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Abstract: In this paper, a novel control scheme is proposed on the basis of the 

well-known Smith predictor for the control of integrating processes with long time delay. 

It can provide one and half degree-of-freedom for the closed loop system tuning. System-

atic design procedure is developed by employing optimal control theory, and simple and 

efficient tuning rules are derived analytically. It is shown that the design procedure can 

be directly extended to the control of stable processes with time delay. Numerical exam-

ples are given to illustrate the proposed method. Copyright © 2002 IFAC 
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1.  INTRODUCTION 

 

A frequently encountered problem in the process 

industries is that of controlling processes with a sig-

nificant time delay. This feature results from the 

presence of heat flow, material transportation, hy-

draulic and pneumatic transmission, chemical reac-

tors and distillation columns. Dealing with this prob-

lem serves then as a starting point for the design of 

almost any process control system, regardless of its 

configuration.  

 

“Time delay compensator” were developed in an 

attempt to overcome the detrimental effects of the 

time delay. The Smith predictor (Smith,1957) is the 

first of the compensation techniques. This technique 

utilizes an inner feedback compensation loop based 

on a first order plus time delay model of the process. 

The main drawback with the method is that it is inef-

fective for controlling integrating processes (Wata-

nabe and Ito,1981; Zhang and Xu, 1999; Astrom et 

al., 1994).  

 

To solve the problem, Astrom et al.(1994) presented 

a modified Smith predictor for integrator/time delay 

processes. The method provides superior perform-

ance to that of previous algorithms. One main merit 

of the new Smith predictor is that it decouples the 

setpoint response from the disturbance response. In 

other words, it is of two degree-of-freedom. Thus, the 

setpoint response and disturbance response can be 

optimized independently. The scheme was simplified 

and improved by Zhang and Sun(1996) and Tian and 

Gao (1998; 1999) in both structure and tuning rules 

and had been extended to the control of a first order 

plus time delay process (Zhang et al., 1998).  

The objective of this paper is to develop a novel 

scheme for the control of integrating processes with 

long time delay. The feature of the new scheme is 

that it can provide one and half degree-of-freedom 

for the closed loop system tuning. Only setpoint loop 

can be tuning independently. A systematic procedure 

for the design of controllers is formulated by em-

ploying optimal control techniques, and simple and 

efficient tuning rules are derived analytically. It is 

shown that the design procedure can be directly ex-

tended to the control of stable processes with time 

delay. 

 

We preview the some of the contents. In section 2, 

the optimal performance criterion is defined for set-

point loop. Analytical method is developed for the 

controller design. A compensating structure is intro-

duced in section 3, and the controller of disturbance 
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loop is then derived analytically. In section 4 the 

proposed design method is extended to the controller 

design of stable processes with time delay. The con-

clusions are finally given in section 5. 

 

2.  CONTROLLER DESIGN FOR TRACKING 

 

Optimal control is a well-established branch of con-

trol theory and is concerned with obtaining the best 

performance, in some sense, from a system. A state-

ment of the optimal control problem usually consists 

of a definition of the system structure and a per-

formance criterion. The control law is then obtained 

as the solution that minimizes the specified criterion 

within the admissible set of control signals. 

 

In this paper, we consider a new modified Smith pre-

dictor of which the structure is shown in Fig. 1. In the 

figure, R(s) is the controller of setpoint loop, D(s) is 

the controller of disturbance loop, G(s) is the plant, 

and G (s) is the delay-free part of the plant model 

G (s). It is seen that the control structure of setpoint 

loop is similar to that of internal model control 

(Zhang and Xu, 1999; Garcia et al., 1982). Hence, 

instead of the controller R(s) we first design the 

controller Q(s)  
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Fig. 1.  Generalized structure of modified 

Smith predictor 

 

The integrating process is given by 
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where T is the integral constant, A (s) and B(s) are 

polynomials in the Laplace transform variable s, all 

the roots of A (s) and B(s) are in the left half plane, 

A(0)=B(0)=1, and deg(B(s))≥deg(A (s)). If the model 

is exact, i.e., G (s)=G(s), then the transfer function 

of setpoint loop can be written as  
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In order to track the setpoint asymptotically, H (s) 

should satisfy the following constraint 
r
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This implies that the Q(s) should be 

of the form Q(s)=TsQ (s) with Q (0)=1, or 

equivalently, 
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A central concept in automatic control is the idea that 

the system output y can track the reference value r as 

well as possible in a suitable sense. The idea gives 

rise to the following performance criterion 

, where W(s) is the 

weighting function and  denotes the 2 norm of 

the transfer function. 

 

In process control, the controller is always designed 

for step setpoint. Thus, W(s) can be selected as 1/s. 

By utilizing the n/n order all-pass Pade approxima-

tion (Saff and Varga, 1977) we have  
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Notice that Q (θs), Q nn (-θs), A(s), and B(s) are 

polynomials with Q (0)=Q (0)=A(0)=B(0)=1. 

Hence, s must be the factor of Q (θs)- Q nn (-θs) 

and B(s)-A(s). Furthermore, it is known that all of the 

roots of Q (-θs) are on the right half plane. With 

the orthogonality property of the 2 norm we have 
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Notice that the right part of the above equation may 

not be proper. This does not appear to be a severe 

handicap, because poles can always be added to the 

denominator such that we can approximate the part 

arbitrarily closely without being improper. Minimiz-

ing the right side yields the optimal Q(s) 
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Hence, we derive the controller analytically. To im-

plement the controller physically we introduce a 

low-pass filter to roll Q(s) off at high frequency. Let  
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where λ 1 >0, i=deg(B(s))-deg(A(s))+1. The filter 

satisfies the asymptotic trajectory constraint. Then 
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After routine algebra we obtain  
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It is found that D(s) has no effect on R(s). Thus, the 

setpoint response can be adjusted independently. 

When λ  tends to be zero, the system recovers op-

timality.  
1

 

If the model is exact, the transfer function of the set-

point loop is 

 
is
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The characteristic equation is given as follows: 

λ 1 1 0s + = . It is seen that the closed loop system is 

always stable. When there exists model-plant mis-

match, the stability margin and the robustness of the 

closed loop system can be monotonously adjusted by 

the parameter λ 1 . The property has been studied by 

many researchers (Zhang and Xu, 1999; Zhang and 

Sun, 1996; Tian and Gao, 1998;1999). 

 

3.  REJECTION OF DISTURBANCE 

 

To simplify the analysis and design, we consider the 

effect caused by dG(s) without losing generality (Fig. 

1). Suppose that the model is exact. It is easy to ver-

ify that the transfer function from the disturbance 

dG(s) to the system output y is 
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We find that the disturbance response is determined 

by not only Q(s) but also D(s). This implies that the 

new scheme can only provide one and half de-

gree-of-freedom for the closed loop system tuning. 

The characteristic equation of the closed loop system 

consists of the denominator of 1+G(s)Q(s) and the 

nominator of 1+G(s)D(s). It is seen that there exists a 

time delay in the term 1+G(s)D(s). This greatly com-

plicates the analysis and design of the control system. 

It is well known that the attractiveness of Smith pre-

dictor comes from the fact that it removes the time 

delay from the closed loop characteristic equation, 

thus seemingly converting the design problem for a 

system with time delay to that for a system without 

time delay. Similarly, we will construct the structure 

of D(s) to eliminate the time delay. From the discus-

sion of Zhang and Sun(1996) and Tian and Gao(1998; 

1999) we know that many time delays in the charac-

teristic equation can be eliminated by introducing an 

internal model. It might as well let   
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where D (s) is a stable rational function. This leads 

to 
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Such a transfer function allows the use of classical 

design techniques developed for rational transfer 

functions.  

 

To reject the disturbance dG(s) asymptotically, 

H (s) should satisfy the following constraint dG
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Then we get D s sD s0 1( ) ( )1= + , where D (s) is 

stable. The controller D (s) should be designed such 

that the system output y caused by the disturbance 

1

0



dG(s) is minimized, i.e. 

min ( ) ( )W s H sdG 2 01λ →
.  

 

In the context of process control, the disturbance is 

usually assumed to be a step. Therefore, we select the 

same weighting function W(s). It follows that 
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Employing the all-pass Pade approximation gives  
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Minimize the right side we get the optimal 

D 1 (s)=0. The optimal D (s) can be consequently 

expressed as follows: . Since G(s) is 

an integrating process, the system is of type II. When 

we consider the asymptotic rejection of disturbance d, 

the following constraint is required 

opt 0

optD s0 1( ) =

 

i

ssi

s

dG
s

s

esDsAes

ds

d

sH
ds

d

)1(

))()(1)()1((
lim

)(lim

1

01

0

0

+
−++

=
−−

→

→

λ
λ θθ

=0                                    (17) 

 

Therefore, the following filter should be selected  
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where λ 2 >0, j=deg(B(s))+2. From the constraint 

(14) we obtain β 0 =1, and the constraint (17) gives 
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Hence, the controller that rejects the disturbance at 

the plant input can be written as  
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If the model is exact, the transfer function of the dis-

turbance loop is  
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We see that the loop is also stable. Compared with 

the setpoint loop, the stability margin and the robust-

ness of the closed loop system is determined by not 

only the parameters λ 2  but also the parameters 

λ 1 .  

 

From the above results we obtain  
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As there is a time delay in the denominator the im-

plementation of the structure needs an inner loop. 

Sometimes, we hope to use a simpler controller. In 

this case, we can substitute the 1/1 order Pade ap-

proximation for the time delay (Saff and Varga, 

1977). It follows that 
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For an integrator/time delay process one gets 
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It is found that the controller is in fact a PID control-

ler. 

 

Example 1  Consider the process described by the 

following transfer function 
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For both the optimal controller and simplified con-

troller we take λ 1 =1/0.6 and λ 2 =8. A unit step 

setpoint change is introduced at time t=0, and a step 

disturbance with magnitude 0.1 is introduced at time 

t=100. The responses are shown in Fig. 2 with a good 

process model. Fig. 3 shows the effect of 10% error 

in estimating the time delay. The practical time delay 

is 4.5. The controller is found to be robust against 

this degree of uncertainty. 
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Fig. 2.  Responses of nominal systems 

(Solid line: optimal; dashed line: simplified) 

 

Example 2  Consider a high order process given by 

the following transfer function 
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For the optimal controller we take λ 1 =1/1.7 and 

λ 2 =2. The responses of closed loop system are 

shown in Fig. 4.  
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Fig. 3  Responses of uncertain systems 

(Solid line: optimal; dashed line: simplified) 

 

4.  EXTENSION TO STABLE PROCESSES 

 

Though a lot of methods have been developed for 

controlling stable processes with time delay, we ex-

tend the method proposed in this paper to these proc-

esses. The extension can provide some insight into 

the performance improvement resulted from modify-

ing the control structure.  

Suppose that the process is described by the follow-

ing transfer function 
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where K is the gain, A (s) and B(s) are monic poly-

nomial in s, all the roots of A (s) and B(s) are in the 

left half plane, and deg(B(s))>deg(A (s)). If the model 

is exact, then the transfer function of setpoint loop 

can be written as  

 

0 5 0 1 0 0 1 5 0 2 0 0
0

0 .2

0 .4

0 .6

0 .8

1

1 .2

1 .4

1 .6

1 .8

2

t / s

O
u
tp

u
t

 
 

Fig. 4.  Responses of high order systems 

(Solid line: optimal) 
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By similar design procedure one obtains 
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where i=deg(B(s))-deg(A(s)). 

In the disturbance loop, D(s) is selected as follows   
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where D (s) is a stable rational function. It follows 

that 
0
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The optimal D (s) is then obtained  0

 

D sopt0 1( ) =            (29) 

 

It should be notice that the system is of type I. The 

following filter is selected  
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where j=deg(B(s)). Hence, the controller can be writ-

ten as  
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Example 3  Consider the following process (Huang 

et al., 1990) 
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Take λ 1 =2 and λ 2 =2 for the optimal controller. A 

unit step setpoint change is introduced at time t=0, 

and a unit step disturbance is introduced at time 

t=100. It is found that the proposed controller pro-

vides better performance than that of the modified 

Smith predictor with improved disturbance rejection 

capability (MSP) (Huang et al., 1990) (Fig. 5).  
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Fig. 5.  Control of stable processes 

(Solid line: MSP; dotted line: optimal) 

 

5.  CONCLUSIONS 

 

The major objective of this paper is to focus on the 

design of a novel scheme for integrating and stable 

processes with long time delay. The main contribu-

tion of the paper is the analytical derivation of the 

optimal controller. It should be point out that such a 

procedure can be directly applied for nonminimum 

phase processes. The tuning of the resulted closed 

loop system is very simple, since the response is de-

termined by the adjustable parameter monotonously. 

All of the traditional one degree-of-freedom control-

ler, the one and half degree-of-freedom controller and 

the two degree-of-freedom controller have their own 

merits. The superiority of the proposed controller is 

that it provides more freedom than one de-

gree-of-freedom controllers and less complexity than 

two degree-of-freedom controllers and this gives an-

other selection for control system designers. 
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