
2056 IEEE Transactions on Power Systems, Vol. 9, No. 4, November 1994 

Novel Clustering Method for Coherency Identification Using an Artificial 
Neural Network 

Mang-Hui Wang, Student Member, IEEE, Hong-Chan Chang, Member, IEEE 

Department of Electrical Engineering 
National Tdwan Institute of Technology 

Taipei, Taiwan, ROC 

Abstract - A novel clustering method mslng an artificial neural 
network (ANN) is presented to identify the coherent gekcrators 
for dynamic equivabnts of power systems. Flrst, a new fFpqueRcy 
measure ie dexlsad to Sndhte the degree of coherency rmong 
syaSem gemratom. Incarprating with $he frequency measure, a 
ncural network impkmearP;tion of the K-means algsrithni is then 
proposed to identify clusters of coherent generatars. The rotor 
speeds at thrm s e h W  lactouts in timer are used as the feature 
patterns k t k  leamlmg algorithm. To verify the effectivehess of 
the proposed method, extensive analyses are performed on two 
different power systems of varylng sizes with rather encouraging 
results. 
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1. INTRODUCTION 

In the dynamics study of large power systems, it is 
necessary to model the external system by their dynamic 
equivalents to improve the solution speed and to reduce the 
problem to solvable size [l-61. One ajqxoach of building up a 
dynamic equivalent is to identify generators in the external 
system with high coherency. A group of generators in the 
external system is said to be coherent if they are similar in 
terms of terminal behavior. The formation of coherent group 
depends on both the nature and location of IhR disturbance. 
With the growing size of the interconnected power systems, 
the coherency identification becomes increasingly difficult. 

In the last two decades, many notable methods of 
coherency-based dynamic: equivalenciiig have been developed 
to reduce the computational effort required in power system 
dynamics study [l-111. Lee and Schweppe [7] suggested a 
pattern recognition approach to identify coherent generators, 
which was based on the criteria involving generator inertia. 
admittance, and machine acceleration. Spaldirqg et al. [SI 
dctermined coherent generators using the predfault stable 
operating point and the post-fault unstable equilibrium point 
(UEP). Podmore [3] proposed a method of coherency 

. 

detection by solving a set of linearized swing equations, and 
treating the rotor trajectories through a clustering algorithm. 
Recently, Haque et al. [9] utilized the rotor angles and the 
electrical coupling measure to identify coherent machines. 
Afterwards, they [lo] proposed the concept of energy function 
at the; approximate unstable equilibrium points (AUEP) as well 
as the relative rotor angles to identify coherent groups. 

The main purpose of this research is to develop an 
efficient clustering method suitable for the identification of 
coherent generators in power systems. This method is based 
on the measuring coherency in terms of frequency deviation 
and the application of ANN technique. One of the major 
strengths of artificial neural network lies in its excellent ability 
to pauern recognition [ll-151. On the other hand, the problem 
of coherency identification is equivalent to clustering 
generators into various coherent groups, each group being 
related to different patterns. In view of this, this paper takes 
advantages of tbe ANN technique for coherency analysis. The 
representative input patterns of the ANM consist of the rotor 
speeds of each generator at three distinct instants during the 
transient period. As will be shown later, the speed feature is 
superior to the angle feature and appears to be reliable patterns 
for ANN classification. A neural network implementation of 
the K-means algorithm [12.161 using the adaptive resonance 
theoe (ART) model 1141 is then proposed for the 
classification of coherent generators. Experimental results 
obtained show that the presented clustering method is 
computationally efficient and seems a promising way to 
perform clustering in large-scale power systems. 

2. FORMULATION OF COHERENCY IDENTIFICATION 

2.1 Power System Model 

In the standard simplified description of an n-machine 
power system, the disturbed motion of the i-th machine wilh 
respett to a synchronously rotating frame can be expressed by 

Si = wi 
fori  = I ,  2 ,...., n. (1) M.uj. - p  . - p .  

1 I - mi CI 

where 
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The following standard notation is used: 
6i9.i: rotor angle and rotor speed with respect to the 

Mi : inertia constant, 
Pni: mechanical input power, 
Pei: electrical output power, 
Ei : voltage behind the direct axis transient reactance, 
Gii : driving point conductance, 
Bij : transfer susceptance, 
Gii: transfer conductance. 
In the above, the network of the power system has been 

reduced to the generator internal bus. With common 
simplifying assumptions, Mi, P h ,  and Ei are assumed to be 
constant throughout the transients, and all loads are modeled 
as constant impedances. 

2.2 Coherency Conside ration 

synchronously rotating reference frame, 

A generator pair (i, j)  is considered to be coherent if [9] 

6 i t t ) -6 j ( t )  E ioti. - E ,  Dti. + E ]  f o r O S t S t , ,  (3) 

where 6 i ( t )  and 6,(t) are the rotor angles of the i-th andj-th 
machine respectively, Dij is one particular constant, E is a 
small tolerance of rotor angle, and t,,, is the maximum time 
ol interest for coherency identification. A group of generators 
is coherent if each pair of generators in the group is coherent. 
Each generator pair (i, j) is said to be perfectly coherent if the 
tolerance E equals zero. An alternative formulation 
considering coherency is to check the absolute relative rotor 
angle deviations, 

(4) 

where Gii(t)  = 6i( t ) -c5j( t )  and 0 denotes tolerance. The 
rotor angles of the i-th andj-th generator for a small time 
increase At could be approximated as: 

6;(t + A t )  = 6i ( t )  + w;(t)At 
S j ( t  + A t ) = S j ( t ) + ~ , ( t ) A t  

where w i ( t )  aiid w j ( t )  denote respectively the rotor speeds 
of the i-th andj-th generator at the instant oft. Subtracting (6) 
from ( 5 )  gives: 

For a fixed time interval A t ,  comparing (4) with (7), a new 
frequency measure of coherency can be derived as 

where p denotes a tolerance parameter. Therefore, a pair of 
machines (i, j) can be considered coherent if they satisfy (8) 
during study period. As will be illustrated in Sec. 4.2, the 
speed criterion can provide computational advantage over 
angle criterion and shows to be more reliable feature patlerns 
in the use of an artificial neural network for the coherency 
identification. 

2.3 Feature Selection 

A key step in the application of pattern recognition 
approach is to select a proper set of features with which the 
input data will be represented. In this study, the speeds at ffiree 
distinct instants are used for each generator as patterns 
representative of the dynamic behavior of the generator. They 
consist of the following features: 

(a) oi (tc ) : the rotor speed at the instant of fault clearing, 
(b) w; (tc + 0.2): the rotor speed at t, + 0.2 s in the post- 

fault period, 
(c) wi(t, + 0.4): the rotor speed at t ,  + 0.4 s in the post- 

fault period. 
The choice of these features is mainly motivated by the 

simple idea that two machines having the same speed at tliree 
distinct instants of time should have parallel trajectories and 
hence should be coherent if those speeds can properly 
represent the terminal behavior of each machine. In general, 
the fault duration of a physical power system is short and the 
variation of generator acceleration is small during that period. 
Usually, the abrupt change of the system occurs a& h e  instant 
of fault clearing. Therefore, item (a) is adopted to account for 
faulted acceleration, which governs the system dynamics for 
the fault-on period. Because generators that are coherent 
during the faulted period may actually fall apart in die post- 
fault period, items (b) and (c) are used to accommodate the 
post-fault system dynamics. Since the natural frequencies of 
the rotor angle oscillatioiis typically range from 0.25 Hz to 2 
Hz [31, the sample time of 0.2 s is satisfactory for the 
representation of the post-fault system dynamics: 

2.4 Prediction of Generator Rotor Speeds 

The rotor speed of each generator can be evaluated by 
direclly integrating the system differential equation. However, 
since the intention of this study is to fast identify coherency 
without simulation of the entire system dynamics, i t  is most 
desirable to improve the computing speed. The Taylor series 
expansion USE) technique [9,17] is one of the most efficient 
numerical methods suitable for the prediction of rotor 
behavior. Our experience shows that the TSE gives good 
agreement with the actual mjectories up to 0.6 s by taking up 
to the 4-th order derivatives. If the prediction on a larger time 
interval is wanted, a multi-step TSE in both the fault-on and 
the post-fault period may be used without significant loss of 
accuracy 191. In addition, larger clearing time seldom occurs in 
physical situations, since it corresponds to a fault condition 
that may not leave a network in  an emergency state. 
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3. ARTIFlCIAL NEURAL NETWORK COMPUTING 

In recent years, artificial neural network computing has 
become an important branch of artificial inteIligence, which 
has numerous applications in the engineering field. Among 
these applications, the p a w  tecognition is one of the task 
that the artificial neural network succeeds. In this respect, the 
ART model [14] m y  be one of the notable representatives in 
this category. The ART network is like an adaptive pattern 
recognition system. It can quickly and stably learn to 
categorize input patterns in real-time process, and permit fast 
adaptive search for best match and variable error criterion in 
response fo external environment. In view of its excellent 
ability in pattern recognition, the ART network can be 
beneficially used for the implementation of the K-means 
algorithm 112,161 for coherency identification. 

3.1 Archilecture of the ART Neural Network 

Fig. 1 depicts the schematic struclurc of the ART 
employed in the present study. It comprises both the input 
layer and the output layer. The rotor speeds at three selected 
instants in time are used for each generator as patterns 
representative of. the dynamic behavior of die generator. So 
Uiree nodes are required in the input layer for the identification 
of coherent generators. The nodes in the input layer receive an 
input feature pattern and an image of the input pattern is 
generated by using a set of weighted parameters. This image is 
further enhanced in the process characterized by the output 
layer. The output layer is a strong lateral inhibition network 
called MAXNET [15]. Each unit of the MAXNET has a 
positive feedback on itself and a negative feedback on the 
other units. Only one output unit in thc output layer remains 
active to indicate a classification of the input pattern. 

cluster1 Cluster2 Cluster k 

MAXNET 

. .  . .  . .  
'n' ($1 Fnz Fn3 I 

Fig. 1. The architecture of die ART neural network. 

3.2 Neural Network Implementation of K-means Algorithm 

In this section, we use the ART model to implement the 
K-means clustering algorithm. which was developed by Pao et 
al. [I21 for critical clearing time assessment. The K-means 
algorithm [16] is based on h e  minimization of a performance 
index that is defined as the sum of the squared distances from 
all points in a cluster domain to the cluster center. The 

clustering process is performed according to the similarities 
discovered among the input features, and is conrrolled by a 
distance threshold called the vigilance parameter (VP). The 
VP is a user-made parameter which must be judiciously 
determined from an engineering knowledge of the system 
requirements. The overall solution procedure for coherency 
identification can be summarized in the following steps: 

Srg& Read system data, fault condition, and the 
number of Study generators, 
Build the prefault, fault-on, and postfault 
admittance matrices, 

U: Compuie the input patterns of the external 
generators : 
P, = ( F i l ,  Fi2, F i 3 )  for i=1,2 ,..., ne (9) 
Fir = ~ i ( t , )  
F12 = ~ ; ( t ,  + 0.2) 
Fi3 = Wi(t,+0.4) 

where 
ne: rhe number of external generators, 
PI : Uie pattern vector of the i-th generator, 
Fil,, : the rn4i feature of Pi. 

k=I 
&&: Produce the first cluster, 

Nk = I  
e, = P I  

( B I I ,  B i zp  B13) = (FII, F12, F13) 
or, equivalently, 

(10) 
where 

k: the number o€ existing clusters, 
N ,  : die number of patterns beloqing to ck , 
C, : the center of the k-th cluster, 
Bkl1,: tlie m - U I  coordinate of C, . 

Sten 5: Read the input patteni vectors by letting i=2, 
Sten 6: Read tlie i-th input pattern Pi = ( F i l ,  Fj2, Fi3)  

and calculate the Euclidean distance EDj 
between Pi = ( Fii ,  Fi2,  Fi3 I and the 
Cj = t n j l ,  B j2 ,  B j 3 )  . 

mj = CCF;,,, - B , , , ) ~  forj=1,2 ,..., k (11) v" m=l 
Step 7: Find Uie minimum Euclidean distance to the 

existing clusters, 

StepB: If E D ~ > V P ,  then create a new cluster center, 
k=k+l  

Or, equ i valen U y , 

EDp =rnin(EDj) for j=1,2, ..., k (12) 

c, =PI 

( B k ] p  Rk2,Bk3)= ( F i ] ,  Fi29 Fi3)  
N , = I  

(13) 

else, 
the pattern Pi = ( F i i ,  Fiz ,  Fi3)  belongs to the 
cluster p ,  and update the coordinates of C,,, 

I Fint for m=1,2,3 (14) B:: = Bo''' + - 
N ,  + I N,+  I 
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N , = N , + I  
SteD 9: If pattern vector Pi changes from the cluster "0" 

(the old one) to "k" (the new one), then the 
coordinates of CO are modified as: 
No = N o -  1 
gr = L B , O : - - F j ,  N + I  1 fornt=1,2,3 (15) 

NO NO 
SteD 1Q: Repeat Step 6-Step 9 until all the patterns have 

been compared with the existing clusters; 
S t e ~  11: If the clustering process has converged, end; 

otherwise, return to Step 5.  
With the advent of neurocomputer, the parallel distributed 

processing capability can potentially endow the ANN based 
clustering algorithm with a speed advantage over other series 
processing in the application of large power systems. 

4. SIMULATION RESULTS AND DISCUSSION 

4. I Test Condifion 

To verify the effectiveness of the proposed method, a 
comprehensive testing of various fault locations is conducted 
on two different systems: 

(a) The 10-machine New England system, 
(b) The 34-machine Taipower system. 

The disturbance is a three phase short circuit fault on the 
generator buses (GB) and the load buses (LB), cleared with 
and without line switching. Unless otherwise stated, the fault 
clearing time is set 0.2 s, and the study period is [0, 21 s 
throughout the simulation. Statistical assessments for 
evaluating the coherency degree of a generator pair are defined 
in terms of 

[Em = m a X ( E ] ,  €2, .  .. ... ) E" } 

where ~i is the absolute angle difference of the i-th sample 
wilh respect to the initial separation, E and EM denote the 
corresponding average and maximum angle difference of the 
rotor trajectories, respectively, over the study period [0, tmax]. 
The sample time of the statistical data is set 0.01 s. Totally, 
200 samples are compared for each generator pair over [0, 21 
s. For a coherent group containing many machines, pairwise 
comparisons must be made to indicate the coherency level of 
this cluster. 

Similarly, define the maximum average Egm and 
maximum absolute angle difference E ~ , ,  over all coherent 
groups as follows: 

where F, and E,., denote the average and maximum 
absolute angle difference of the j-th coherent group, and P is 
the number of coherent groups identified. 

4.2 The New England System 

The first test system is a 345 KV bulk transmission 
network of New England, which consists of 10 machines, 39 
busbars, and 46 lines. The single line diagram of the system is 
shown in Fig. 2 with the data found in [18]. Generator 10 is an 
equivalent power source representing parts of the USA- 
Canadian interconnection system. Generator 10 was not 
considered in the coherency identification process because of 
its very high inertia constant. 

27 
17 

8 

Fig. 2. The New England system [18]. 

Case 1; (3$ fault at bus #29, fault clearing at 0.2 s, line 29-26 

The generator G9 is selected as the study system. TABLE 
I shows the identified results for different input features and 
VP. It is obvious that both Fgl , ,  arid increase as VP 
increases in value irrespective of the features employed. 
According to Uie need for reduction in model complexity, one 
can specify an appropriate vigilance parameter. TABLE I1 
illusuates the iiifluence of choosing the rotor angle and speed 
as input features on coherency study. Also, the influence of Uie 
number of features used for ANN classification is explained 
with two features (sampled at 0.2 s and 0.4 s) and three 
features (sampled at 0.2 s, 0.4 s, and 0.6 s), respectively. Tlie 
sampled swing curves of some representative generators are 
depicted in Fig. 3. Obviously, an inspection from the swing 

ti-bped) 

TABLE I 
IDENTIFIED RESULTS FOR DIFFERENT INPUT FEATURES 

lnplt VP 
features 

". -. u.u 1.4 

Speed 0.5 (4.6 7)(2,3) 1.7 5.7 
0.6 I 2 3 4 6 7  *.. 1 ,  3.4 10.5 
1 .o (1-7) 5.8 33.5 
2.4 (1-8) 6.36 33.5 

' 
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TABLE I1 

- 1 0 0 3 , .  , , . , , . , . * .  , , . , , . , I  
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

(SI 

Fig. 3. Sampled swing curves for a fault 29*-26 of the New England system 
with the fault cleared at 0.2 s. 

errors (physical distance, abbreviated PD) of rotor speed at 
three distinct instants of G2 and G3 are listed in TABLE 111, 
which are 2.1 ra#s and 2.0 rads, respectively. The Euclidean 
distances of G2 and C3 are also included for comparison. In 
view of the great reduction in the error of ED, the presented 
frequency measure can be favorably used to minimize the 
errors from the TSE, if the TSE is utilized to predict the rotor 
speed. More significantly, both feature distributions from the 
above two methods can identify coherency very reliably. 

1.2 

0.: 

8 -0.4 
-0.6 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 
(SI 

Fig. 4. Swing curves for fault bus #25 of die New England system with the 
fault cleared at 0.6 s. 

curves shows that the generator pair (G6,G5) is more coherent TABLE I l l  
(ban the generator p&;(G6,G3)over [O,  0.61 s and conversely 
for [O, 21 s, as evidenced by comparing their respective E and 

COMPARATIVE RESULTS OF TEE S-kP-BY-STEP AND TAYLOR 
SERIES EXPANSION 

E,, in TABLE 11. Physically, the generators with higher 
coherency must be clustered before those with lower 
coherency when the distance threshold increases. If the 
observation is over [O, 0.61 s interval, both the angle and speed 
criteria work reliablv for coherency classification. since 
smaller ED corresponbs to more coherent generator pair. In 
addition, two features are sufficient for correct coherency 
identification. However, when the observation is extended to 
[0, 21 s, the clustering process cannot yield correct results 
even with the addition of angle feature at 0.6 s. Referring to 
TABLE I, as VP increases from 0.07 to 0.14, the resulting 
clustering sequence using the angle features is 
(G6) 3 (G6,G5) =+ (G6,G5,G3). More features must be added 
for correct classification. In Contrast, as VP increases from 0.5 
to 1.0, the use of three speed features yields the correct 
cl us t er in g (G6) * (G6,G3) *(G6,G3,G5). 
Therefore, the rotor angles may be attractive features for 
coherent identification up to the last observation time, but 
cannot reliably represent the entire system dynamics from 
then onwards. On the other hand, because the speed can 
predict the tendency of the rotor trajectory, tlie speed criterion 
requires less number of features than the angle criterion for 
(he identification of coherent generators with the same study 

sequence : 

period. 

Case 2; (3$ fault at bus #25, fault clearing at 0.6 s, without 

This case is intentionally introduced to illustrate the use of 
multi-step Taylor series expansion for a larger clearing time. 
The generator G8 is the study system. The swing curves of 
some representative generators with the fault cleared at 0.6 s 
are shown in Fig. 4. Apparently, the generators (G2,G3) and 
(G4-G7) form two coherent groups from the observed rotor 
trajectories. To assess the accuracy of the TSE, the root-square 

line tripping) 

I .  

4.3 Z7ie Taipower System 

The second test system is the Taipower system, which is a 
practical medium-sized system in Taiwan. This system has a 
longitudinal structure cbveriiig a distance of 400 KM from 
north to south. It is divided into three areas: northern area, 
central area, and southern area, as shown in Fig. 5 .  This 
system contains 191 buses, 34 generators and 234 lines. The 
highest transmission system voltage is 345 KV. 

Case 1; (3$ fault at bus #17, fault clearing at 0.2 s, line 17-18 

In this case, the generator G25 is the study system. Fig, 
6(a) shows the number of identified clusters and the number of 
iterations needed for the convergence of learning process for 
different vigilance values. If VP is set 0, there are totally 33 
clusters in the external system, since each isolated machine is 
considered as a (singleton) cluster. The set of resulting clusters 
can only decrease as the VP increases in value. It should be 
noted that the presented method always converges with the 
maximum number of iterations not exceeding four. For 
example, Fig. 6(b) shows die convergence process of the 
clustering algorithm with VP=0.9. It is obvious that [lie 
clustering algorithm converges to a stable pattern after three 
iterations. TABLE IV lists the identified coherent groups 

tripped) 

- -_ ...__.________I- - -- . --- -- 
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Fig. 6. The number of clusters and iterations for different vigilance values. 
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TABLE IV 
IDENTIFIED COHERENT GROUPS WITH DIFFERENT VIGILANCE 

I vp I - PARAMETERS 
Coherent group I Egnrax I & R r r m  I 

along with the related angle differences observed over [0, 21 s 
interval for different vigilance values. When VP increases 
from 0.1 to 0.4, the corresponding Eg,,, and E,,, increase 
from 0.1" and 0.5' to 4.5" and 5So,  respectively. In general, 
the smaller the vigilance value, the smaller the average and 
maximum angle difference of Ihe coherent generators, i.e., the 
higher degree of coherency the machines are aggregated. 

(34 fault at bus #22, fmlt clearing at 0.2 s, line 22-23 

The generators G31 and G32 constitute the study system. 
For a tolerance of 5 O ,  four coherent groups are identified wiUi 
VE0.4, as indicated by the feature distributions in Fig. 7. It is 
worth noting that (G21,G23) and G22 belong to different 
coherent groups. The swing curves of generators (G21-G23) 
with the fault cleared at 0.2 s are shown in  Fig. 8. Note that the 
generators (G21-G23) are connected to the same bus # 15 with 
identical generator inertia. I-Iowever, the rotor trajectory of 
G22 and that of G21 and G23 fall apart. Similar situation 
occurs for G29 and G30. IIence, the traditional coherency 
criteria, such as the distance measure [6,7] and generator 
inertia [7], often adopted lo identify coherent generators may 
not yield reliable results. On the other hand, the coherent 
groups recognized by the presented clustering method 
completely agree with hose obtained by the time simulation. 

uiPW1) 

14 I . I 
12 GROUP 1 

Fig. 7 .  Feature disrrihulions for a fault 22*-23 of Uie Taipower syslein 

From the coherency study on two different power 
systems, it is found that Uie coherent groups identitied by tlie 
presented clustering method in all cases conform to those 
obtained through direct simulation of the dynamics. According 
to the need for reduction in model complexity, one can select 
an appropriate vigilance parcameter to cluster the generators 
into different groups wich the specified level of coherency. 
Based on the comparison of the response of the accuracy of 
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equivalent with that of the actual system, our experience 
revealed that if tbe VP is set 0.4, the swing curves are 
clustered with the average angle difference less than 5'. 
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Fig. 8. Swing curves f a  a fault 22+-23 of the Taipower system with the fault 
cleared at 0.2 s. 

5 .  CONCLUSION 

This paper has tackled the toughest part of the process of 
producing dynamic equivalents in power systems through 
coherency identification. An efficient clustering method based 
on the use of an artificial n e d  network has been presented. It 
can reliably predict clustering of generators at different levels 
of Coherency as suggested by the vigilance parameters of the 
ANN. A new frequency measure of coherency bas first 
attempted to identify the coherent groups for each particular 
fault. Several computational advantages over the angle 
criterion can be offered by the swed criterion in the ANN 
implementation of the cluswing algorithm: 

(i) Since the speed of the generator can predict the tendency 
of the rotor trajectory, the number of input features 
required for ANN classification can be reduced with the 
same study period. 

(ii) Due to the reduction in the number of input features, the 
computational effort required in the convergence of the 
learning ptocess can be considerably reduced. 

(iii) In (8). the rotor speed can directly be used as input 
feature for ANN since wi(0)=O.  In contrast, the 
relative rotor angle difference, as indicated in (4), must 
be computed before the rotor angles are fed into the 
ANN for coherency identification. 

(iv) The presented frequency measure can be favorably used 
to minimize the errors from the TSE, if the TSE is 
utilized to predict the rotor speed on a longer time 
interval. 

Although in this study coherency identification has been 
investigated using the simple classical modeling, more 
accurate representation with refined generator and regulator 
modeling could be used without significant alteration to the 
clustering method. 
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