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Abstract 

Odorants are typically classified by specially trained individuals using subjective verbal 

scent descriptors. Herein, we used natural language processing to develop standardized semantic 

profiles of mono-molecular odorants. We have (i) curated and integrated scent perception data for 

mono-molecular odorants from 4 online sources; (ii) represented verbal scent descriptors used in 

these sources as vectors in semantic space; (iii) calculated average semantic distances between 

vectors representing each mono-molecular odorant and each of the vectors for a set of 27 standard 

verbal scent descriptors to yield 27-dimensional harmonized odorant semantic profile; and (iv) 

applied dimensionality reduction techniques to these harmonized profiles, to visualize clustering 

of odorants with similar semantic profiles. This novel uniform representation of odorants can be 

employed to transform any subjective verbal description of any odorants into standardized 

semantic profiles that can facilitate automated classification, structure-odor relationship studies, 

and design of odorants with the desired scent.  

  



Introduction 

Mono-molecular odorants are volatile small molecules that can be perceived through the 

sense of smell when inhaled through the nose. These molecules should also bind and activate 

olfactory receptors expressed on the surface of sensory neurons in the olfactory epithelia to qualify 

as true odorants. Neuronal pathways and higher-order processes mediate scent perception in the 

brain downstream of activated olfactory receptors (Ache & Young, 2005). Mono-molecular 

odorants are employed as ingredients in scented products, such as perfumes, colognes, air 

fresheners, shampoos, soaps, deodorants, food products, aromatherapy products, and even 

fragrances designed to influence customer behavior in retail or culinary settings (Spence, 2020) 

but also commonly found outside of scent research or fragrance industry settings.  

The global fragrance market had a revenue of over $50 million USD in 2021 (Statista, 

2021). Innovative approaches for discovering new mono-molecular odorants with targeted 

properties should have a profound effect by reducing the cost of production, minimizing 

environmental impact, and improving toxicological safety profiles of scented products. For 

example, the replacement of natural mono-molecule ‘musk-like’ odorants, which have been 

historically obtained from animals, with new synthetic molecules can serve both to protect 

endangered animal species from overhunting (Ahmed et al., 2018), meet increasingly stringent 

regulatory guidelines (Pistollato et al., 2021), and potentially lower the cost of production for 

scented product manufacturers. 

The chemical structures of mono-molecular odorants determine their interactions with 

olfactory receptors. Therefore, the subjective scent qualities of mono-molecular odorants are 

objectively bound to their chemical structures, and the study of structure-odor relationships has 

long been a critical area of scent research (Rossiter, 1996). Annotation of odorant scent profiles is 



typically achieved via experimental scent perception-based surveys, where participants are 

requested to indicate the subjective quality of mono-molecular odorants. Findings from such 

studies have enabled structure-odorant relationships studies and guided the discovery of the next-

generation odorants with targeted scent properties.  

These experiments have shown complex results (Kaeppler & Mueller, 2013). To 

conceptualize the degree of this complexity, one may consider that the human sense of smell has 

been estimated to distinguish between 1 trillion discrete stimuli (Bushdid et al., 2014). Extensive 

differences have been observed between subjective ratings of odorant scent profiles. Often, 

different reviewers use different verbal descriptors of an odorant. More interestingly, the same 

reviewer may give different scent ratings in response to the same odorant across separate 

experiments. These scent rating differences are dependent on combinations of genetic, 

neurological, linguistic, and cultural factors; that influence the detection and description of scent 

percepts. Simply put, there is a high degree of intrinsic variability in representing scent perception-

based data from studies where human subjects performed scent rating tasks (Kaeppler & Mueller, 

2013).  

Historically, many scent ontologies have been created to fully describe all possible scents. 

These ontologies were generated based on empirical observations of psychologists, data-driven 

observations of scent researchers, and the personal experiences and insights of professionally 

trained perfumers. Unfortunately, none of these ontologies serves as a universal, all-purpose 

ontology, which perfectly handles any situation (Kaeppler & Mueller, 2013). Instead, researchers 

select a collection of many different scent ontologies according to their specific interests and task. 

Recently, natural language processing (NLP) approaches have been used on problems of scent 

descriptors. For instance, Gutiérrez et al. employed natural language descriptors of mono-



molecular odorants as inputs for machine learning algorithms trained to predict numerical 

descriptors of odorant scent profiles (Gutiérrez et al., 2018).  

Indeed, NLP approaches present a natural avenue to standardizing scent perception where 

words and phrases, i.e., verbal scent descriptors (VSD), are used to indicate odorant scent qualities. 

Categorical VSD profiles are typically represented as lists of unique VSD terms reported by survey 

participants. These categorical profiles can include from one to over a dozen unique VSD terms 

per odorant, but most often are comprised of 3-5 unique terms (Rugard et al., 2021). Sometimes 

numerical descriptors indicating the relative intensity of verbal scent descriptor terms are used to 

construct continuous VSD profiles. Continuous VSD profiles can include over a dozen unique 

VSD terms per odorant and differ from categorical profiles such that numerical values are used to 

indicate the similarity of odorants to each of the VSD terms included in a given set of profiles, as 

opposed to sets of VSD terms themselves. It is important to distinguish between the two varieties 

of VSD profiles, as the use of VSD terms for categorical classification is the natural, and dominant, 

human mode of scent description; outside of work specifically focused on obtaining and/or 

analyzing continuous VSD profiles. Therefore, there is semantic information latent in virtually all 

subjective scent-based data, by the multifarious connections between scent perception and 

semantic processes (Iatropoulos et al., 2018).  

Herein, we have developed and implemented an approach to the harmonization of online 

scent perception-based data using NLP techniques. More specifically, we have employed a set of 

27 standard verbal scent descriptor and represented each odorant by a set of distances between its 

conventional VSD terms and each of these descriptors to yield harmonized verbal scent descriptor 

profiles. This novel standardized scent representation system enables straightforward quantitative 

analysis of scent similarity and further investigations into structure-odor relationships. The 



approach developed herein can be employed universally to harmonize any odorant VSD profile 

obtained from different sources, regardless of the idiosyncrasy of VSD terms included in 

categorical or continuous classifications of odorants. 

 

Materials and Methods 

Data Collection 

Data sources were selected according to the following criteria: (i) public availability, (ii) 

inclusion of mono-molecular odorants, and (iii) use of categorical VSD terms to annotate odorant 

VSD profiles. Chemical names and VSDs assigned to mono-molecular odorants were collected 

from 4 different data sources: (i) FlavorNet (http://www.flavornet.org/flavornet.html), a database 

containing VSD profiles and physicochemical descriptors for 738 natural product odorants found 

in the human environment (Arn & Acree, 1998); (ii) SuperScent (http://bioinf-

applied.charite.de/superscent/), a database that contains chemical structures and scent profile 

description of over 2100 volatile materials (Dunkel et al., 2009); (iii) the Sigma Aldrich Fragrances 

and Flavors Catalog (https://www.sigmaaldrich.com/industries/flavors-and-fragrances/learning-

center/catalog-request.html) (Merck KGaA, Darmstadt, 2019); and (iv) the International Fragrance 

Association’s Fragrance Ingredient Glossary 

(https://ifrafragrance.org/priorities/ingredients/glossary), which is provided by the International 

Fragrance Association (IFA), a global representative body of the fragrance industry that seeks to 

represent the collective interests of the industry (International Fragrance Association, 2020). The 

brief analysis and comparison between the data sources can be found in Results and Discussion 

section below. 

Dataset Curation 

http://www.flavornet.org/flavornet.html
http://bioinf-applied.charite.de/superscent/
http://bioinf-applied.charite.de/superscent/
https://www.sigmaaldrich.com/industries/flavors-and-fragrances/learning-center/catalog-request.html
https://www.sigmaaldrich.com/industries/flavors-and-fragrances/learning-center/catalog-request.html
https://ifrafragrance.org/priorities/ingredients/glossary


All VSD terms collected were left unchanged, except for converting to lower case and 

stored as strings in comma-separated lists, such that the raw VSD profile for each odorant was a 

set of all unique VSD terms used to annotate each odorant. Specific VSD terms, such as “green 

tea” were also left unchanged and presented as phrases, not as single words. Chemical names for 

mono-molecular odorants obtained from the online sources were used to retrieve chemical 

structures by utilizing the Chemical Identifier Resolver (CIR) node in KNIME Analytics Platform 

(KNIME, 2020), which queries the CIR resource (https://cactus.nci.nih.gov), hosted by the 

National Cancer Institute/National Institutes of Health.  

Odorants without defined corresponding mono-molecular chemical structures, such as 

“botanical essential oils and extracts” representing complex products without unique chemical 

identifiers, were excluded from our curated data tables. Organometallic, ionic, and multi-molecular 

compounds were also excluded. For the minority of odorant names that were not readily translated 

to SMILES strings by the CIR node, standard IUPAC names were identified via search on 

PubChem and used to retrieve SMILES strings. 

Mono-molecular structures in the 4 collected datasets were thoroughly curated following 

the workflows previously developed by our group (Fourches et al., 2016). Chemical structures 

were standardized using ChemAxon Standardizer (ChemAxon, 2021). Briefly, counter ions were 

removed and specific chemotypes such as aromatic rings and nitro groups were standardized. 

Standardized structures were then subject to structure matching to deduplicate reoccurring 

odorants within each of the 4 data subsets. All the curated data used in this study are available in 

the Supplementary Material and FigShare 

(https://figshare.com/articles/software/VSD_Profile_Harmonization_Workflow/18624047).  

 

https://cactus.nci.nih.gov/
https://figshare.com/articles/software/VSD_Profile_Harmonization_Workflow/18624047


Structure-Odor Relationship Dataset Integration 

The 4 curated data sets described above were merged. Overlapping odorants were 

identified, and their verbal scent descriptor profiles were combined by concatenating all unique 

VSD terms used to annotate odorants across online sources. The resultant dataset, initially 

containing 2,819 unique mono-molecular odorants annotated with VSD profiles to be harmonized, 

each consisting of one or more of 422 unique VSD terms, is referred to herein as the structure-

odor relationship dataset (SORD) (Table S1).  

 

Figure 1. Workflow schema for data collection from online sources, subsequent curation, and 

integration to form the SORD, which contains raw VSD profiles to be harmonized following the 

protocol outlined below. 



Selection of the Primary IFA Scent Ontology as the Target Scent Ontology 

The Primary IFA ontology was created to categorize odorants featured in the IFA 

Fragrance Ingredients Glossary. Definitions for each of the 27 verbal scent descriptor terms 

featured in the Primary IFA scent ontology, provided to enhance clarity in the IFA Fragrance 

Ingredient Glossary, are reproduced below for reference: 

1. Acidic – “Acidic means a fragrance note that smells sharp and somewhat pungent. Acidic 

notes may help boost a citrus note or impart natural qualities.” 

2. Aldehydic – “Aldehydes vary: the more diluted they become, the greater the difference in 

smell. An overarching description is one of clean ironed linen. Aldehydes can be split into 

more specific profiles, such as citrus or ozonic. They are organic compounds found in natural 

oils (e.g., orange oil or rose oil) and are used at relatively low doses.” 

3. Amber – “Amber is used to describe a complex note in fragrances that are a mixture of warm, 

woody, and sweet notes that impart a rich and comforting character.” 

4. Animal-like – “Animal-like notes are important notes used in perfumery. They do not come 

from animals but are created to give what some would see as a faecal note or a musk note. In 

dilution, they might help to impart musk notes or floral notes like jasmin.” 

5. Anisic – “Anisic materials are those that smell similar to natural aniseed materials like 

tarragon or fennel.” 

6. Aromatic – “Aromatic notes are complex notes that are sometimes also described as having 

a diffusive aroma. They may be recognized in cooking as culinary herbs and spices, but they 

have a full fragrance quality.” 



7. Balsamic – “Ingredients that smell balsamic tend to have a delicate smell that is slightly sweet 

and woody and have been termed using natural resins and balsams exuded by some trees and 

shrubs.” 

8. Camphoraceous – “A fresh, strong and diffusive smell that is characterized by natural 

camphor and other herbs such as rosemary or marjoram.” 

9. Citrus – “Citrus notes are given by the smell of fruit from the citrus family – such as orange, 

lemon or grapefruit.” 

10. Earthy – “Earthy notes are reminiscent of earth and mud. They are important when creating 

a fragrance that needs to impart the full character of a living flower or to give natural outdoor 

notes – allowing the creation of full landscape (e.g., a bed of roses on a wet day) as opposed 

to a single or specific smell.” 

11. Floral – “Floral notes belong to the large floral family that includes notes such as rose, jasmin, 

narcissus, and others. Some fragrance materials have smells that are not one flower but multi-

faceted, with a complex flowery character.” 

12. Food-like – “Food-like describes food substances of a savoury or less specific character – 

such as the smell of roasted vegetables.” 

13. Fruity – “Fruity notes belong to the non-citrus fruit family. This is a very large family that 

includes many fruit notes such as banana, apple and mango. Some fruit fragrance materials 

have smells that are note one fruit but multi-faceted, with a complex fruity character.” 

14. Gourmand – “This very important fragrance group has been popular for a number of years 

– with a food-like smell that is sweet, sticky, or dessert-like. It includes caramel, fudge, 

chocolate, and meringue.” 



15. Green – “Green is a broad descriptor that refers simply to those natural smell that are green 

– such as the distinctive scent of cut grass, hedgerow fruits flowers, and those green notes and 

many green materials that help impart natural smells in a more complex accord or mix of 

scents.” 

16. Herbal – “Herbal notes include culinary herbs (e.g., thyme, rosemary) that often have a green 

note and impart fresh nuances to a complex fragrance.” 

17. Honey – “Honey is used to describe materials that have honey characteristics – often sweet 

and cloying, but sometimes quite harsh and acidic.” 

18. Marine – “Marine covers smells that you expect to find at the seashore – they tend to be fresh 

and sometimes ozonic, and often sea water-like.” 

19. Minty – “These materials impart mint or menthol notes reminiscent of peppermint and 

spearmint.” 

20. Musk-like – “These materials belong to an important fragrance note – while they are note 

obtained from animals, they are created to have an animal-like quality, often powdery and 

sometimes warm and sweet.” 

21. Ozonic – “Ozonic notes are fresh-smelling materials that don’t have a more specific note but 

may remind you of a fresh windy day. Sometimes they have a weak, almost chlorine-like smell.” 

22. Powdery – “Powdery fragrance ingredients are from a larger complex group that impart a 

warm, sometimes sweet or musky powdery smell.” 

23. Smoky – “These ingredients have a smoked or phenolic quality, reminding you of the smell 

from a bonfire or the smell of food burning.” 



24. Spicy – “These ingredients belong to a broad spicy family, characterized by many spicy notes 

from cinnamon to other culinary spices such as pepper, nutmeg, and clove. They sometimes 

have a sweet note and impart warm nuances to a complex fragrance.” 

25. Sulfurous – “Sulfurous materials have a distinctive smell, reminiscent of onion or garlic. 

Some sulfur materials may be very pungent and unpleasant at high levels, but when used in a 

fragrance they may impart citrus or floral notes.” 

26. Tobacco-like – “These ingredients are created to give a smell of tobacco before it has been 

lit of smoked. They tend to be sweet and warm notes, sometimes with the smell of dried fruit.” 

27. Woody – “Woody notes are part of a large odor family that includes woods such as 

sandalwood or cedarwood, sometimes with smoky or leather nuances. Often warm and dry 

notes, they impart a rich complexity that can help a fragrance last longer.” 

Generation of Semantic Embeddings for Verbal Scent Descriptors 

Semantic embeddings were generated using the ELMo model provided by Google 

(https://tfhub.dev/google/elmo/3), trained on a one billion word corpus (Peters et al., 2018). ELMo 

is a word embedding model trained on word vectors derived from a bidirectional long short-term 

memory, a type of recurrent neural network trained with a coupled language model. Each word is 

processed relative to other words in the corpus and the model is optimized so that words used in 

similar contexts have similar resultant descriptors in the embedded semantic space. This model 

provides a 1,024-dimensional embedding (vector) for every phrase included in its training set. 

Here, all 422 unique VSDs featured in the SORD were used as input for ELMo. For each 

VSD term, ELMo generated a 1,024-dimensional descriptor vector, resulting in a 422 x 1,024 

matrix, with 1 row per VSD term; where individual VSD terms (𝑣𝑠𝑑𝑡) are represented as vectors 

https://tfhub.dev/google/elmo/3


(𝑣𝑠𝑑𝑣), and each column contains a co-ordinate for one of the 1,024-dimensions included in the 

semantic space occupied by generated embeddings (See Equation 1). 

Equation 1. 𝑣𝑠𝑑𝑣 = 𝐸𝐿𝑀𝑜(𝑣𝑠𝑑𝑡)  

 Similar approach was also employed for embedding the 27 verbal scent descriptor terms 

featured in the Primary IFA scent ontology, which enabled calculations described in the next 

section. 

Odorant Semantic Projection Calculation 

“Odorant semantic projections” (OSPs) mean vectors (𝑜𝑠𝑝𝑐) were calculated from the set 

of all terms used to represent each of the odorants captured in our integrated SORD. To calculate 

the 𝑜𝑠𝑝𝑐 for any odorant, we employed all VSD terms used to describe it in the SORD. We then 

run each VSD through ELMo, producing a respective VSD vector (See Equation 1), summed 

these vectors and divided the resulting vector by the number of VSD terms used for an odorant in 

SORD, producing an average 𝑜𝑠𝑝𝑐 vector (see Equation 2).  

Equation 2. 𝑜𝑠𝑝𝐶 =
∑ 𝑣𝑠𝑑𝑡𝑡∈𝐶

#{𝑡∈𝐶}
, 

where 𝑣𝑠𝑑𝑡  is the ELMo vector representative of VSD term 𝑡 which is one of 422 possible VSD 

terms used to describe the specific odorant, and 𝐶 is the odorant being subjected to VSD profile 

standardization. This transformation enabled the representation of each odorant in SORD by a 

single mean 𝑜𝑠𝑝𝑐 vector in the embedded ELMo space. 

Semantic Distance-Based Verbal Scent Descriptor Profile Prediction 

The above process yields a single vector per odorant, allowing for representation of 

discrete, aggregate, and subjective scent perception-based data points associated with mono-

molecular odorants into an objective semantic space. Thus, we used 𝑜𝑠𝑝𝐶  vectors representing 

2,819 mono-molecular odorant VSD profiles to calculate the semantic distances between each 



odorant represented by 𝑜𝑠𝑝𝑐 (see Equation 2), and each of the 27 𝑣𝑠𝑑𝑣 vectors representing the 

terms included in the Primary IFA scent ontology (see Equation 1). The Euclidean 

( 𝑒𝑢𝑐𝑚𝑎𝑡𝑟𝑖𝑥[𝑐, 𝑣] ) and cosine (cos𝑚𝑎𝑡𝑟𝑖𝑥[𝑐, 𝑣]) distances were calculated 

(𝒆𝒖𝒄𝒅𝒊𝒔𝒕(𝐴, 𝐵),𝒄𝒐𝒔𝒅𝒊𝒔𝒕(𝐴, 𝐵)) (see Equations 3-6) between each odorant embedding and each of 

the 27 semantic embeddings used to represent the Primary IFA scent ontology. These 

transformations yield standardized and quantitative VSD profiles to describe the scent of each 

odorant in the dataset. All protocols employing these equations were implemented in a Python 

script inside a KNIME workflow (KNIME, 2020). 

Equation 3. 

𝑒𝑢𝑐𝑑𝑖𝑠𝑡(𝐴, 𝐵) =  √∑(𝐴𝑖 − 𝐵𝑖)2

𝑛

𝑖=1

  

Equation 4. 

𝑒𝑢𝑐𝑚𝑎𝑡𝑟𝑖𝑥[𝑐, 𝑣] =  𝑒𝑢𝑐𝑑𝑖𝑠𝑡(𝑜𝑠𝑝𝐶 , 𝑣𝑠𝑑𝑣)  

Equation 5. 

𝑐𝑜𝑠𝑑𝑖𝑠𝑡(𝐴, 𝐵) =  
∑ (𝐴𝑖 ∗ 𝐵𝑖)

𝑛
𝑖=1

√∑ (𝐴𝑖)2𝑛
𝑖=1 ∗  √∑ (𝐵𝑖)2𝑛

𝑖=1

  

 

Equation 6. 

𝑐𝑜𝑠𝑚𝑎𝑡𝑟𝑖𝑥[𝑐, 𝑣] =  𝑐𝑜𝑠𝑑𝑖𝑠𝑡(𝑜𝑠𝑝𝐶 , 𝑣𝑠𝑑𝑣), 

Where in Equations 3-6, 𝑐 represents a unique mono-molecular odorant and 𝑣 represents a unique 

VSD term. 

VSD Profile Standardization Performance Evaluation 



The performance of VSD profile standardization protocols detailed herein were evaluated 

by calculating the mean reciprocal rank (MRR) for each Primary IFA VSD term. Mono-molecular 

odorants featured in the SORD with one or more Primary IFA VSD terms included in their VSD 

profiles were identified. The distance matrices referenced above (see Equations 3-6) were then 

used to rank each of the 27 Primary IFA VSD terms from nearest to farthest to each mono-

molecular odorant. For each Primary IFA VSD term, we identified all the odorants containing this 

term and the reciprocal value was calculated from that rank, from 1/1 to 1/27, where 1 is the nearest 

rank and 27 is the farthest rank. Taking the average of these reciprocal rank values gives a MRR 

value for that Primary IFA VSD term. This process was iterated for all 27 Primary IFA VSD terms, 

using both 𝒆𝒖𝒄𝒎𝒂𝒕𝒓𝒊𝒙[𝒄, 𝒗] and 𝒄𝒐𝒔𝒎𝒂𝒕𝒓𝒊𝒙[𝒄, 𝒗], separately, in order to compare the performance 

of both distance metrics for harmonization tasks. 

Additionally, in order to simulate different scenarios under which VSD profile 

standardization might be attempted, 3 different types of 𝑜𝑠𝑝𝐶  vectors were used for MRR 

calculations. The first set was calculated from all VSD terms in VSD profiles (‘all-in’). The second 

was calculated from all VSD terms in VSD profiles, excluding the term that was being evaluated 

(‘leave-one-term-out’). The third set was calculated from VSD profiles where all 27 Primary IFA 

VSD terms were removed (‘all-out’). As a negative control, the rank of Primary IFA VSD terms 

for each mono-molecular odorant in the SORD was randomly assigned, i.e., a rank-randomization 

was used to simulate random guessing by human subjects (‘rank-randomization’).  

 Further, we assessed the robustness of this protocol for obtaining harmonized categorical 

VSD profiles, as opposed to the continuous profiles that result directly from semantic distance 

calculation (see Equations 3-6). This task was executed by establishing the relationship between 

the number of top-ranking (by semantic distance) Primary IFA VSD terms included in 



standardized VSD profiles and the percentage of odorants in the SORD with at least one exact 

match between VSD terms in raw and harmonized VSD profiles. 

 

 

Semantic-space Visualization 

Principal Component Analysis (PCA) (Jolliffe & Cadima, 2016) and t-distributed 

stochastic neighbor embedding (t-SNE) (van der Maaten & Hinton, 2008) were employed to 

visualize the distribution of mono-molecular odorants represented by the 𝑜𝑠𝑝𝑐 vectors as well as 

27 Primary IFA VSD terms represented by 𝑣𝑠𝑑𝑣 vectors in the 1024-dimensional ELMO semantic 

space. Both operations were performed in Osiris DataWarrior (Sander et al., 2015), where matrices 

containing 𝑣𝑠𝑑𝑣 and 𝑜𝑠𝑝𝐶 vectors were used as inputs for PCA and t-SNE, respectively.  

Results and Discussion 

Construction of the structure-odor relationship dataset (SORD) 

In this study, we collected, curated, integrated, and harmonized publicly available scent 

perception-based data, to yield the structure-odor relationship dataset (SORD). SORD contains 

2,819 unique odorant molecules, where odorants were annotated with 1-4 raw VSD profiles, as a 

function of the number of data sources a given odorant is included in. Each raw VSD profile 

consists of 1 or more of 422 unique VSD terms used to describe the odorants in the dataset. We 

observed that the raw VSD profile representative space is sparce. Most unstandardized VSDs 

present in the dataset describes less than 10 odorants. For instance, the term “passionflower” was 

only present in a single raw VSD profile.  

The degree of overlap between unique odorants and verbal scent descriptors found between 

the 4 online sources is depicted in Figure 2. As one can see, the IFA Matrix is the largest, and the 



SuperScent Matrix is the smallest, in terms of both mono-molecular odorants and VSD. There 

exists a degree of non-overlap and of overlap in terms of both unique odorants and VSD terms 

between all 4 matrices. In total, there were 106 unique mono-molecular odorants, and 41 unique 

VSD terms, that were commonly featured between all four data sources. 

 In Figure 2A, it can be observed that each independent data source contributed its own set 

of unique mono-molecular odorants, which were not present in the other sources. Conversely, each 

source had a portion of mono-molecular odorants found in 1 or more of the 4 sources. In the first 

case, the addition of these unique odorants increases the size and chemical diversity of the SORD; 

along with an increase in coverage of semantic space by the set of all unique terms shared between 

their raw VSD profiles. In the second case, the combination of raw VSD profiles from multiple 

sources increases the breadth (coverage across semantic space) and depth (anchoring to key 

‘landmark’ terms in semantic space) of description provided by profiles that are used to annotate 

mono-molecular odorants present in the multiple sources. In total, there were only 106 out of 2,819 

total mono-molecular odorants in the SORD that were present in all 4 online sources.  



 

Figure 2. Overlap analysis of curated data sources used in this study and their respective 

contributions to the SOR Dataset. (A) Unique mono-molecular odorants and (B) unique verbal 

scent descriptors.  

In Figure 2B, we can observe a similar pattern for unique sets of VSD terms observed 

between the datasets. However, in this case, the addition of new unique VSD terms increases the 

diversity of terms featured in VSD profiles (increases descriptive breadth), while decreasing the 

conciseness (reduction in depth) of VSD profiles in SORD. In the case of reinforcement of non-

unique VSDs, the effect is similar to the addition of non-unique odorants: an increase in the depth 

and breadth of VSD profiles already featured in the SORD. The above considerations emphasize 

the need for VSD profile harmonization during the curation and integration of scent perception-

based data, as the natural state of these data are both sparse and discrete; and harmonization should 

both decrease sparsity of descriptor matrices and enable the clustering of unique mono-molecular 

odorants by their common features, at varying resolutions. 

The use of large and unstructured scent ontologies, like those emergent from the raw VSD 

profiles in datasets like SuperScent and FlavorNet, can provide a high degree of specificity to 



profile odorants. This high descriptive specificity is valuable for comparing pairs of single 

odorants, especially in cases where there is partial overlap between scent profiles. Conversely, 

concise ontologies are useful for comparison between large datasets of odorants, including analysis 

of data generated in different scent-perception studies. For this reason, SORD employs relatively 

concise ontology (see Materials and Methods section) to enable the study of discrete aspects of 

scent perception. However, the task of translating raw VSD profiles to a ‘target scent ontology’ is 

time consuming and requires extensive experience. For this reason, it is humanly impossible to be 

executed routinely, and NLP approaches were employed as an alternate means to enable the 

automation of this task. 

Restricting VSD profiles to more concise ontologies allows (i) reduction in the number of 

VSD terms sparsely represented by chemicals in our dataset and (ii) generation of more practical 

rules and inferences from our model. Pruning terms with a few labeled chemicals increase the 

profiles’ ability to be used more broadly. In this study, the ‘target scent ontology’ (Primary IFA) 

was selected such that odorant VSD profile classification in the SORD is relevant to scent 

researchers working in academia, and within fragrance industry; as well as interested parties (such 

as our group) that have not received formal training in scent classification. The Fragrance 

Ingredients Glossary was generated with the careful attention of trained experts. In addition, their 

glossary represents the majority of unique odorants integrated into the SORD. For this reason, the 

Primary IFA scent ontology was selected as the ‘target scent ontology’ for our study. This glossary 

is stated to be “the result of many months work by representatives of large, medium-sized, and 

small fragrance houses around the world, and was the subject of a global consultation among IFRA 

members” (International Fragrance Association, 2020). 

 



Standardized Verbal Scent Descriptor Profile Translation 

The specific goal of this study was to harmonize raw VSD profiles included in SORD to using 

sets of natural language descriptors. These descriptors indicate semantic distance from the 𝑜𝑠𝑝𝐶 vector 

calculated from arbitrary, unstandardized, VSD profiles used to annotate mono-molecular odorants, to 

each of the 27 terms defined within the Primary IFA scent ontology. In this way, the original 

unstandardized scent profiles of odorants used to build the SORD are given a uniform structure, in the 

context of their relationship to an established set of VSD terms that are of global relevance to fragrance 

industry, as discussed in the Materials and Methods section of this manuscript. 

  The accuracy of semantic distance-based calculations to translate VSD profiles to standardized 

ontologies was assessed by three approaches: ‘all-in’, ‘leave-one-out’, and ‘all-out’ (see Materials and 

Methods section). The results of these accuracy assessments are captured in Figure 3-Figure 5 

Unsurprisingly, the performance of standardization using “all-in” 𝑜𝑠𝑝𝐶 vectors resulted in the highest 

MRR values for each Primary IFA VSD Term (see Figure 3 and Figure 4), in all cases.  

There are many instances where the performance of harmonization with ‘leave-one-out’ 

𝑜𝑠𝑝𝐶 vectors was lower than the performance of harmonization with ‘all-out’ 𝑜𝑠𝑝𝐶 vectors (see 

Materials and Methods section). Both ‘leave-one-out’ and ‘all-out’ values were also equal to, or 

lower than, results generated randomly, in all cases. These results are important to note, as they 

indicate the limitations of this type of technique. The removal of specific VSD terms not only 

reduces the relative influence of that term on calculated 𝑜𝑠𝑝𝐶 vector outcomes, but also enhances 

the relative influence of the remaining terms on the resultant vector. In other words, selective 

removal of target information from input VSD profiles appears to heavily reduce the accuracy of 

this method. Therefore, it is important that scent ontologies featuring commonly used VSD terms, 

such as the Primary IFA scent ontology, are employed for the harmonization of VSD profiles. 



 

Figure 3. Bar chart depicting MRR analysis results, for cosine semantic distance-based translation of OSPs to each of the 27 Primary 

IFA VSD terms (See Materials and Methods Section).



 

Figure 4. Bar chart depicting results of MRR analysis for Euclidean semantic distance-based translation of OSPs to each of the 27 

Primary IFA VSD terms (See Materials and Methods Section). 



 In Figure 5 we show the translation validation exercises that compared Euclidean and cosine distance-based VSD profile 

harmonization to random assignment ('rank randomization’), in the context of standardized categorical VSD profiles. Cosine distance 

outperformed Euclidean distance in this exercise, and it appears to achieve maximal performance within the first five nearest neighbor 

VSD terms, as opposed to 14 terms observed for the latter. Comparison of both Euclidean and cosine distance approaches to random 

guessing (randomized ranking, negative control) demonstrates that both methods produce non-random results. The lines in Figure 5. 

Percentage of odorants in the SOR Dataset compared to sets of nearest VSD terms, ranked by semantic distance. represent the percentage 

of odorants in the SORD with at least 1 exact match between nearest neighbor (Primary IFA) and target (original data) verbal scent 

descriptor lists, as a function of nearest neighbor list length. At 3 nearest neighbors, at least 75% of the odorant verbal scent descriptor 

profile translations were validated by the observed exact matches between nearest neighbor and known target terms for both Euclidean 

and cosine distance.  

The total percentage of verifiable odorants, those which have been annotated using one of the 27 Primary IFA verbal scent 

descriptor terms in at least one of the 4 online resources used in this study, was 87%. The robustness of harmonization for the remaining 

13% of odorants without target terms to be matched in this exercise in SORD cannot be known for certain but can be inferred by the 

performance of translation for odorants with known Primary IFA labels. The overall high prevalence of odorants containing Primary 

IFA terms in their raw VSD profiles in SORD is another indication that the selection of this ontology was appropriate for the task of 

VSD profile harmonization via semantic distance-based approach. At 3 nearest neighbors, 85% of the odorant verbal scent descriptor 

profile translations were validated by the observed exact matches between nearest neighbor and known target terms using cosine 



distances. Clearly, the use of cosine distances for translation outperforms Euclidean distance in this instance. Accordingly, the final 

version of the SORD built during this study utilized cosine distance-based translation (see Table S1). 

 

Figure 5. Percentage of odorants in the SOR Dataset compared to sets of nearest VSD terms, ranked by semantic distance. 

As evaluation of Figure 5 indicates that robustness of harmonization is near maximal at 3 nearest neighbors, and maximal at 5 

nearest neighbor VSD terms, it is recommended to emphasize the top 3-5 nearest neighbor VSDs for odorants when interpreting 

standardized VSD profiles categorically. Compellingly, this finding is in congruence with the external observation by another research 

group that odorants are most commonly described using profiles consisting of 3-5 VSD terms, as opposed to single verbal scent 
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descriptors (Rugard et al., 2021). Via establishment of a cut-off for ranked VSDs by an integer limit, continuous VSD profiles generated 

in this study are readily converted back to categorical format, as lists of verbal scent descriptors.  

The results of categorical VSD profile semantic distance-based standardization on the SORD are summarized in Figure 6. 

Comparison between the frequency of Primary VSD terms in online VSD profiles and within sets of ranked terms for standardization 

indicates that use of the top 3-5 ranked terms for odorants does not have a significant impact on the relative number of odorants in the 

SORD annotated with each term overall. There is a slight variation between each of the 27 VSD term frequencies between the online 

and the standardized VSD profiles in the SORD, but the distributions are closely aligned.  

 

Figure 6. Heatmap summarizing VSD profile categorical harmonization results for SORD. Counts in the cells of each row represent the 

number of odorants with each Primary IFA VSD as its nearest neighbor VSD. The column “Online VSD Profiles” contains the frequency 

of each term in the online data used to build the SORD. Every other column represents a degree of nearest neighbor, ranging from one 

Primary_IFA_VSD
Online VSD 

Profiles
NN_1 NN_2 NN_3 NN_4 NN_5 NN_6 NN_7 NN_8 NN_9 NN_10 NN_11 NN_12 NN_13 NN_14 NN_15 NN_16 NN_17 NN_18 NN_19 NN_20 NN_21 NN_22 NN_23 NN_24 NN_25 NN_26 NN_27

acidic 28 22 23 81 73 97 112 138 168 166 143 96 110 105 104 88 82 128 145 125 148 168 179 114 135 41 28 0

aldehydic 102 101 147 210 316 251 236 153 139 119 107 134 86 82 104 93 78 102 106 86 55 45 31 24 11 3 0 0

amber 71 38 141 179 136 145 114 139 113 101 72 94 72 85 79 71 107 98 101 114 127 123 175 127 104 146 18 0

animal-like 43 34 22 3 14 18 33 19 35 30 20 46 41 111 87 94 103 115 93 75 113 115 153 148 215 670 367 45

anisic 32 3 20 17 17 39 31 44 47 70 86 109 145 207 209 219 256 243 237 226 191 151 113 64 46 25 4 0

aromatic 36 121 201 444 420 336 255 240 222 159 153 72 55 43 17 16 28 10 7 3 4 1 9 2 1 0 0 0

balsamic 425 172 162 147 158 64 88 61 83 69 84 73 71 67 53 49 98 44 75 55 54 74 79 140 175 245 288 91

camphoraceous 137 86 181 228 288 242 193 250 231 302 186 198 167 71 86 59 31 9 3 0 7 0 1 0 0 0 0 0

citrus 294 246 145 142 105 136 126 117 84 87 80 90 55 58 75 53 69 60 59 99 92 126 90 150 213 173 81 8

earthy 152 83 119 187 250 268 215 216 133 104 134 137 150 123 108 133 94 75 60 58 38 30 25 11 20 25 13 10

floral 811 427 214 81 43 70 66 72 99 100 103 111 85 108 79 92 104 109 108 171 181 143 124 55 34 31 9 0

food-like 45 18 15 5 16 5 18 35 32 25 36 38 45 74 78 79 122 141 220 183 215 232 285 373 315 199 15 0

fruity 872 397 237 115 78 99 127 110 101 133 100 141 128 114 113 120 102 115 109 87 108 63 27 28 36 12 8 11

gourmand 100 37 14 13 9 24 56 47 52 55 96 98 135 115 148 189 128 120 187 178 177 184 189 159 179 131 98 1

green 697 136 178 118 13 12 11 14 14 18 6 15 9 9 16 26 17 35 32 40 32 38 103 98 105 254 1340 130

herbal 272 116 140 19 48 72 121 107 126 171 128 150 99 111 132 131 122 114 66 137 148 181 106 103 88 65 17 1

honey 69 155 179 152 121 150 129 107 100 93 104 81 84 100 80 66 66 50 65 66 85 91 124 165 145 177 76 8

marine 21 5 8 5 3 1 0 4 1 0 3 7 0 0 9 0 4 0 6 24 9 3 13 25 24 35 177 2453

minty 114 62 66 85 125 119 161 167 165 200 201 171 165 181 165 186 124 104 87 63 74 37 45 24 30 5 6 1

musk-like 54 12 41 18 12 40 49 54 64 46 101 60 157 136 168 175 165 163 165 115 147 161 189 262 268 50 1 0

ozonic 24 11 17 25 15 72 31 92 126 144 183 202 219 173 156 192 193 169 173 171 130 100 82 74 36 20 3 10

powdery 72 27 24 25 17 9 12 27 35 32 65 108 112 127 128 128 110 100 92 178 151 205 244 224 264 216 138 21

smoky 53 15 28 28 43 63 105 148 136 173 118 129 133 109 146 115 128 161 143 123 170 166 123 130 111 51 17 7

spicy 190 146 214 199 230 206 224 169 133 124 117 103 124 143 144 64 75 110 47 62 50 30 22 22 15 14 16 16

sulfurous 94 48 20 23 12 15 28 34 74 87 126 107 132 115 111 134 97 147 143 172 156 192 173 186 178 211 93 5

tobacco-like 8 2 2 8 8 18 18 34 91 54 106 106 146 185 165 217 269 272 277 203 154 160 115 111 71 20 6 1

woody 375 299 261 262 249 248 260 221 215 157 161 143 94 67 59 30 47 25 13 5 3 0 0 0 0 0 0 0



to 27 nearest neighbors. The distribution of primary IFA VSDs with high values in cells within columns NN_1 through NN_5 bear 

resemblance to the original distribution of Primary IFA VSDs found in online sources.  

In Figure 7, t-SNE plots generated from ‘all-in’ 𝑜𝑠𝑝𝐶 vectors are used to visually demonstrate how the protocol described herein 

results in harmonization of VSD profiles. Each point in this space represents a unique mono-molecular odorant, and the proximity 

between odorants in this space can be used as a proxy for similarity between VSD profiles. In this way, the VSD profiles of mono-

molecular odorants that were once annotated using arbitrary sets of unstandardized terms, are now projected into a space where equal 

comparisons can be drawn across all odorants within the SORD on the basis of the semantic information latent in their online VSD 

profiles. Importantly, Figure 7 shows how the harmonization of online scent-perception based data into standardized VSD profiles with 

natural language descriptors enables discrete clustering of odorants according to their multi-dimensional scent profiles.  



 

Figure 7. 3D t-SNE plot representation of SORD, where ‘all-in’ 𝑜𝑠𝑝𝐶 vectors were used as inputs. Colors of points and chemical 

structures included in the above plot correspond to the nearest neighbor Primary IFA VSD term to the OSPC vectors representative of 

VSD profiles, calculated via ranking of cosine distances. This categorical labeling scheme shows how the harmonization of online scent-



perception based data into standardized VSD profiles with natural language descriptors enables discrete clustering of mono-molecular 

odorants according to their multi-dimensional scent profiles. Plots were generated with Osiris DataWarrior, See Materials and Methods 

Section. 

Discussion.  

Scent perception-based datasets, like those included in this study, can feature hundreds of different unique VSD terms, such as 

‘pungent’, ‘moldy’, ‘warm’, ‘spicy”, ‘cinnamon’, ‘cut grass’, and ‘refreshing’. As a result, VSD profiles are frequently categorical. 

Alternatively, some studies have generated scent perception-based data, where numerical values within a set range are used to indicate 

the relative intensity of indicated VSD terms (Dravnieks, 1985). 

Restricting odorant description to a limited set of terms is necessary for scent perception-based data integration and grouping of 

odorants according to a set of formalized, recognizable, scent qualities. This task has proven challenging, and it requires harmonizing 

scent perception-based data through translation of raw VSD profiles, such that profiles directly reference standardized scent ontologies 

(Wise et al., 2000). To harmonize raw scent perception based-data, it is necessary to select a fixed set of terms as a ‘target scent ontology’ 

to limit the resolution of standardized VSD profiles for practical purposes in the context of scientific research. Ideally, the ‘target scent 

ontology’ is oriented toward broad odorant classification, instead of specific scent descriptions for unique odorants, as this should enable 

more direct comparison between odorant scent profiles, as they no longer contain specialized or idiosyncratic VSD terms 

For example, when studying links between olfaction and the perception of rewarding scent qualities (Haddad et al., 2010; Khan 

et al., 2007), a highly restricted two-term ontology comprised of the VSDs “pleasant” and “unpleasant” might be sufficient. However, 



this two-term ontology would not be adequate for discrete or specific aspects of odorant scent profiles (Manuel Zarzo, 2008, 2012). For 

example, scent ontologies have been proposed to describe wine aromas. One such case is the work of Dr. Ann Noble (Noble, 2022), 

who used over 100 unique VSD terms arranged in a hierarchical structure to develop the “wine aroma wheel”, specifically designed to 

describe wine scent profile (Lehrer, 2009). In addition, a historical review of structure-odor relationship studies conducted by Rossiter 

provides insight into how such efforts fall into two categories; (1) broad or (2) focused in terms of specificity in scent qualities assessed 

(Rossiter, 1996). 

Studies have also been devoted strictly to statistical analysis of the semantic space used to occupied by VSD terms used to 

indicate odorant scent quality. One study showed that the semantic space of scent description might provide insight into the neurological 

and psychological structure of olfactory mechanisms in the human brain (M. Zarzo, 2015). The term “semantic space” is used to describe 

how words relate to each other as vectors in a high-dimensional space, such that the quantifiable proximity between pairs of semantic 

entities such as words, phrases, sentences, and larger bodies of text, in this space corresponds with their closeness in meaning.  

Inspection of PCA plots used to visualize the region of semantic space occupied by the 388 unique VSD terms in raw VSD 

profiles within the SORD (See Figure 8), shows the VSD terms smoky and spicy very close to each other, while terms like honey and 

sulfurous are far apart. Although the compression of high-dimensional space into principal components obscures discrete variations 

between vectors, trends in similarity across principal components are still observed. The PC1 appears to have a negative correlation with 

hard and potentially irritating scents (‘acidic’, ‘animal-like’, ‘smoky’, ‘spicy’, ‘sulfurous’), with gradually more ‘fresh’ scents going in 

the positive direction (‘herbal’, ‘citrus’, ‘balsamic’) (Manuel Zarzo, 2012). Evidently, it is possible to span regions of semantic space 



containing hundreds of VSD terms using a rationally selected limited selection of VSD terms like those featured in the Primary IFA 

scent ontology. Overall, we observe that each term has a distinct set of discrete relationships to other terms.  

Modern NLP approaches can revolutionize scent research. Recently, a study reported the development of an automated 

translation from experimental VSD profiles from a historical study featuring dozens of unique terms, to a secondary set of profiles 

employing a restricted ‘target scent ontology’ that included 19 terms (Gutiérrez et al., 2018). Authors computed semantic embeddings 

for experimental VSD profiles and used these embeddings to train a model using elastic net regression algorithms. This model reached 

an accuracy higher than 70% to predict continuous VSD profiles representative of a scent ontology oriented for structure-odor 

relationship analysis, for 53 of the 58 odorants used for validation in their study. Ultimately, the authors established a reproducible 

framework for the accurate translation and harmonization of experimentally obtained scent perception-based data (Gutiérrez et al., 

2018). 

This study was undertaken to assess the utility of NLP in the harmonization of categorical VSD profiles, which might include 

anywhere from one to over a dozen unique VSD terms per odorant. Categorical VSD terms are the natural human mode of scent 

description. In other words, semantic information is latent in virtually all subjective scent-based data under the manifold connections 

between scent perception and semantic processes (Iatropoulos et al., 2018). Therefore, representation of odorants as entities in semantic 

space for the harmonization of unstandardized scent perception-based data to standardized VSD profiles should always be feasible. In 

principle, such a system should harmonize any odorant VSD profile obtained from different sources, regardless of the idiosyncrasy of 

VSD terms included in both categorical and continuous classifications of odorant scent profiles. 



 

Figure 8. Semantic space analysis of 422 unique VSD terms observed in this study using PCA on semantic vectors 1,024-dimensional 

space representative of ELMo embeddings. For visualization purposes, we limited labels for points corresponding to the 27 terms 

included in the Primary IFA scent ontology. Point color corresponds to the log frequency at which each term occurs in the SORD. 

 



Conclusions 

Harmonization of raw VSD profiles into a standardized natural language descriptor format enables unified description of mono-

molecular odorants. Fortunately, NLP techniques now serve to answer the unmet needs of researchers engaged in on-the-fly collection, 

curation, and integration of online scent perception-based data into standardized structure-odor relationship datasets, for analytic and 

predictive chemoinformatic modeling. By relying on objective NLP techniques, such as contextual semantic embedding and distance 

calculation, the process outlined in this study enables researchers who are not themselves adequately qualified to make classified 

judgements on the basis of unstandardized VSD profiles, to collect, curate, and integrate online scent perception-based data that will 

yield new SORD-like datasets standardized for scientific use. In this manner, researchers should be better able to utilize the findings of 

others in their own studies, despite discrete differences between scent ontologies employed by themselves and others. The framework 

provided by the process detailed in this can be used by independent researchers to obtain similar results using SORD or any dataset 

where odorants are characterized by VSD. As a cautionary note, results can vary as a function of the type of semantic embedding, target 

scent ontology, and distance algorithm selection.  

Prospectively, we intend to demonstrate further use the SORD, to develop a QSOR model for oriented toward the discovery of 

odorants with targeted scent properties. We have provided the entirety of SORD in the supplementary materials section of this 

manuscript as Table S1, which contains both the online and standardized verbal scent descriptor profiles for 2,819 unique mono-

molecular odorants. Additionally, the python script used to harmonize online verbal scent descriptor profiles of odorants to user-defined 



scent ontologies has been provided at  https://figshare.com/articles/software/VSD_Profile_Harmonization_Workflow/18624047, as a 

tool to researchers interested in performing their own scent perception-based data harmonization.  
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