rockville, MD), was used between pas-

sages 15 and 25 and cultured in DMEM glucose concentration 4.5 g/L supplemented with 20%

fetal bovine serum, penicillin (100 U/mL) and streptomycin sulfate (100 μg/mL) in a humidi-

fied 5% CO2 atmosphere at 37 °C. According to the solubility, the compounds assayed were

dissolved in a maximum DMSO concentration of 0.5%.

Cytotoxicity assay. The effect of compounds on cell viability was evaluated with the 3-

[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay [210]. After 24 h

seeding of HT-29 cells, the medium was replaced with fresh DMEM + 0.5% FBS. Two hours

later, cells were exposed to compounds at the concentrations (1, 10, or 100 μM) in a 96-well

microplate at 37 °C for 24 h. Same protocol was applied to PC-3 cells but cells were seeded in
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12-well plates and mantained 24 hours in a serum-free medium prior the treatments (20, 50,

100, 150 and 200 μM).

The medium was then removed and 100 μL per well of a 0.5 mg/mL solution of MTT was

added. The resulting solution was incubated at 37 °C until blue deposits were visible and then,

this colored metabolite was dissolved in dimethyl sulfoxide (DMSO). Absorbance was mea-

sured at 490 nm with a Labsystems Multiskan EX plate reader (Helsinki, Finland). The results

were expressed in absolute absorbance readings; a decrease in absorbance indicated a reduction

in cell viability. The percentage of cell viability was determined as follows:

Cell viability ð%Þ ¼
Optical density of treated cells

Optical density of non � treated cells
� 100

The experiments were performed a minimum of three times with three replicates

per concentration.

Western blot. After 1, 4 or 48 hours of treatments according to the experiments, cells were

lysed in ice-cold lysis buffer (50 mM Tris pH 7.4, 0.8 M NaCl, 5 mMMgCl2, 0.1% Triton X-

100, 1 mM PMSF, 10 μg/mL soybean trypsin inhibitor, 1 μg/mL aprotinin, and 5 μg/mL leu-

peptin), and cleared by microcentrifugation. Protein concentration was determined by the

Bradford method and equivalent protein amounts of each sample were loaded onto SDS-PAGE

gels and transferred to PVDF membrane. Immunoblot analysis was performed followed by en-

hanced chemoluminescence detection as previously described [211–212].

Confocal microscopy. Cells seeded onto 1.5 mm glass coverslips were treated for 4 hours

with 50 μM of the some of the selected potential chemotherapy agents: Inhibitors n°1-6. Then

cells were fixed in 4% paraformaldehyde, permeabilized with 0.5% Triton X-100 and incubated

with β-catenin antibody overnight at 4˚C. The cells were washed and incubated first with sec-

ondary antibody conjugated to Alexa488 and then with 40-6-Diamidino-2-phenylindole

(DAPI) as a nuclear counterstain. Cells were visualized in a Leica TCS SP5 laser-scanning con-

focal microscope with LAS-AF imaging software, using a 63X oil objective.

Statistical analysis. Statistical analysis was performed with a one-way analysis of variance

(ANOVA) and Dunnett’s t test. The results are presented as the mean ± SEM. GraphPad Prism

4.0 software (GraphPad Software Inc., San Diego, CA, USA) was used for all calculations. Data

related with PC3 cell lines are presented as the mean ± S.D. of the number of

experiments indicated.

Results and Discussion

Topological Models

Model #1: Akt inhibition for natural compounds. The discriminant function (DF1) in-

cludes three variables, as shown below:

DF
1
¼ �2:046970� 1:007164 � nR09� 0:000005 �Wapþ 2:276221 � EEig11r

The parameters accounting for the significance of this equation were:

N ¼ 153; F ¼ 28:628; l ¼ 0:6344; p < 0:00002

where N is the number of data compounds; F, Fisher–Snedecor parameter; λ, Wilks’ lambda; p,

statistical significance; nR09, number of 9-membered rings; Wap, all path Wiener index;

EEig11r, eigenvalue 11 from edge adj. matrix weighted by resonance integrals.

According to DF1, a compound is classified as Akt natural inhibitor if DF1 takes values from

0 to 4; on the other hand, a compound will be labelled as inactive when DF1 takes values
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between -0.5 and -6 (see Fig 3). Finally, molecules scoring DF1 > 4 or DF1 < -6 will be non-

classified by this model. By applying this criterion to the training set composed by 153 com-

pounds, 26 out of 30 natural Akt inhibitors were correctly classified (81% accuracy) while 101

out of 123 inactive compounds were also matched (82% accuracy), as can be seen in Table 1.

The best way to evaluate the quality of any DF is to apply it to an external validation group

(test set). In our case, this group was made up of 39 compounds (8 active and 31 inactive as Akt

inhibitors) which were not included in the training set. Test set was randomly selected with a

percentage of 20 of all data set. The model enabled a correct classification of 63% of active

group (5 out of 8 compounds) and 87% of the inactive set (27 out of 31 compounds), as out-

lined in Table 1.

Furthermore, although the strict DF application leads to the loss of some of the active com-

pounds (37%), the important point is that 87% of the inactive compounds were correctly classi-

fied, so that the risk of including “false active” is minimized, which means that our model has a

high specificity in discovering new Akt natural inhibitors.

Fig 3. Pharmacological distribution diagram for natural Akt inhibitors obtained using the DF1 (the
black colour represents Akt inhibitors and the white colour, the compounds without Akt inhibition
activity).

doi:10.1371/journal.pone.0124244.g003

Table 1. Classification matrix obtained through the selected DF1 for training and test set.

PERCENT-CORRECT CLASSIFICATION (%) COMPOUNDS

Classified as active Classified as inactive Non-classified

TRAINING SET

Active group 81 26 4 _

Inactive group 82 22 101 _

TEST SET

Active group 63 5 3 _

Inactive group 87 3 27 1

doi:10.1371/journal.pone.0124244.t001
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Model #2: Akt inhibition for comercial compounds. A new discriminant function (DF2)

was used for Akt inhibition by commercial compounds. This function includes five variables as

follows:

DF
2
¼ �13:835þ 0:073 � TðO . . .BrÞ � 0:002 � SRW08þ 0:137 �MPC04þ 6:256

� piPC02� 1:712 � piPC05

Statistical data and parameters accounting for the significance of this equation were:

N ¼ 647; F ¼ 5:950; l ¼ 0:956; p < 0:00002

where N is the number of data compounds; F, Fisher–Snedecor parameter; λ, Wilks’ lambda; p,

statistical significance; T(O. . .Br),topological distance between oxygen and bromide; SRW08,

self-returning walk count of order 08; MPC04, molecular path count of order 04; piPC02, mo-

lecular multiple path count of order 02; piPC05, molecular multiple path count of order 05.

According to DF2, a compound is classified as Akt inhibitor if its DF values range from 1.5

to 7.5. On the other hand, a compound will be labeled as inactive if DF2 stands between 1.5 and

-6 (see Fig 4). Finally, molecules scoring DF2> 7.5 or DF2 < -6 are considered as non-classified

by this model. By applying the model criterion to the training set composed by 647 com-

pounds, 16 out of 20 (80%) were correctly classified as Akt inhibitors, while 452 out of 627 in-

active compounds were also well classified (72% accuracy), as can be seen in Table 2.

An external validation of DF2 was performed over 206 compounds (6 active and 200 inac-

tive molecules as Akt inhibitors) not included in the training set. Twenty-percent of all data

were used for test set. DF2 was able to classify correctly 83% of the active group (5 out of 6 com-

pounds) and 81% of inactive (161 out of 200 compounds) as illustrated in Table 2.

Therefore, application of DF leads to discard just 17% of the active compounds and 19% of

inactive compounds. In other words, this model has a high specificity and sensitivity.

Model #3: β-catenin inhibition for natural compounds. To select β-catenin natural in-

hibitors another discriminant function was developed (DF3). This function includes five

Fig 4. Pharmacological distribution diagram for Akt inhibitors obtained using the DF2 (the black

colour represents Akt inhibitors and thewhite colour, the compounds without Akt inhibition activity).

doi:10.1371/journal.pone.0124244.g004
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variables, as shown below:

DF
3
¼ �12:179� 0:427 � Dz þ 1:174 � S2K þ 6:219 � PCRþ 1:634 � X2sol þ 79:748

� JGI4

Statistical data and parameters accounting for the significance of this equation were as fol-

lows:

N ¼ 111; F ¼ 7:656; l ¼ 0:733; p < 0:00002

where N is the number of data compounds; F, Fisher–Snedecor parameter; λ, Wilks’ lambda; p,

statistical significance; Dz, Pogliani index; S2K, 2-path Kier alpha-modified shape index; PCR,

ratio of multiple path count over path count; X2sol, solvation connectivity index chi-2; JGI4,

mean topological charge index of order 4.

According to DF3, a compound is classified as β-catenin natural inhibitor if it takes values

between 0 and 5. On the other hand, a compound will be labeled as inactive when DF3 adopt

values from 0 to -5. Finally, molecules scoring DF3 > 5 or DF3< -5 will be non-classified by

this model (see Fig 5). Applying the above criteria to a training set composed by 111 com-

pounds, 31 out of 40 natural β-catenin inhibitors were correctly classified for the model (78%

correctly classified) while 52 out of 71 inactive compounds were also well classified (73% accu-

racy), as can be seen in Table 3.

The validation of the DF was performed on an external group (test set). The group was

made up of 41 compounds (24 active and 17 inactive as β-catenin inhibitors) not previously in-

cluded in the training set. The test set was randomly selected as 20% of all data set. In this case,

the model was able to correctly classify 67% of active group (16 out of 24 compounds) and 88%

of the inactive one (15 out of 17 compounds) as can be seen in Table 3.

As in previous cases, the strict DF application results in the loss of 33% of the active com-

pounds but 88% of the inactive natural compounds were correctly classified, thereby minimiz-

ing the risk of including “false active” compounds. That confirms our model’s high specificity

to predict β-catenin natural inhibitors.

Model #4: β-catenin inhibition by comercial compounds. A discriminant function

modeling β-catenin inhibition by commercial molecules was finally calculated (DF4). This

equation includes four variables, as shown below:

DF
4
¼ �0:381þ 0:254 � SCBO� 0:292 � nN � 0:075 � ZM1þ 1:159 � GGI4

Statistical data and parameters accounting for the significance of this equation were as fol-

lows:

N ¼ 837; F ¼ 15:498; l ¼ 0:931; p < 0:00002

Table 2. Classification matrix obtained through the selected DF2 for training and test set.

PERCENT-CORRECT CLASSIFICATION (%) COMPOUNDS

Classified as active Classified as inactive Non-classified

TRAINING SET

Active group 80 16 4 _

Inactive group 72 173 452 2

TEST SET

Active group 83 5 1 _

Inactive group 81 38 161 1

doi:10.1371/journal.pone.0124244.t002
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where N is the number of data compounds; F, Fisher–Snedecor parameter; λ, Wilks’ lambda; p,

statistical significance; SCBO, sum of conventional bond orders (H-depleted); nN, number of

Nitrogen atoms; ZM1, First Zagreb index M1; GGI4, topological charge index of order 4.

A compound is classified as β-catenin inhibitor if DF4 takes values from 0 to 4.5, whereas a

compound will be labeled as inactive if DF4 adopt values between 0 and -4. Finally, molecules

scoring DF4 > 4.5 or DF4 < -4 will be non-classified (see Fig 6). For the entire set of 840 com-

pounds, 48 out of 73 β-catenin inhibitors (66%) were correctly classified by the model, whilst

570 out of 764 inactive compounds were also well classified (75% accuracy), as illustrated in

Table 4.

In this case, the external validation set included 206 compounds (16 active and 190 inactive).

Test set was a random selection of 20% of all data set. The model was able to correctly classify

88% of the active group (14 out of 16 compounds) and 74% of the inactive one (141 out of 190

compounds) as shown in Table 4.

According to this results, we can conclude that this model presents a higher sensitivity

(88%) but a less satisfactory specificity since only 74% of the inactive compounds were

Fig 5. Pharmacological distribution diagram for natural β-catenin inhibitors obtained using the DF3

(the black color represents natural β-catenin inhibitors and thewhite color, the compounds without β-
catenin inhibition activity).

doi:10.1371/journal.pone.0124244.g005

Table 3. Classification matrix obtained through the selected DF3 for training and test set.

PERCENT-CORRECT CLASSIFICATION (%) COMPOUNDS

Classified as active Classified as inactive Non-classified

TRAINING SET

Active group 78 31 9 _

Inactive group 73 19 52 _

TEST SET

Active group 67 16 6 2

Inactive group 88 2 15 _

doi:10.1371/journal.pone.0124244.t003
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recorded, missing the remaining 26%. This could lead to select “false active” compounds, but it

can be avoided by applying the four models stepwise.

Topological virtual screening

Based on the four discriminant models described (DF1-4), a virtual screening was carried out on

two commercial chemical libraries from SPECS. Table 5 shows the compounds selected (natu-

rals and synthetics). DF1 and DF3 were applied only to the natural compounds.

In vitro assays

Cytotoxicity assay: HT-29 and PC3 cell line. HT-29 cells were exposed to the selected

Akt and β-catenin potential inhibitors selected by the DF1-4 models, in order to determine cell

viability. As shown in Table 6, several among the selected compounds were better or similar to

the reference β-catenin inhibitor (FH535), Akt inhibitor (LY294002) and multi-CDK inhibitor

(AT7519). For instance, Inhibitor n°4 at 100 μM is able to kill 48% of HT-29 cells. This

Fig 6. Pharmacological distribution diagram for β-catenin inhibitors obtained using the DF4 (the black

color represents β-catenin inhibitors and thewhite color, the compounds without β-catenin inhibition
activity).

doi:10.1371/journal.pone.0124244.g006

Table 4. Classification matrix obtained through the selected DF4 for training and test set.

PERCENT-CORRECT CLASSIFICATION (%) COMPOUNDS

Classified as active Classified as inactive Non-classified

TRAINING SET

Active group 66 48 25 _

Inactive group 75 192 570 2

TEST SET

Active group 88 14 2 _

Inactive group 74 49 141 _

doi:10.1371/journal.pone.0124244.t004
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compared with FH535, LY294002 and AT7519 at 100 μM inhibition rates represent 38%, 51%

and 36%, respectively. It’s quite a promising result in colorectal cancer cells inhibition.

It was investigated whether the selected cancer chemotherapeutics agents had any effect on

the proliferation of human prostate cancer cells. PC-3 cells were treated with different doses of

the Inhibitors n°1-6 for 48 h and cell viability was monitored by MTT. Results show that Inhib-

itor n°4 totally blocked the viability of prostate cancer cells (Table 7). Inhibitors n°1 and n°6

also decreased cell viability although in a lesser extent; Inhibitor n°3 exerted a slight decrease

whereas compounds Inhibitor n°2 and n°5 didn’t have any effect (Table 7).

Akt inhibition. Akt activation involves the phosphorylation of two residues: threonine

308 (Thr308) in the activation loop and serine 473 (Ser473) in the C-terminal hydrophobic

motif. The phosphorylation of both of these regulatory sites leads to complete activation of the

enzyme. To evaluate the inhibitory ability of the selected compounds against Akt we measured

the phosphorylation of the enzyme in serine 347. As shown in Fig 7, Inhibitor n°4 at 1 hour of

treatment, induced a decrease in Akt phosphorylation at Ser473. This effect may be compared

with the well-known Akt inhibitor IV, a cell-permeable and reversible benzimidazole com-

pound that inhibits Akt phosphorylation/activation. When cells were incubated with the com-

pounds for 48 hours, this effect was even greater and was also observed for Inhibitors n°3 and

n°6 (Fig 7).

To assess the impact of the compounds on downstream molecules of the Akt signaling path-

way, we used Western blot analysis to observe phosphorylation status and total protein expres-

sion of the mammalian target of rapamycin (mTOR), a key effector downstream of Akt. As

observed in Fig 7, all the agents tested except Inhibitor n°5, decreased mTOR phosphorylation,

being the Inhibitors n°2, n°4 and n°6 the most effective at 1 hour and Inhibitors n°1, n°2 and

n°4 at 48 hours.

These results indicate that all the compounds selected, except Inhibitor n°5, were able to in-

hibit Akt signaling pathway although with different efficacy.

β-Catenin inhibition. To investigate whether the compounds also inhibited β-catenin

pathway we measured β-catenin levels as well as its downstream well-characterized target gene

cyclin D1.

In the basal situation, much of the cellular β-catenin is bound to E-cadherin on the cell

membrane. Cytosolic β-catenin maintained in an inactive state through its interaction with a

large protein complex with several proteins including the GSK-3β. In this situation β-catenin is

phosphorylated mainly by GSK-3β and labelled for polyubiquitination and degradation into

Table 5. Values of DF and probability of activity as Akt and β-catenin inhibitors of the selected anti-cancer agents after carried on a virtual screen-

ing of SPECS natural and screening compounds databases.

COMPOUNDS CAS registry n° Akt natural inh
model

Akt inh. model β-catenin natural
inh. model

β-catenin inh.
model

DF1 P. (Activ.) DF2 P. (Activ.) DF3 P. (Activ.) DF4 P. (Activ.)

Inhibitor n°1* 256378-54-8 1.68 0.843 1.67 0.699 1.75 0.851 1.55 0.82

Inhibitor n°2 663203-38-1 3.97 0.67 1.31 0.781

Inhibitor n°3 247079-73-8 2.52 0.769 1.24 0.769

Inhibitor n°4 689769-86-6 3.02 0.921 0.36 0.582

Inhibitor n°5 15940-61-1 2.24 0.62 0.77 0.679

Inhibitor n°6 431925-09-6 4.28 0.914 0.19 0.539

DF: discriminant function; P.(Activ.): probability of being classified as active by the model.

*Natural compound.

doi:10.1371/journal.pone.0124244.t005
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proteasome. Under these conditions, β-catenin targeted genes are repressed. When the path-

way is activated, GSK-3β is inhibited leading to the stabilization and accumulation of cyto-

plasmic β-catenin, which then enters the nucleus, and induces the expression of its target

genes. One of the better characterized β-catenin-regulated gene is Cyclin D1 which promote

cell cycle progression. To test the effect of selected compounds on the β-catenin pathway levels

of β-catenin and Cyclin D1 were determined by Western blot. Fig 8 shows that the Inhibitors

n°4 and n°6 were the most efficacious in inhibiting the expression of Cyclin D1, although In-

hibitors n°1, n°2 and n°3 also exhibited a weak repression.

Table 6. Effect of selected anti-cancer agents on the HT-29 cell viability.

Group Concentration (μM) A ± SEM Cell viability (%)

Blank 0 0.88 ± 0.02 -

Vehicule (DMSO) 1 0.86 ± 0.01 97

10 0.86 ± 0.07 98

100 0.80 ± 0.10 91

Inhibitor N°1 1 0.84 ± 0.10 95

10 0.77 ± 0.07 87

100 0.86 ± 0.06 98

1 0.87 ± 0.13 99

Inhibitor N°2 10 0.79 ± 0.11 89

100 0.82 ± 0.11 93

Inhibitor N°3 1 0.84 ± 0.10 95

10 0.78 ± 0.05 88

100 0.63 ±0.08 72

Inhibitor N°4 1 0.77 ± 0.05 87

10 0.75 ± 0.08 85

100 0.46 ± 0.06** 52**

Inhibitor N°5 1 0.85 ± 0.12 96

10 0.78 ± 0.09 89

100 0.71 ± 0.07 80

FH535 1 0.80 ±0.02 91

10 0.72 ± 0.06 81

100 0.55 ± 0.08* 62*

LY294002 1 0.90 ± 0.03 102

10 0.71 ± 0.04 81

100 0.43 ± 0.05*** 49***

AT7519 1 0.59 ± 0.05 67

10 0.59 ± 0.02 67

100 0.56 ± 0.01 64

Values were expressed in function of the blank (untreated cells) and represent mean absorbance ± SEM,

and are representative of at least three independent experiments per group. Differentiation with the blank

group (untreated cells) were determined by mean of a one-way analysis of variance (ANOVA) followed by

Dunnett's multiple comparisons test Dunnett’s t test.

No significant difference with the blank group (P>0.05);

*Significant difference with the blank group (P values from 0.01 to 0.05);

**Very significant (P values from 0.001 to 0.01);

***Extremely significant (P values from 0.0001 to 0.001) n = 3; Dunnett’s t test).

doi:10.1371/journal.pone.0124244.t006
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To further investigate the inhibitor role of the selected compounds, PC-3 cells were stimu-

lated with the well-stablished β-catenin/Cyclin D1 pathway activator Wnt3a (Wnt). When

cells were stimulated with Wnt, β-catenin was recruited by membrane adherens junctions and

accumulated in the nucleus (Fig 9). When cells were pre-treated with the selected compounds

β-catenin redistribution was inhibited. This effect was well apreciated in Inhibitors n°2, n°4

and n°6 (Fig 9). Moreover, levels of β-catenin in Inhibitor n°6-treated cells almost desappeared

(Fig 9).

As seen in the Figs 8 and 9, the selected cancer chemotherapeutic agents were able to impact

both the subcellular redistribution and the activity of β-catenin as they were able to inhibit its

nuclear-cytoplasmic shuttling and its recruitment at plasma membrane as well as the expres-

sion of its target gene CyclinD1. The Inhibitors n°2, n°4 and n°6 were the most effective.

Notably, the compounds that inhibited both Akt and β-catenin had the greatest impact on

cell viability supporting the idea that dual inhibitor of the Akt/mTOR pathway and β-catenin

may result in a potent anti-proliferative effect against human prostate cancer PC-3 cells, al-

though the putative impact of the compounds in other signaling pathways is not ruled out.

Therefore, after applying several models developed by Molecular Topology approach, six

compounds has been selected as potential cancer chemotherapeutic agents. After in vitro study

whether they inhibit Akt, mTOR, β-catenin and/or Cyclin D1 at different times of incubation;

we can affirm that five out of these six compounds (see Fig 10) inhibit at least one of the studied

Table 7. Effect of selected anti-cancer agents on the PC-3 cell viability.

Group Concentration (μM) A ± SEM Cell viability (%)

Blank 0 0.4 ± 0.02

Vehicule (DMSO) 10 0.4 ± 0.03 100

Inhibitor N°1 50 0.35 ± 0.04 88

100 0.24± 0.03 61**

200 0.16 ± 0.03 42***

Inhibitor N°2 50 0.37 ± 0.02 101

100 0.37± 0.02 101

200 0.34± 0.02 92

Inhibitor N°3 50 0.32± 0.02 83**

100 0.32± 0.03 83*

200 0.28± 0.02 72**

Inhibitor N°4 50 0.22± 0.01 60***

100 0.16± 0.01 44**

200 0.01± 0.001 3***

Inhibitor N°5 50 0.34± 0.001 101

100 0.36± 0.001 106

200 0.36± 0.005 107

Inhibitor N°6 50 0.34± 0.06 88

100 0.32± 0.05 83*

200 0.27± 0.06 69*

Values were expressed in function of the vehicle-treated cells and represent mean absorbance ± SD, and are representative of at least two experiments

performed in duplicate. Differentiation with the blank group (untreated cells) were determined by mean of a Student ‘s T test. No significant difference with

the blank group (P>0.05)

*Significant difference with the blank group (P values from 0.01 to 0.05)

**Very significant (P values from 0.001 to 0.01)

***Extremely significant (P values from 0.0001 to 0.001) n = 4)

doi:10.1371/journal.pone.0124244.t007
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targets. We can also state that these five compounds affect PC3 cell viability with different po-

tency. And, we can remark also that Inhibitor n°4 also reduce cell viability on HT-29 cell line.

Finally, we can confirm that this five selected compounds could be used as cancer agents in-

teracting with Akt/mTOR and Wnt/β-catenin pathways in colorectal and prostate human can-

cer cell lines.

Although it is evident that complex properties, such as inhibition of Akt or β-catenin, can-

not be discussed in such simple “structural” terms, thanks to the QSAR study results, some in-

teresting consequences can be pointed out.

Thus, in equations DF1 to DF4, there are indices more or less explicitly related to the exis-

tence of high conjugation (as for instance EEig11r, piPC02 or SCBO). Other descriptors, such

as nR09, evaluate the presence of condensed rings. It is noteworthy that most selected com-

pounds show condensed ring with large conjugation due to aromatic rings such as benzene,

furan or thiophene. In this regard, it is significant that the only molecule not showing con-

densed rings (Inhibitor n°5) is inactive despite having two highly aromatic thiophene rings.

Fig 7. Effect of of selected anti-cancer agents on Akt/mTOR signaling pathway. PC-3 cells were treated with vehicle (C) or 50 μM of the selected
compounds and proteins were detected byWestern blot. Upper panel, a representative image of three different experiments. Lower panel, densitometric
values represented as the mean ± S.D. of the three experiments.

doi:10.1371/journal.pone.0124244.g007
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Fig 8. Effect of selected anti-cancer agents on β-Catenin/CyclinD1 signaling pathway. PC-3 cells were treated with vehicle (C) or 50 μM of the selected
compounds and proteins were detected byWestern blot. Upper panel, a representative image of three different experiments. Lower panel, densitometric
values represented as the mean ± S.D. of the three experiments.

doi:10.1371/journal.pone.0124244.g008

Fig 9. Effect of selected anti-cancer agents on β-catenin cellular distribution in PC-3 cells. PC-3 cells
were seeded on glass coverslips and pre-treated for 30 min with 50 μM of the inhibitors and then co-treated
with 40 ng/ml Wnt3 (Wnt) for 4 h. Cells were stained with polyclonal antibody anti-beta-catenin followed by
Alexa-Fluor488-conjugated anti rabbit IgG as described in methods. Confocal image shown is representative
of two experiments.

doi:10.1371/journal.pone.0124244.g009
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Furthermore, the two molecules having six-five member condensed rings are by far the

most potent ones. Indeed Inhibitor n°4 exhibits the dihydro-indolone moiety and Inhibitor n°6

the thiazolopirimidinone ring. The next in the ranking of potency is Inhibitor n°2, which has

two condensed six-member rings. Interestingly, the two less active compounds (Inhibitors n°1

and n°3) contain three condensed rings, namely the amino-pyrano-chromenone moiety, what

points toward a maximum of two condensed rings for optimal activity.

It is also interesting to note that all selected molecules include one chiral carbon, which sug-

gests that the activity of the enantiomers might not be as significant as predicted by the topo-

logical models, since these models do not take into account the chirality.

Conclusions

Molecular Topology has been used to select novel potential anti-cancer compounds with pre-

vention or therapeutic activity. The in vitro evaluation of the selected compounds, CAS n°

256378-54-8 (Inhibitor n°1), 663203-38-1 (Inhibitor n°2), 247079-73-8 (Inhibitor n°3),

689769-86-6 (Inhibitor n°4), 15940-61-1 (Inhibitor n°5) and 431925–096 (Inhibitor n°6),

Fig 10. Cancer chemotherapeutic agents selected by Molecular Topology.

doi:10.1371/journal.pone.0124244.g010
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demonstrated significant activity as Akt and β-catenin inhibitors for all compounds except for

Inhibitor n°5. However, particularly Inhibitors n°4 and n°6, can be considered as novel chemo-

therapy hits by dually inhibit Akt and β-catenin. Moreover, they also have demonstrated activi-

ty over prostate cancer cell line (Inhibitors n°4 and n°6) and on a human colorectal cancer cell

line (Inhibitor n°4).

Topological Virtual Screening upon four discriminant models (DF1-4) resulted in an overall

accuracy of five out of six compounds which showed the predicted activity. Accordingly, it can

be concluded that Molecular Topology is a reliable and useful tool in the search and discovery

of novel chemotherapeutic agents acting on Akt and beta-catenin pathways. The presented ex-

haustive performance opens new horizons for MT as a time-cost effective resource. Finally, it

must be point out that the next step could be perform rational drug design based on the struc-

tures and then, carry on in vivo test to confirm their effectiveness as potential cancer

chemotherapeutic agents.
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