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Novel candidate genes important for
asthma and hypertension comorbidity
revealed from associative gene networks
Olga V. Saik1*, Pavel S. Demenkov1, Timofey V. Ivanisenko1, Elena Yu Bragina2, Maxim B. Freidin2,
Irina A. Goncharova2, Victor E. Dosenko3, Olga I. Zolotareva4, Ralf Hofestaedt5, Inna N. Lavrik6,
Evgeny I. Rogaev1,7,8,9 and Vladimir A. Ivanisenko1

From Belyaev Conference
Novosibirsk, Russia. 07-10 August 2017

Abstract

Background: Hypertension and bronchial asthma are a major issue for people’s health. As of 2014, approximately
one billion adults, or ~ 22% of the world population, have had hypertension. As of 2011, 235–330 million people
globally have been affected by asthma and approximately 250,000–345,000 people have died each year from the
disease. The development of the effective treatment therapies against these diseases is complicated by their
comorbidity features. This is often a major problem in diagnosis and their treatment. Hence, in this study the
bioinformatical methodology for the analysis of the comorbidity of these two diseases have been developed. As
such, the search for candidate genes related to the comorbid conditions of asthma and hypertension can help in
elucidating the molecular mechanisms underlying the comorbid condition of these two diseases, and can also be
useful for genotyping and identifying new drug targets.

Results: Using ANDSystem, the reconstruction and analysis of gene networks associated with asthma and hypertension
was carried out. The gene network of asthma included 755 genes/proteins and 62,603 interactions, while the gene
network of hypertension - 713 genes/proteins and 45,479 interactions. Two hundred and five genes/proteins and 9638
interactions were shared between asthma and hypertension. An approach for ranking genes implicated in the comorbid
condition of two diseases was proposed. The approach is based on nine criteria for ranking genes by their
importance, including standard methods of gene prioritization (Endeavor, ToppGene) as well as original criteria
that take into account the characteristics of an associative gene network and the presence of known polymorphisms in
the analysed genes. According to the proposed approach, the genes IL10, TLR4, and CAT had the highest priority
in the development of comorbidity of these two diseases. Additionally, it was revealed that the list of top genes
is enriched with apoptotic genes and genes involved in biological processes related to the functioning of central
nervous system.
(Continued on next page)
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Conclusions: The application of methods of reconstruction and analysis of gene networks is a productive tool for
studying the molecular mechanisms of comorbid conditions. The method put forth to rank genes by their
importance to the comorbid condition of asthma and hypertension was employed that resulted in prediction of
10 genes, playing the key role in the development of the comorbid condition. The results can be utilised to plan
experiments for identification of novel candidate genes along with searching for novel pharmacological targets.

Keywords: Comorbidity, Asthma, Hypertension, Apoptosis, Central nervous system, ANDSystem, Associative gene
networks, Gene prioritization

Background

Asthma is a chronic inflammatory disease of the respira-

tory tract, the main characteristics of which are hyper-

sensitivity of the respiratory tract to various stimuli and

reversible obstruction of airflow. The role of inflamma-

tion in the aetiology and pathogenesis of arterial hyper-

tension is not so obvious upon first blush, but the

significance of low-grade chronic inflammation in the

development of metabolic syndrome, atherosclerosis,

and obesity has been established in many studies [1–6].

It is known that the processes of coagulation and anti-

coagulation, the fibrinolytic system, and thrombocytes

are integral to asthma pathophysiology [7]. Therefore, in

a number of studies, it was shown that asthma is associ-

ated with an increase in the incidence of cardiovascular

diseases [8, 9]. As a consequence, the fact that the simul-

taneous diagnosis of asthma and arterial hypertension,

which is termed comorbidity, in a high proportion of

cases, is not surprising. According to Su et al. [10], the

prevalence of hypertension in asthma patients (OR 1.66

[1.47, 1.88]; P < 0.00001) is lower only compared to car-

diovascular, cerebrovascular, and obesity comorbidities.

Apparently, this is not a coincidence as classic asthma

mechanisms turned out to be a part of key processes of

arterial hypertension initiation. A central example might

be the discovery of the role of arachidonic acid-

leukotriene B4 production in spontaneously hypertensive

rats [11] or the significance of Th17 and IL17 in arterial

hypertension [12]. Therapeutic treatment of allergic in-

flammation leads to improvement in the control of ar-

terial pressure [13]. The importance of STAT3

transcription factors have also been uncovered - they

participate in signal transduction with multiple cytokines

and are active in allergic inflammation [14, 15] and vas-

cular remodelling [16]. Based on these findings, it is pos-

sible to deduce that disturbance of the balance between

pro-inflammatory and anti-inflammatory factors within

the organism creates an optimal condition for imple-

mentation of the inherent propensity to both asthma

and arterial hypertension. Besides the critical role of im-

mune reactions and inflammation control in the patho-

genesis of asthma and hypertension, other mechanisms

are expected to be relevant in the comorbidity of these

diseases. For example, β-adrenoblockers and ACE inhibi-

tors are widely used to treat hypertension, but for a long

time, they were contraindicated for patients with asthma

because of the possibility of bronchoconstriction. In a

large cohort of patients, it was demonstrated that adverse

respiratory reactions to beta-blockers in the case of

asthma partially depends on cardioselectivity, dose, and

exposure duration [17]. Polymorphisms in b-adrenergic

receptor genes are associated with the risk of hypertension

and bronchial asthma [18–20]. It is assumed that muta-

tions in the SLC26A4 gene can impact the pathogenesis of

bronchial asthma and hypertension and, as such, the co-

morbidity of these diseases [21–24]. The SLC26A4 gene

codes the pendrin protein with Cl-/HCO3- exchanger ac-

tivity [25]. The loss of function of SLC26A4 in mice pre-

vents development of bronchial asthma and hypertension

symptoms; there is a possibility that mutations in the

SLC26A4 gene among humans is a factor in the absence

of these diseases [26].

Nowadays, much data has been accumulated on these

diseases, allowing for the building of associative gene

networks that describe the potential molecular mecha-

nisms of interactions between the diseases. There are a

number of resources in the world that allow reconstruc-

tion of such associative gene networks, for example,

MetaCore [27], Ingenuity [28] and ANDSystem [29, 30].

In particular, using the developed by us ANDSystem

tool, the following studies were performed: analysis of

proteomic data on Helicobacter pylori infection [31];

analysis of the urine proteomic profile in control and

under the influence of space flight factors [32]; analysis

of tissue-specific gene knockout effect and the search for

potential drug targets [33]; analysis of hepatitis C virus

life cycle gene networks [34]; analysis of comorbid rela-

tions of bronchial asthma and tuberculosis [35], pre-

eclampsia, diabetes and obesity [36], glaucoma [37];

search for novel candidate genes of susceptibility to tu-

berculosis [38].

The goal of this work was prioritization of candidate

genes based on reconstruction and analysis of gene net-

works describing asthma and hypertension interactions.

The associative network reconstructed in this work by

ANDSystem [29, 30] details the interactions between
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genes/proteins that are linked to both asthma and hyper-

tension, specifically including 205 genes and 9638 rela-

tions. It is worth noting that 69 genes from the network

are related to apoptosis and 44 participate in central ner-

vous system (CNS) functioning, suggestive of the im-

portant role of these processes for the formation of

combined asthma and hypertension. From a ranked list

of candidate genes, 10 can be highlighted as having the

most priority. In particular, IL10, TLR4, and CAT had

the highest priority across all examined scores, including

standard methods of prioritization (Endeavor and Topp-

Gene) as well as original methods that take into account

the structure of the asthma/hypertension gene network

and the associations of gene polymorphisms with the

diseases. The predicted genes can be employed for plan-

ning of genotyping experiments.

Methods
The reconstruction of associative gene networks of

asthma and hypertension was carried out using the

ANDSystem tool [29, 30]. The ANDSystem was devel-

oped to automatically analyse scientific publications in

order to extract knowledge on the molecular genetic in-

teractions and associations of proteins, genes, metabo-

lites, drugs, and microRNAs with diseases, biological

processes, drug side effects, and the phenotypes of vari-

ous organisms. The ANDSystem knowledge base was

built on the basis of a large-scale analysis of over 25 mil-

lion abstracts of scientific papers presented in the

PubMed database. In addition, information on molecular

genetic interactions from different factual databases,

such as IntAct, MINT, and others was integrated into

ANDSystem. In total, more than seven million facts re-

garding molecular genetic interactions and associations

are available in the ANDSystem knowledge base. In the

current study we used ANDSystem version 2016. It is

based on the analysis of all PubMed abstracts up to

2016, as well as information obtained from external da-

tabases that were available in 2016.

Enriched gene ontology (GO) biological processes

were identified using the service DAVID 6.8 [39]. All set-

tings were utilised in default mode.

To evaluate the centrality of vertices in the graphs of

gene networks, the following functions from the network

package of the Python programming language were

used: “nx.degree_centrality” to calculate the degree cen-

trality (DC), “nx.closeness_centrality” for calculating

closeness centrality (CC), and “nx.betweenness_central-

ity” for betweenness centrality (BC) [40].

The scheme of the gene prioritization algorithm that

includes 10 criteria is shown in Fig. 1. Criterion 1 was cal-

culated using the Endeavor system for gene prioritization,

version 3.71 (https://endeavour.esat.kuleuven.be/Endea

vour.aspx) [41, 42]: Rank1i = Rank(Xi), where X – sorted

list of genes according to Endeavor output, i – gene num-

ber. All settings used were in default mode. As the input

for the test and training sets, the list of genes from the

complete asthma/hypertension network was utilised.

Criterion 2 was calculated with the gene prioritization

system, ToppGene (https://toppgene.cchmc.org/prioriti

zation.jsp) [43, 44]: Rank2i = Rank(Xi), where X – sorted

list of genes according to ToppGene output, i – gene

number. All settings used were in default mode. The

genes from the complete asthma/hypertension network

were entered as the input, and the list of genes from the

complete asthma/hypertension network, from which the

analysed genes were excluded, was provided as a training

set. Pearson’s correlation coefficient for criteria 1 and 2

ranks and its statistical significance were estimated using

the Social Science Statistics resource (http://www.so

cscistatistics.com).

Fig. 1 A general scheme for calculating criteria of gene prioritization
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Criterion 3: involvement in the GO biological pro-

cesses enriched in the complete and genetic regulatory

networks of asthma/hypertension. This score was com-

puted as Rank3i = Rank(Xi), where X – sorted list of

genes according to Ni = N1i + N2i, where N1i – total

number of enriched GO biological processes in

complete networks of asthma/hypertension in which

gene i was involved, N2 the same as N1 calculated for

genetic regulatory networks of asthma/hypertension

(see Additional file 1: Table S2).

Criterion 4: calculated for gene i as Rank4i = Rank(Xi),

where X – sorted list of genes according to average

measure of the value of DC, CC, and BC for each gene

from complete network of asthma/hypertension.

Criterion 5 was calculated in the same way as Criter-

ion 4 using genetic regulatory network of asthma/

hypertension instead of complete network of asthma/

hypertension.

Criterion 6: Rank6i = Rank(Xi), where X – sorted list of

genes according to specificity of the connection of genes

with biological processes associated with asthma and

hypertension. To arrive at this score, at the first step, a

list of biological processes connected with asthma and

hypertension according to ANDSystem was constructed.

The following types of interactions were considered: as-

sociation, regulation, and treatment. For asthma, there

were 357 linked biological processes and for hyperten-

sion, 338 processes. One hundred and eighteen bio-

logical processes were connected simultaneously with

asthma and hypertension. Furthermore, all the biological

processes presented in ANDSystem were divided into

two groups. A test set that included 118 biological pro-

cesses, associated simultaneously with asthma and

hypertension, and a control set containing all the other

13,538 biological processes from ANDSystem. For each

of the 205 genes/proteins, associated simultaneously

with asthma and hypertension, interactions with bio-

logical processes were established using ANDSystem.

The specificity of the connection between genes/proteins

and the test set of biological processes simultaneously

associated with asthma and hypertension was evaluated

by applying the Student’s t-test. Student’s t-test was per-

formed using the function stats.ttest_ind with the par-

ameter equal_var = False, from the package, scipy.stats,

in Python [45, 46]. A Bonferroni correction for multiple

comparisons was conducted with the function, p.adjust

(Y, “bonferroni”) of the “stats” package in the program-

ming language R [47].

Criterion 7: Rank7i = 1 if SNPs from list Y was present

in gene i, otherwise Rank7i was equal to maximal rank

for list X (Rank7i = 205), since the presence of such poly-

morphisms is of great importance for genotyping. List Y

included all SNPs for each gene from X that were found

in the eQTL gene region with the frequency of the

minor allele in at least 5% in European population. A

threshold of 5% allows to detect MAF polymorphisms

with a high degree of probability using available geno-

typing arrays, thus it is often used in genomic analysis

[48–50]. To calculate this score, the GTEx resource

(http://www.gtexportal.org) [51] was consulted. It pro-

vides information on the variability of global expression

of genes and SNPs affecting the level of gene expression.

For the analysed genes, all SNPs localized in the region

of the eQTL were taken from the database. Such SNPs

may be relevant to the development of diseases [52–54].

Then, only the SNPs that altered the expression of the

analysed genes in whole blood were selected. As the

next step, for SNPs in the eQTL region, the prevalence

of the minor allele among the European population was

estimated. The analysis was carried out using the

Ensembl database (http://www.ensembl.org) [55] based

on the averaged frequencies of minor alleles for popula-

tions of European origin CEU (inhabitants of Western

and Eastern Europe), GBR (Britain and Scotland), IBS

(Spain), and TSI (Italy). In terms of further analysis,

only SNPs that had a minor allele frequency of at least

5% in the European population were selected (for most

of the found SNPs, the minor allele frequency was 20%

or higher).

Criterion 8: Rank8i = 1 if any gene i SNP associated

with either asthma or hypertension was presented in list

Y, otherwise Rank8i was equal to 205.

Criterion 9: Rank9i = 1 if in list Y for gene i an SNP as-

sociated with some disease comorbid to asthma or to

hypertension was present, otherwise Rank9i was equal to

205. Manual analysis of PubMed publications was con-

ducted to generate a list of diseases with comorbidity to

asthma and hypertension. To this end, for asthma, we

manually examined 196 PubMed publications found by

the query, “asthma comorbid diseases”, and filtered via

the parameter, “Free full text”. For hypertension, 622

PubMed publications, obtained with the query, “hyper-

tension comorbid diseases”, and filtered by the param-

eter, “Free full text”, were analysed.

Criterion 10: Rank10i = 1 if in list Y for gene i SNP as-

sociated with any disease was present, except diseases

specified for criterion 8 and criterion 9, otherwise

Rank10i was equal to 205. To calculate criteria 8-10, in-

formation on the associations of SNPs with diseases was

extracted from the databases, SNPedia [56], miRdSNP

[57], GWAS catalog [58], and DisGeNET [59, 60]. It was

considered that a polymorphism was associated with a

disease if this information was found in at least in one of

the databases.

For each gene, the final score was computed as the aver-

age value of ranks formulated according to criteria 1-10.

An independent evaluation of genes selected according

to these criteria was carried out by analyzing the
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normalized frequency of their mentioning in PubMed

together with the “comorbid” or “comorbidity” terms.

The frequency of references (F) was calculated as the

number of PubMed abstracts in which the gene name

was mentioned together with “comorbid” or “comorbid-

ity” divided by the total number of PubMed abstracts

where the gene was mentioned. An analysis of the en-

richment of the list of top genes by genes, which are

often mentioned in the discussion of comorbid states of

various diseases, was carried out by comparing the aver-

age frequencies F calculated for a set of top genes with a

complete list of genes, according to the Mann-Whitney

test, estimated by the function «mannwhitneyu» from

the package «scipy.stats» of Python [45, 46].

The formation of lists of genes associated with apop-

tosis for the GO category “apoptotic process” (GO:

0006915) along with genes involved in the functioning

of the CNS for GO categories “neurotransmitter secre-

tion” (GO:0007269), “neurogenesis” (GO:0022008),

“multicellular organismal response to stress” (GO:00

33555), “social behaviour” (GO:0035176), “cognition”

(GO:0050890), “response to antipsychotic drug” (GO:00

97332), and “response to psychosocial stress” (GO:1,

990,911) was performed using the AmiGO 2 database

[61, 62] available at http://amigo.geneontology.org/.

Only the human genes involved in the analysed GO cat-

egories were selected.

The statistical significance of the differences between

the centrality of the apoptosis genes and the rest of

the genes of the analysed networks was estimated by

the function “stats.ttest_ind” with the parameter

equal_var = False from the package “scipy.stats” of Py-

thon [45, 46]. Similarly, the statistical significance of

the differences between the centrality indices of the

CNS genes and the remaining genes of the analysed

networks was evaluated.

Results and discussion

Associative gene networks of asthma and hypertension

In order to find the molecular genetic mechanisms

underlying the development of asthma and hypertension,

we compiled a list of 755 genes/proteins associated with

asthma and 713 genes/proteins associated with hyper-

tension according to ANDSystem (Additional file 2:

Table S1). The gene network of asthma included 62,603

interactions between 755 genes and 751 proteins, includ-

ing 2402 genetic regulations, 920 activity regulations, 79

degradation regulations, 625 transport regulations, 2594

protein-protein interactions, 751 expression links, 75 co-

expression links, 159 chemical transformations, and

54,998 associative interactions. In ANDSystem associa-

tive interaction is a special type of interactions reflecting

any types of relations between two objects including

listed above.

The gene network of hypertension included 45,479 in-

teractions between 713 genes and 710 proteins, includ-

ing 1373 genetic regulations, 709 activity regulations, 71

degradation regulations, 423 transport regulations, 1905

protein-protein interactions, 708 expression links, 31 co-

expression links, 165 chemical transformations, and

40,094 associative interactions. There are suggestions in

the literature that putative candidate genes for the devel-

opment of comorbid conditions between a pair of dis-

eases are genes simultaneously associated with both

diseases [63–65]. Previously, for such diseases as bron-

chial asthma and tuberculosis, we showed the potential

role of genes concurrently linked with both of them in

the pathogenesis of their comorbid relationships [35].

The network of interactions between genes and proteins,

associated simultaneously with asthma and hypertension

(complete asthma/hypertension network), constructed

by intersection of the asthma and hypertension net-

works, included 85 genes, 201 proteins, and 9638 inter-

actions of 17 types. It should be noted that the complete

asthma/hypertension network included the same types

of interactions as the separate networks of asthma and

hypertension: 345 genetic regulations, 347 activity regu-

lations, 25 degradation regulations, 262 transport regula-

tions, 554 protein-protein interactions, 84 expression

links, three co-expression links, 45 chemical transforma-

tions, and 7973 associative interactions. In summary,

none of the types of interactions disappeared upon

building up complete asthma/hypertension network.

The enriched GO biological processes (p-value < 0.01

with FDR correction) for genes/proteins associated with

asthma were identified with the DAVID 6.8 system. It

was observed that among the most significant GO bio-

logical processes were inflammatory response, immune

response, response to hypoxia, regulation of T cell prolif-

eration, neutrophil chemotaxis, platelet degranulation,

and regulation of interleukin production (Additional

file 1: Table S2). For genes/proteins associated with

hypertension, among the most significant GO biological

processes were regulation of blood pressure, response to

drug, response to hypoxia, inflammatory response, aging,

regulation of vasodilation, response to insulin, and

angiogenesis (Additional file 1: Table S2). Among the

most highly enriched GO biological processes for genes/

proteins associated simultaneously with asthma and

hypertension (complete asthma/hypertension network)

were response to hypoxia, positive regulation of nitric

oxide biosynthetic process, regulation of blood pressure,

aging, inflammatory response, and negative regulation of

apoptotic process (Additional file 1: Table S2). These

processes may be the most significant for the comorbid

relationship between asthma and hypertension.

Among the GO biological processes that were

enriched for the asthma network and not featured in the
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list of enriched processes for the complete asthma/

hypertension network, were microglial cell activation,

regulation of interleukin production, positive regulation

of tissue remodelling, and regulation of cytokine secre-

tion. Those GO biological processes enriched only for

the hypertension network were angiotensin maturation,

regulation of the force of heart contraction, response to

insulin, vasoconstriction, cholesterol homeostasis, and

negative regulation of feeding behaviour. Such processes,

apparently, are more pertinent to the mechanisms of de-

velopment of individual asthma or hypertension. The

GO biological processes, removal of superoxide radicals,

protein kinase B signalling, positive regulation of isotype

switching to IgG isotypes, and positive regulation of

peptidyl-serine phosphorylation, were enriched only for

the complete asthma/hypertension network and not for

the individual asthma or hypertension networks.

It is known that genetic regulation is paramount for the

genetic variability in diseases across patients [66–68]. The

genetic regulatory network of asthma/hypertonia,

including interactions between genes involved in expres-

sion regulation, expression up-regulation, and expression

down-regulation, is portrayed in Fig. 2. This network con-

tains 52 genes, 68 proteins, and 345 interactions. At the

same time, from the Fig. 2 it can be seen, that general

regulatory network can be divided into at least five subnet-

works, including four small subnetworks containing from

2 to 3 participants (for example, PXR protein → Furin

gene). These subnetworks appeared to be unconnected

with the core of the regulatory network, because in

ANDSystem they were connected only by associative

interaction type. It was interesting to evaluate the enrich-

ment of GO biological processes for genes/proteins from

the genetic regulatory network of asthma/hypertension

(Additional file 1: Table S2). It turned out that for this net-

work seven new enriched GO biological processes were

identified (response to heat, positive regulation of ERK1

and ERK2 cascade, embryo implantation, positive regula-

tion of B cell proliferation, glucose homeostasis, positive

regulation of JAK-STAT cascade, and defence response to

Fig. 2 Genetic regulatory network of asthma/hypertension. Proteins are presented by circles and genes are represented by DNA helix. Proteins
involved in a large number of enriched GO biological processes (more than 20) for both the complete and genetic regulatory network of
asthma/hypertension are shown with large icons. The top 10 proteins with the highest value of betweenness centrality in the complete
asthma/hypertension network are highlighted in blue; in the genetic regulatory network of asthma/hypertension, in green; in both networks, in
two-color green/blue. Picture was done using the ANDVisio program, which is a part of ANDSystem, and gene/protein notations are given
according to ANDVisio output
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protozoan) and these were not significant within the

whole asthma/hypertension network. Among the GO pro-

cesses that were simultaneously significant for the

complete and genetic regulatory network of asthma/

hypertension were negative regulation of apoptotic

process, positive regulation of nitric oxide biosynthetic

process, inflammatory response, and several others.

One of the most central regulatory nodes for both the

complete and genetic regulatory network of asthma/

hypertension is TNF-α (Fig. 2). We observed that this

gene is involved in a large number of enriched GO bio-

logical processes. For example, it participates in inflam-

matory response, immune response, the positive

regulation of the nitric oxide biosynthetic process, posi-

tive regulation of NF-kappaB transcription factor activ-

ity, and is closely related to apoptosis. It is known that

the level of TNF-α is elevated in both asthma and hyper-

tension patients. The levels of TNF-α are increased in

the airway tissues of asthmatic subjects and TNF-α ex-

pression has been seen to be up-regulated in alveolar

macrophages, mast cells, and bronchial epithelial cells

[69, 70]. TNF-α was also found to be higher in concen-

tration in chronic inflammatory states, such as hyperten-

sion, and is implicated in both increases and decreases

in blood pressure [71]. It is interesting that the TNF-α,

which has a high centrality, turned out to be connected

in the regulatory network with NF-kappaB, which also

has a high centrality value (Fig. 2). It is known that bio-

logical networks are characterized by a low degree of

assortativity, i.e. vertexes with a large number of connec-

tions are rarely connected with each other [72]. Thus,

the uncovered interactions between TNF-α and NF-

kappaB may indicate the special role of this connection

for the comorbid state of asthma and hypertension. Fur-

ther, TNF-α can activate the expression of NF-kappaB

and increase its activity [73]. It was previously demon-

strated that in both asthma and hypertension, the ac-

tivity of NF-kappaB is enhanced [74–77]. Figure 2

illustrates that, in turn, NF-kappaB is able to reduce the

level of expression of the apolipoprotein A1 (apoA-1)

gene [78]. There are data suggesting that in cases of

hypertension, the level of apoA-1 is diminished [79, 80].

With this, in asthma patients, the level of apoA-1 in

bronchoalveolar lavage fluid was significantly lower than

in healthy controls [81, 82]. ApoA-1 has a specific role

in lipid metabolism, and is the major component of

HDL particles in blood [83]. It is interesting to note that

the apoA-1 gene is involved in the GO category neuro-

genesis (GO:0022008), related to the CNS. Thus, it can

be seen that, the various biological processes featured in

the pathogenesis of asthma and hypertension, as well as

their comorbid development, including apoptosis and

CNS processes, can be mediated through regulatory

interactions.

Prioritization of candidate genes

Gene prioritization is a task of many studies aimed at

candidate gene identification. Among the existing tools

for gene prioritization, there are Endeavour [41, 42],

ToppGene [43, 44], and DIR [84]. These programs allow

one to rank a test set of genes based on a training set of

genes according to certain criteria characterizing the

proximity of genes from the test set to the genes from

the training set. The methods of these resources employ

properties of the vertices of gene network graphs, gen-

etic information (co-localization in the genome), func-

tional properties of genes (involvement in the same GO

categories), etc. To search for candidate genes that

might have an important part in the molecular genetic

mechanisms of asthma and hypertension comorbidity,

here, we utilised the Endeavor (criterion 1) and Topp-

Gene (criterion 2) programs. Additionally, to take into

account the structure of the gene network, describing

the interactions between asthma and hypertension, as

well as polymorphisms in the genes associated with the

studied diseases, criteria 3-10 were used. In particular,

information about polymorphisms was used in criteria

7-10 in the following way: all genes with known poly-

morphisms had a minimal rank (equal to 1), while the

rank of remaining genes had maximal value (equal to

205). It allowed to provide criteria 7-10 with a more

weight compared to other criteria. We believe that the

presence of polymorphisms in the studied genes is import-

ant for the development of comorbidity. The values of the

listed scores for the top ten genes from the complete

asthma/hypertension network are shown in Table 1.

According to criterion 1, among the top ten most im-

portant genes/proteins, sorted by the “P-value” indicator,

were TNF, FN1, NFKB1, TGFB1, APOA1, EGFR,

MMP9, RELA, AKT1, and PLAT (Additional file 3:

Table S3). For criterion 2 the list of the top ten genes/

proteins, ranked according to the “Average Score” indi-

cator, included FURIN, PTGS2, TIMP1, VCAM1, NPY,

CALM3, HP, RAN, AOC1, and IL4 (Additional file 4:

Table S4). The correlation coefficient of the ranks, calcu-

lated according to criteria 1 and 2, was R = 0.548 with a

p-value < 10− 5.

Criterion 3 suggested that for both the complete and

genetic regulatory network of asthma/hypertension, IL6

was involved in the greatest number of over-represented

GO biological processes - 24 and 27 processes, respect-

ively (Additional file 5: Table S5). Ranking by criterion 3

demonstrated that for 18 genes/proteins (IL6, TGFB1,

TNF, IL1B, AKT1, CCL2, IL4, IL10, EGFR, LEP, PTGS2,

PTEN, EDN1, VEGFA, IFNG, ADM, CD40, INS), the

total number of GO biological processes in which these

genes/proteins participated with respect to the complete

and genetic regulatory network of asthma/hypertension

was more than 20 (Fig. 2).
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According to criteria 4 and 5, it turned out that the

genes/proteins with the highest centrality index for both

the complete and genetic regulatory network of asthma/

hypertension were IL6, TGFB1, TNF, IL1B, and IRF6.

The highest centrality index for just the complete net-

work was for genes INS, NFKB1, VEGFA, TP53, and

CRP, and for the genetic regulatory network of asthma/

hypertension, genes VCAM1, ICAM1, CTGF, IFNG,

SERPINE1 (Additional file 6: Table S6).

According to criterion 6, 154 genes/proteins are specif-

ically associated with the test set of biological processes

with a Bonferroni corrected p-value < 0.01 (Additional

file 7: Table S7). Among the genes most significantly asso-

ciated with the test set were TNF, INS, IL6, LEP, SPP1,

VEGFA, IGF1, NFKB1, IL10, and TGFB1.

Criterion 7 showed that of the 205 analysed genes, 30

genes had SNPs found in the eQTL. Moreover, we re-

vealed that there were 1425 SNPs (Additional file 8:

Table S8). The highest number of SNPs (more than

seven per 1000 nucleotides) was observed for genes

ADRB2, TLR4, CST3, IRF6, CAT, and RETN (Fig. 3). Of

these, ten polymorphisms in the ADRB2, IL10 and TLR4

genes were associated with asthma, and seven polymor-

phisms in ADRB2, IL10 and CAT were linked to hyper-

tension (Fig. 3). These genes had the highest priority

according to criterion 8. The eight polymorphisms in

genes ADRB2, IL10, CAT, TLR4, and CST3 were linked

with any disease comorbid to asthma or hypertension

(e.g., diabetes mellitus, arthritis, myocardial infarction,

kidney diseases, diabetic nephropathy). According to cri-

terion 9, genes ADRB2, IL10, CAT, TLR4, and CST3 had

the highest priority. Analysis of the associations of the

pertinent SNPs with other diseases uncovered 51 SNPs

in 12 genes (Additional file 9: Table S9). Thus, according

to criterion 10, the highest priority was given to genes

ADRB2, IL10, CAT, TLR4, ICAM1, IRF6, AKT1, CST3,

NFKB1, PNP, POMC, and SELL.

In reviewing the average rank (Additional file 10: Table

S10), ten genes (IL10, TLR4, CAT, NFKB1, AKT1,

ADRB2, ICAM1, POMC, CST3 and SPP1) had the high-

est priority (Table 1). It appeared that all genes, pre-

sented in Table 1, except CST3, were associated with

asthma and/or hypertension, according to the OMIM

[85] and MalaCards [86] databases. However, the associ-

ations of this gene with asthma and hypertension are

discussed in the literature [87–89].

An independent analysis of co-occurrence of genes

with “comorbid” or “comorbidity” terms showed that

these top ten genes (F = 0.023) are more frequently (p-

value < 0.05) mentioned together with these terms, com-

pared to the total set of 205 genes (F = 0.006) from the

complete regulatory network of asthma/hypertension.

Thus, this may indicate a potentially important role for

the comorbid state of asthma and hypertension. In par-

ticle, among these top genes TLR4 and ADRB2 (2nd and

6th place in Table 1) are directly discussed in the litera-

ture in the context of the comorbidity of asthma and

hypertension [21–24, 26]. TLR4 is involved in activation

of the innate immune system via the NF-κB signalling

pathway along with the up-regulation of inflammatory

cytokine production. With this, the expression of TLR4

was observed to be up-regulated in asthma [90]. Up-

regulation of TLR4 has also been observed after myocar-

dial infarction and inhibition of TLR4 decreases blood

pressure [91]. The ADRB2 gene encodes a beta-2 adren-

ergic receptor mediating catecholamine-induced acti-

vation of adenylate cyclase via G proteins. ADRB2 is a

known drug target to treat asthma [92, 93] and a number

of SNPs in this gene are associated with asthma [94, 95]

and hypertension [96, 97].

Other interesting genes are IL10 and CAT, which had

1st and 3rd places in Table 1, respectively. IL-10 is an

anti-inflammatory cytokine derived from CD4+ T-helper

type 2 (T(H2)) cells, and in cases of asthma, a relative

underproduction of IL-10 from alveolar macrophages

was reported [98]. During asthma, IL-10 can inhibit eo-

sinophilia via suppression of IL-5 and GM-CSF, regulate

eosinophil apoptosis, and down-regulate IL-1. In

Table 1 Top 10 genes with the highest priority according to average rank

Gene name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 Rank 10 Average rank

IL10 44 140 6 14 26 9 1 1 1 1 24.3

TLR4 11 92 17 43 92 29 1 1 1 1 28.8

CAT 59 78 11 31 71 37 1 1 1 1 29.1

NFKB1 3 26 13 5 16 8 1 205 205 1 48.3

AKT1 9 64 4 20 20 18 1 205 205 1 54.7

ADRB2 78 82 28 166 92 155 1 1 1 1 60.5

ICAM1 26 86 11 30 3 44 1 205 205 1 61.2

CST3 112 105 25 117 92 117 1 205 1 1 77.6

POMC 93 85 23 59 53 51 1 205 205 1 77.6

SPP1 25 45 26 44 30 5 1 205 205 205 79,1
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addition, IL-10 can suppress nitric oxide production, an

important component of airway inflammation [99]. Up-

regulation of IL-10 was also demonstrated to normalize

blood pressure and endothelial function [100, 101].

Superoxide anion and hydrogen peroxide were found

in higher concentrations in both asthma and hyper-

tension patients compared with controls [102, 103].

Catalase (CAT) is an enzyme that catalyses the decom-

position of hydrogen peroxide to water and oxygen, and

it was observed that catalase overexpression can prevent

hypertension [104] and that catalase activity was en-

hanced during treatment of asthma [105, 106].

Apoptosis in asthma/hypertension gene network

Apoptosis is one of the processes that features most

prominently in various diseases. It is actively studied in

the pathogenesis of asthma and hypertension [107, 108],

and it has been suggested that deregulation of apoptosis

in activated T cells and eosinophils are involved in the de-

velopment of airway inflammation in asthma [109, 110].

With regard to hypertension, there is evidence of in-

creased apoptosis in whole organs [111, 112]. Despite the

fact, that apoptosis is a well-studied regulatory network,

the role of apoptosis genes in the structure of gene

networks of these two diseases requires further clarifi-

cation. A total of 1873 genes are implicated in the

apoptotic process (GO: 0006915) according to the

AmiGO database [61, 62]. In the complete and genetic

regulated gene network of asthma/hypertension, 69 and

48 genes of apoptosis were included, which are 34 and

53% of all the genes of the analysed networks, respect-

ively. Analysis of the centrality of these genes in the

complete network showed that the average DC value is

0.299, CC value was 0.579, and BC value was 0.0064.

Additionally, it appeared that these indicators were sta-

tistically significant (p-value < 10− 4) more than those

for the other genes of the complete network (DC -

0.147, CC - 0.515, BC - 0.0018). In the genetic regula-

tory network, the centrality of the apoptosis genes (DC

- 0.038, CC - 0.296, BC - 0.023) also exceeded the CC

(BC - 0.025, CC - 0.256, DC - 0.014), although no sta-

tistically significant differences were noted.

To further assess the structural role of the apoptosis

genes in the graphs of the complete and genetic regula-

tory networks of asthma/hypertension, we evaluated the

fundamental cycles using the “Find fundamental rings”

function of ANDSystem [29, 30]. Fundamental cycles are

those that form the basis of a cyclic space of a graph,

Fig. 3 Network of interactions between genes/proteins that had SNPs determined by criteria 7-10. Cyan colour - a small number of polymorphisms
(0.01-0.099 SNPs per 1000 nucleotides), purple colour - a moderate number of polymorphisms (0.1-0.9 SNPs per 1000 nucleotides), pink colour - a high
number of polymorphisms (1.0-4.9 SNPs per 1000 nucleotides), orange colour – a very high number of polymorphisms (5.0-31.1 SNPs per 1000
nucleotides). D — gene polymorphisms associated with various diseases; A— gene polymorphisms associated with asthma; H— gene polymorphisms
associated with hypertension. Large icons indicate genes/proteins associated with apoptosis. Picture was done using the ANDVisio program
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that is, any cycle of a graph can be represented by the

sum of fundamental cycles. In the complete and genetic

regulatory networks of asthma/hypertension, 9354 and

230 fundamental cycles were found, respectively. It

turned out that among them, 9201 and 219 cycles con-

tained at least one gene/protein associated with apop-

tosis, respectively. Further, the number of cycles that

featured only the genes of apoptosis was 191 for the

complete network and 31 for the genetic regulatory net-

work of asthma/hypertension. In particular, the cycle of

maximum length for the complete network (Fig. 4a)

among all cycles, including only the apoptotic genes,

consisted of three genes (CTGF, ADM, ADIPOQ) and

five proteins (CTGF, ADM, ADIPOQ, TGFB1, IFNG). In

this cycle, the protein, IFNG, differentially regulates

TGF-beta1 [113] and the up-regulated secretion of TGF-

beta is accompanied by down-regulation of IFN-gamma

[114]. IFN-gamma and IL-1beta can induce expression

of the ADM gene in ARPE-19 cells [115]. As well, it is

known that plasma ADM protein levels are related to

SNP rs182052 in the ADIPOQ gene [116]. In turn, the

ADIPOQ protein can down-regulate CTGF mRNA and

proteins [117] and TGFB1 can elevate CTGF transcript

levels [118]. For the genetic regulatory network, a similar

cycle (Fig. 4 B) included four genes (CTGF, BCL2,

HMOX1, PTGS2) and four proteins (P53, AKT1,

PPARG, IL1B). In this cycle, it could be seen that the

p53 protein can bind the Bcl2 protein to form a complex

that influences apoptosis regulation [119], and moreover

p53 was shown to induce temperature-dependent de-

crease in the expression of the bcl-2 gene [120]. Bcl-2

gene expression is also regulated by activation of Akt

[121]. Subsequently, Akt can regulate the expression of

the HMOX1 gene [122]. The expression of HMOX1

gene can be up-regulated by activation of PPARG [123].

The activation of PPARG can also suppress expression

of the PTGS2 gene [124]. Further, the expression of the

PTGS2 gene can be up-regulated by IL1B [125, 126]. In

turn, IL1B can significantly suppress CTGF gene expres-

sion [127], of which expression can be induced by p53

protein [128].

Along with the important role of apoptosis genes in

the structure of the asthma/hypertension gene network,

the apoptosis genes had high priority in Additional

file 10: Table S10. Their average rank was 108.4, which is

less statistically significant (p-value < 10− 10) than the

average rank throughout the remainder of the Table

(127.3). Thus, among the ten top genes, seven were

a b

c d

Fig. 4 Fundamental cycles revealed in complete and genetic regulatory asthma/hypertension networks associated with apoptosis and CNS. a
Cycle from the complete asthma/hypertension network, which includes just the genes/proteins associated with apoptosis (CTGF, ADM, ADIPOQ,
TGFB1, and IFNG). b Cycle from the genetic regulatory network of asthma/hypertension, which includes just the genes/proteins associated with
apoptosis (CTGF, BCL2, HMOX1, PTGS2, P53, AKT1, PPARG, and IL1B). c Cycle from the complete asthma/hypertension network, which includes
just the genes/proteins associated with the CNS (APOE, INS, and APOA1). d Cycle from the genetic regulatory asthma/hypertension network,
which includes five participants associated with the CNS (genes: VEGFA, BCL2; proteins: AKT1, OBS, EGFR). Proteins are presented by circles and
genes are represented by DNA helix. Picture was done using the ANDVisio program
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associated with apoptosis (Table 1). Such high enrich-

ment in Table 1 can be related to their high centrality

and participation in a large number of fundamental cy-

cles of the asthma/hypertension gene network. Among

the genes of apoptosis and anti-apoptosis network with

the highest priority according to the total score, one can

distinguish IL10, TLR4, CAT, NFKB1, AKT1, ICAM1, and

CST3. As mentioned before, IL-10 is an anti-

inflammatory cytokine and can induce macrophage apop-

tosis [129, 130]. TLR4 stimulation also induces apoptosis

[131] and can mediate neuronal apoptosis [132]. More-

over, TLR4 is necessary for the immunological mechanism

of apoptosis [133]. Meanwhile, CAT was shown to inhibit

apoptosis in different cells, including T cells [134, 135].

NF-kappaB controls cytokine production, cell survival,

and can block apoptosis [136]. Suppression of NF-kappaB

also induces apoptosis [137]. Akt can suppress apoptosis

via activation of the RelA/p65 subunit of NF-κB [138] and

phosphorylation-dependent cleavage of Akt can influence

apoptosis in neural cells [139]. ICAM-1 is able to influ-

ence release of various inflammatory cytokines and react-

ive oxygen species and because of that, its involvement is

notable in apoptosis regulation [140]. Induced expression

of ICAM-1 leads to participation in inhibition of apoptosis

[141]. Cystatin C (CST3) expression in vascular wall

smooth muscle cells is diminished in certain vascular dis-

eases, and it is known that CST3 can bring about apop-

tosis [142].

Genes involved in functioning of the central nervous

system in the asthma/hypertension gene network

At present, there is increased interest among researchers

in the problem of the effect of various pathological pro-

cesses on the CNS, including inflammation, asthma, and

hypertension [143–145]. It is discussed in the literature

that hypertension and/or hypoxia can activate neurogen-

esis as a response to neuronal loss induced by these fac-

tors [146, 147]. There is an evidence that certain

elements of sympathetic neurotransmission can be acti-

vated during hypertension [148]. In keeping with this, it

has been demonstrated that hypertension can lead to the

memory loss as well as impair learning [147, 149] and

cognition [150]. Interestingly, in Guo et al. [151], it was

shown that chronic asthma can affect cognitive func-

tions and impact synaptic transduction [152] and neuro-

genesis [153, 154]. It has also been discussed that

psycho-social stress and psychological factors can play

an important role in bronchial asthma [155, 156].

In order to clarify the role of genes involved in the

functioning of the CNS in the asthma/hypertension gene

network, GO biological processes associated with

asthma and hypertension and involved in the function-

ing of the CNS were selected using ANDSystem. It was

found that of 357 biological processes associated with

asthma, there were six terms of the CNS (neurogenesis,

cognition, neurotransmitter secretion, response to psy-

chosocial stress, social behaviour, and response to anti-

psychotic drug), and among the 338 of biological

processes associated with hypertension, there were four

such terms (neurogenesis, cognition, neurotransmitter

secretion, and multicellular organismal response to

stress). A small number of GO terms associated with

asthma and hypertension associated with the CNS can

be explained by the lack of knowledge surrounding this

matter. This means a study on the relationship of CNS

genes with these diseases is warranted. The following

GO terms were considered: neurotransmitter secretion

(GO:0007269), neurogenesis (GO:0022008), multicellular

organismal response to stress (GO:0033555), social behav-

iour (GO:0035176), cognition (GO:0050890), response to

antipsychotic drug (GO:0097332), and response to psy-

chosocial stress (GO:1,990,911).

A total of 2017 genes were elicited with these seven GO

terms according to the AmiGO database [61, 62]. In the

complete and genetic regulatory gene networks of

asthma/hypertension, 44 CNS genes out of 205 genes and

27 CNS genes out of 91 genes, respectively, were found.

Analysis of the complete network showed that the

centrality of these genes (DC - 0.277, CC - 0.573, BC -

0.005), as well as of the apoptosis genes, statistically sig-

nificantly exceeded the average centrality of the other

genes from the network (DC - 0.177, CC - 0.527, BC -

0.003), with a p-value < 0.05. Similarly, as for apoptosis,

the average centrality of the CNS genes (DC - 0.0336,

CC - 0.3, BC - 0.0194) surpassed the average gene cen-

trality in the genetic regulatory network (BC - 0.0315,

CC - 0.267, DC - 0.0193). It is noteworthy that among

the 44 genes of the CNS, there were 26 genes of apop-

tosis. These genes possessed increased centrality within

the CNS gene grouping. Thus, apoptosis can have a sig-

nificant effect on the functioning of the CNS sub-

network in the asthma/hypertension gene network.

The analysis of the fundamental cycles showed that in

the complete and genetic regulatory network of asthma/

hypertension, there were 8999 and 199 fundamental cy-

cles, respectively, that contained at least one gene/pro-

tein associated with the CNS. It should be acknowledged

that for apoptosis, for both network fundamental cycles,

only the included genes of this process were found. In

the case of the CNS, the fundamental cycles consisting

of CNS genes were detected only in the complete net-

work, numbering at 59. In particular, the cycle of max-

imum length for a complete network, including only

CNS genes, consisted of genes APOE, INS, and APOA1,

and proteins APOE, INS, and APOA1 (Fig. 4 C). In this

cycle, it was demonstrated that INS initiated the syn-

thesis of apoE [157, 158] and APOA1 gene expression

[159, 160]. In turn, apoA1 protein may enhance local
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secretion and accumulation of apoE and hence influence

anti-atherogenic processes [161].

With respect to the fundamental cycles found in the

genetic regulatory network of asthma/hypertension, the

maximum proportion of CNS genes did not go beyond

50%. For example, in this fundamental cycle, there were

five genes (VEGFA, BCL2, VCAM1, POMC, CTGF), five

proteins (AKT1, OBS, EGFR, P53, ADIPOQ), two CNS

genes (VEGFA, BCL2), and three CNS proteins (AKT1,

OBS, EGFR) (Fig. 4 D). In this cycle, as in the cycle por-

trayed in Fig. 4 B, p53 protein interacted with Bcl-2

[119] and can induce the expression of the CTGF gene

[128]. Bcl-2 gene expression is regulated by activation of

Akt [121] and Akt influences regulation of VEGF-A ex-

pression [162]. VEGF-A expression is promoted by ADI-

POQ through the ADIPOQ receptor, AdipoR [163].

ADIPOQ and OBS are able to induce VCAM-1 expres-

sion [164]. Increased OBS concentrations are linked with

reduced POMC mRNA expression [165]. Of interest is

that EGFR has been demonstrated to regulate expression

of the POMC gene [166] and stimulate expression of

CTGF [167].

Conclusion
Computer reconstruction and analysis of gene networks

makes it possible to put forward hypotheses about the

molecular mechanisms of diseases. It also seems to be

an effective tool for studying the complex interrelation-

ships between diseases as comorbid conditions. The re-

constructed asthma/hypertension gene network, which

describes the potential molecular-genetic interactions

between the two diseases, included 205 genes/proteins.

Analysis of the sub-networks of apoptosis and the CNS

showed that the genes of the CNS, like the genes impli-

cated in apoptosis, are represented to a large extent in the

asthma/hypertension network (69 and 44 genes, respect-

ively) and can play an important role in its structure.

Therefore, they can be important for the development of

the comorbid condition of these two diseases.

Based on standard methods of prioritization, as well as

original criteria that utilise the structure of the asthma/

hypertension gene network, 10 candidate genes for

genotyping and searching for drug targets have been

proposed. The highest priority was given to the genes

IL10, TLR4, and CAT, which occupy an important pos-

ition in the immune system and apoptosis. It appeared

that apoptotic genes had a special place in this top list of

candidate genes, which was highly enriched with the

genes of apoptosis. CNS genes were also present in the

top list. We believe that the role of CNS genes in the

pathology of these diseases and their comorbid condi-

tions are not yet fully understood and merit close atten-

tion in the future via additional experimental studies.
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