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Abstract: This work is devoted to the study of two copper complexes (Cu) bearing pyridine
ligands, which were synthesized, evaluated and tested as new visible light photoinitiators for
the free radical photopolymerization (FRP) of acrylates functional groups in thick and thin sam-
ples upon light-emitting diodes (LED) at 405 and 455 nm irradiation. These latter wavelengths
are considered to be safe to produce polymer materials. The photoinitiation abilities of these
organometallic compounds were evaluated in combination with an iodonium (Iod) salt and/or amine
(e.g., N-phenylglycine—NPG). Interestingly, high final conversions and high polymerization rates
were obtained for both compounds using two and three-component photoinitiating systems (Cu1
(or Cu2)/Iodonium salt (Iod) (0.1%/1% w/w) and Cu1 (or Cu2)/Iod/amine (0.1%/1%/1% w/w/w)).
The new proposed copper complexes were also used for direct laser write experiments involving a
laser diode at 405 nm, and for the photocomposite synthesis with glass fibers using a UV-conveyor
at 395 nm. To explain the obtained polymerization results, different methods and characterization
techniques were used: steady-state photolysis, real-time Fourier transform infrared spectroscopy
(RT-FTIR), emission spectroscopy and cyclic voltammetry.

Keywords: copper complex; photocomposite; LED; laser write; free radical photopolymerization

1. Introduction

The elaboration of polymers by photochemical means, such as free radical photopolymer-
ization (FRP) and cationic photopolymerization (CP), have been mainly based on the use of
metal-free organic dyes and photoinitiators at the industrial and academic levels [1–12], and
these synthetic processes (FRP and CP) are widely used in different fields, e.g., dentistry [13–23],
adhesives [24–28], coatings [29–33], composites [34], medicine [35–40], direct laser write, 3D
and 4D printing [41–50], etc. On the other hand, organometallic compounds are not really
used in industry; in other words, manufacturers avoid incorporating metallic compounds
in their synthetic formulations due to their potential toxicity and price [51–64]. With their
photochemical properties, such as high-absorption properties in the near-UV and visible
range [65–68], long-lived excited states [69–74], suitable redox potentials [75–89], copper
complexes can be used as photoinitiators (PIs)/photoredox catalysts able to produce active
species, according to a catalytic cycle [90,91]. Therefore, it is very important to develop new
metal-free photoinitiators or low-cost organometallic-based complexes [92–95].

In fact, copper complexes have attracted much attention and intense efforts have
been devoted in recent years to the development of new copper complexes of improved
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photosensitivity, due to their competitive costs compared to other metal complexes. Copper
complexes bearing a pyridine-based chelate ligand showed excellent photochemical proper-
ties for photocatalysis process, such as high-oxidation potential in the excited state [96–99],
long-excited-state lifetime, high-emission quantum yields and high-absorption properties
in the UV-visible region. Furthermore, copper complex derivatives have already been
tested as PIs for FRP, CP, as well as IPN synthesis [100–104].

In this paper, two new copper complexes (Cu1–Cu2) (Figure 1) were synthesized and
investigated as visible light photoinitiators upon exposure to LEDs at 405 and 455 nm for
FRP, CP and the synthesis of interpenetrating polymer networks (IPNs) of acrylate/epoxy
monomer blends. These compounds will be incorporated in two (Cu1 (or Cu2)/Iod
(0.1%/1% w/w)) and three-component (Cu1 (or Cu2)/Iod/NPG (0.1%/1%/1% w/w/w))
photoinitiating systems (PISs) to produce polymer materials by free radical photopoly-
merization and the polymerization of acrylate/epoxy blend (IPNs). The photoinitiating
ability of copper complexes will also be explained based on the interaction of Cu1 (or
Cu2)/Iod and Cu1 (or Cu2)/Iod/NPG, which can be studied using different techniques
and characterization processes, e.g., steady-state photolysis, cyclic voltammetry, fluores-
cence quenching and electron spin resonance spin trapping. Finally, to demonstrate the
effectiveness of these new copper complex-based photoinitiators, experiments using direct
laser writing (DLW), 3D printing and photocomposites synthesis were carried out in this
work using different irradiation sources.
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Figure 1. Copper complexes used in this work as PIs.

2. Materials and Methods
2.1. Synthesis of Chalcones, Ligands and Copper Complexes

Experimental conditions and acquisition conditions have been detailed
elsewhere [13,92,100]. The two chalcones used for the design of ligands L1 and L2 were
then engaged in a cyclization reaction with β-aminocrotonitrile according to a reaction
reported in 1992 by Masaki Matsui [105,106]. Bis(2-isocyanophenyl) phenylphosphonate
(binc) was synthesized by adapting a literature procedure [107,108].

Synthesis of bis(2-isocyanophenyl) phenylphosphonate (binc)
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Benzoxazole (9.1 g, 76.3 mmol, 1.0 equiv.) was dissolved in dry THF (200 mL). The
solution was cooled at−78 ◦C and n-BuLi (2.5 M in hexane, 32.0 mL, 80.0 mmol, 1.05 equiv.)
was added. Stirring was maintained for 1.5 h at this temperature. Phenyl phosphonic
dichloride (5.7 mL, 4.04 mmol, 0.53 equiv.) was added and the solution could warm to
room temperature. The solution was poured in Et2O:NaHCO3 (2:1, 150 mL). The organic
phase was washed with water several times, dried over magnesium sulfate and the solvent
removed under reduced pressure. The residue was crystallized in pentane/ethyl acetate
(4/1) to provide the ligand (55% yield) as a light brown solid. 1H NMR (400 MHz, CDCl3)
δ(ppm): 8.23–8.11 (m, 2H), 7.69 (td, J = 7.4, 1.3 Hz, 1H), 7.58 (dt, J = 12.5, 6.3 Hz, 2H),
7.48 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 7.9 Hz, 2H), 7.34 (td, J = 8.1, 1.6 Hz, 2H), 7.18 (t, J = 7.7 Hz,
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2H); 13C NMR (101 MHz, CDCl3) δ(ppm): 169.7, 145.7, 145.7, 134.5, 132.9, 132.8, 130.7, 130.7,
129.3, 129.1, 128.3, 125.9, 124.1, 124.1, 121.7, 121.7. (isonitrile carbons not detected); HRMS
(ESI MS) m/z: theor: 360.0664 found: 360.0666 (M+. detected).

Synthesis of (E)-3-(4-(dimethylamino)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one
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a plug of SiO2 using DCM as the eluent (2.83 g, 90% yield). 1H NMR (400 MHz, CDCl3) 

δ(ppm): 8.70 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.50 (dt, J = 8.0, 1.0 Hz, 1H), 8.40 (s, 1H), 7.85 

(td, J = 7.8, 1.8 Hz, 1H), 7.72–7.64 (m, 2H), 7.36 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.85–6.77 (m, 

2H), 3.05 (s, 6H), 2.89 (s, 3H); 13C NMR (101 MHz, CDCl3) δ(ppm): 162.47, 157.15, 155.03, 

154.08, 151.47, 149.38, 137.02, 129.74, 129.74, 124.47, 123.44, 122.10, 118.22, 117.68, 111.97, 

Following this, 4-(Dimethylamino)benzaldehyde (2.21 g, 14.8 mmol, M = 149.19 g/mol)
and 1-(6-methylpyridin-2-yl)ethan-1-one (2.00 g, 14.8 mmol, M = 135.17 g/mol) were
dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. After stirring the
solution overnight, the resulting solid was filtered off. It was purified by filtration on a
plug of SiO2 using DCM as the eluent. For a higher purity, the solid was first dissolved
in DCM and precipitated by addition of pentane (3.51 g, 89% yield). 1H NMR (400 MHz,
CDCl3) δ(ppm): 8.02 (d, J = 15.8 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 15.9 Hz,
1H), 7.65 (t, J = 7.7 Hz, 1H), 7.58–7.53 (m, 2H), 7.23 (d, J = 7.4 Hz, 1H), 6.66–6.60 (m, 2H),
2.97 (s, 6H), 2.60 (s, 3H); 13C NMR (101 MHz, CDCl3) δ(ppm): 189.62, 157.67, 154.57, 152.04,
145.63, 136.95, 130.84, 126.02, 123.26, 119.84, 115.94, 111.77, 40.13, 24.54; HRMS (ESI MS)
m/z: theor: 267.1453 found: 267.1451 ([M + H]+ detected).
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pentane/ethyl acetate (4/1) to provide the ligand (55% yield) as a light brown solid. 1H 

NMR (400 MHz, CDCl3) δ(ppm): 8.23–8.11 (m, 2H), 7.69 (td, J = 7.4, 1.3 Hz, 1H), 7.58 (dt, J 

= 12.5, 6.3 Hz, 2H), 7.48 (d, J = 8.4 Hz, 2H), 7.39 (d, J = 7.9 Hz, 2H), 7.34 (td, J = 8.1, 1.6 Hz, 

2H), 7.18 (t, J = 7.7 Hz, 2H); 13C NMR (101 MHz, CDCl3) δ(ppm): 169.7, 145.7, 145.7, 134.5, 

132.9, 132.8, 130.7, 130.7, 129.3, 129.1, 128.3, 125.9, 124.1, 124.1, 121.7, 121.7. (isonitrile car-

bons not detected); HRMS (ESI MS) m/z: theor: 360.0664 found: 360.0666 (M+. detected). 

Synthesis of (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one 

 
Next, 4‐(Dimethylamino)benzaldehyde (1.49 g, 10.0 mmol, M = 149.19 g/mol) and 1‐

(pyridin‐2‐yl)ethan‐1‐one (1.21 g, 10.0 mmol, M = 121.14 g/mol) were suspended in etha-

nol (50 mL) and aq. KOH (40%) (10 mL) was added. After stirring overnight, the solid was 

filtered off, washed with ethanol and water, and dried under vacuum. The product was 

purified by filtration on a plug of SiO2 using dichloromethane (DCM) as the eluent (2.32 

g, 92% yield). 1H NMR (400 MHz, CDCl3) δ(ppm): 8.61–8.49 (m, 1H), 8.01 (d, J = 7.4 Hz, 

1H), 7.92 (d, J = 15.8 Hz, 1H), 7.77 (d, J = 15.8 Hz, 1H), 7.66 (t, J = 7.0 Hz, 1H), 7.45 (d, J = 7.7 

Hz, 2H), 7.31–7.22 (m, 1H), 6.49 (d, J = 7.8 Hz, 2H), 2.83 (s, 6H); 13C NMR (101 MHz, CDCl3) 

δ(ppm): 189.16, 155.00, 152.11, 148.69, 145.94, 136.89, 130.90, 126.40, 122.99, 122.72, 115.47, 

111.74, 40.06; HRMS (ESI MS) m/z: theor: 253.1296 found: 253.1299 ([M + H]+ detected). 

Synthesis of (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(6‐methylpyridin‐2‐yl)prop‐2‐en‐1‐one 

 

Following this, 4‐(Dimethylamino)benzaldehyde (2.21 g, 14.8 mmol, M = 149.19 

g/mol) and 1‐(6‐methylpyridin‐2‐yl)ethan‐1‐one (2.00 g, 14.8 mmol, M = 135.17 g/mol) 

were dissolved in ethanol (50 mL) and aq. KOH (40%) (15 mL) was added. After stirring 

the solution overnight, the resulting solid was filtered off. It was purified by filtration on 

a plug of SiO2 using DCM as the eluent. For a higher purity, the solid was first dissolved 

in DCM and precipitated by addition of pentane (3.51 g, 89% yield). 1H NMR (400 MHz, 

CDCl3) δ(ppm): 8.02 (d, J = 15.8 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H), 7.84 (d, J = 15.9 Hz, 1H), 

7.65 (t, J = 7.7 Hz, 1H), 7.58–7.53 (m, 2H), 7.23 (d, J = 7.4 Hz, 1H), 6.66–6.60 (m, 2H), 2.97 (s, 

6H), 2.60 (s, 3H); 13C NMR (101 MHz, CDCl3) δ(ppm): 189.62, 157.67, 154.57, 152.04, 145.63, 

136.95, 130.84, 126.02, 123.26, 119.84, 115.94, 111.77, 40.13, 24.54; HRMS (ESI MS) m/z: 

theor: 267.1453 found: 267.1451 ([M + H]+ detected). 

Synthesis of 4‐(4‐(dimethylamino)phenyl)‐6‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile 

 

Potassium tert‐butoxide (1.2 g) and β‐aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 

g/mol) were dissolved in acetonitrile (300 mL) and the solution was heated at 35 °C for 15 

min. Chalcone (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one (2.52 g, 

10.0 mmol, M = 252.32 g/mol) was added and stirring was maintained for three days. The 

solid was filtered off and washed with ethanol and water. It was purified by filtration on 

a plug of SiO2 using DCM as the eluent (2.83 g, 90% yield). 1H NMR (400 MHz, CDCl3) 

δ(ppm): 8.70 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.50 (dt, J = 8.0, 1.0 Hz, 1H), 8.40 (s, 1H), 7.85 

(td, J = 7.8, 1.8 Hz, 1H), 7.72–7.64 (m, 2H), 7.36 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.85–6.77 (m, 

2H), 3.05 (s, 6H), 2.89 (s, 3H); 13C NMR (101 MHz, CDCl3) δ(ppm): 162.47, 157.15, 155.03, 

154.08, 151.47, 149.38, 137.02, 129.74, 129.74, 124.47, 123.44, 122.10, 118.22, 117.68, 111.97, 

Potassium tert-butoxide (1.2 g) and β-aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 g/mol)
were dissolved in acetonitrile (300 mL) and the solution was heated at 35 ◦C for 15 min. Chal-
cone (E)-3-(4-(dimethylamino)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one (2.52 g, 10.0 mmol,
M = 252.32 g/mol) was added and stirring was maintained for three days. The solid was fil-
tered off and washed with ethanol and water. It was purified by filtration on a plug of SiO2
using DCM as the eluent (2.83 g, 90% yield). 1H NMR (400 MHz, CDCl3) δ(ppm): 8.70 (ddd,
J = 4.8, 1.7, 0.9 Hz, 1H), 8.50 (dt, J = 8.0, 1.0 Hz, 1H), 8.40 (s, 1H), 7.85 (td, J = 7.8, 1.8 Hz,
1H), 7.72–7.64 (m, 2H), 7.36 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H), 6.85–6.77 (m, 2H), 3.05 (s, 6H),
2.89 (s, 3H); 13C NMR (101 MHz, CDCl3) δ(ppm): 162.47, 157.15, 155.03, 154.08, 151.47,
149.38, 137.02, 129.74, 129.74, 124.47, 123.44, 122.10, 118.22, 117.68, 111.97, 111.97, 106.10,
40.19, 40.19, 24.38; HRMS (ESI MS) m/z: theor: 315.1565 found: 315.1564 ([M + H]+ detected).
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111.97, 106.10, 40.19, 40.19, 24.38; HRMS (ESI MS) m/z: theor: 315.1565 found: 315.1564 ([M 

+ H]+ detected). 

Synthesis of 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile 

 

Potassium tert‐butoxide (1.2 g) and β‐aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 

g/mol) were dissolved in acetonitrile (300 mL) and the solution was heated at 35 °C for 15 

min. Chalcone (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(6‐methylpyridin‐2‐yl)prop‐2‐en‐1‐

one (L3) (2.66 g, 10.0 mmol, M = 266.34 g/mol) was added and stirring was maintained for 

three days. The solid was filtered off and washed with ethanol and water. It was purified 

by filtration on a plug of SiO2 using DCM as the eluent (2.76 g, 84% yield). 1H NMR (400 

MHz, CDCl3) δ(ppm): 8.40 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.69–7.63 

(m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 6.85–6.79 (m, 2H), 3.05 (s, 6H), 2.88 (s, 3H), 2.63 (s, 3H); 
13C NMR (101 MHz, CDCl3) δ(ppm): 162.36, 158.24, 157.56, 154.37, 154.00, 151.43, 137.13, 

129.70, 129.70, 124.09, 123.68, 119.11, 118.27, 117.78, 112.01, 112.01, 105.95, 40.21, 40.21, 

24.61, 24.38; HRMS (ESI MS) m/z: theor: 329.1722 found: 329.1719 ([M + H]+ detected). 

Synthesis of Cu1 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenylphosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (314 

mg, 1.0 mmol, M = 314.39 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Diethyl ether was added, 

as the product was a solid (866 mg, 98% yield). 1H NMR (400 MHz, CDCl3) δ(ppm): 8.96 

(s, 1H), 8.51 (s, 1H), 8.26 (s, 1H), 8.14 (dd, J = 14.2, 7.6 Hz, 2H), 7.85–7.70 (m, 4H), 7.70–7.59 

(m, 4H), 7.52–7.35 (m, 5H), 7.24 (t, J = 8.1 Hz, 2H), 6.94 (s (br), 2H), 3.21 (s, 3H), 3.11 (s, 6H); 

HRMS (ESI MS) m/z: theor: 737.1486 found: 737.1481 (M+. detected); Anal. Calc. for 

C40H31CuF6N6O3P2: C, 54.4; H, 3.5; O, 5.4; Found: C, 54.6; H, 3.4; O, 5.5%. 

Synthesis of Cu2 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenyl phosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (328 

mg, 1.0 mmol, M = 328.42 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Addition of diethyl 

ether precipitated the product as a yellow solid (883 mg, 98% yield). 1H NMR (400 MHz, 

DMSO) δ(ppm): 8.76 (s, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 8.02 (dd, J = 13.2, 7.2 Hz, 2H), 7.79 

(s, 6H), 7.67 (s, 2H), 7.56 (t, J = 7.9 Hz, 2H), 7.35 (dd, J = 21.3, 8.0 Hz, 5H), 6.92 (d, J = 8.8 Hz, 

2H), 3.14 (s, 3H), 3.06 (s, 6H), 2.93 (s, 3H); HRMS (ESI MS) m/z: theor: 751.1642 found: 

Potassium tert-butoxide (1.2 g) and β-aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 g/mol)
were dissolved in acetonitrile (300 mL) and the solution was heated at 35 ◦C for 15 min.
Chalcone (E)-3-(4-(dimethylamino)phenyl)-1-(6-methylpyridin-2-yl)prop-2-en-1-one (L3)
(2.66 g, 10.0 mmol, M = 266.34 g/mol) was added and stirring was maintained for three
days. The solid was filtered off and washed with ethanol and water. It was purified by
filtration on a plug of SiO2 using DCM as the eluent (2.76 g, 84% yield). 1H NMR (400 MHz,
CDCl3) δ(ppm): 8.40 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.69–7.63 (m, 2H),
7.21 (d, J = 7.6 Hz, 1H), 6.85–6.79 (m, 2H), 3.05 (s, 6H), 2.88 (s, 3H), 2.63 (s, 3H); 13C NMR
(101 MHz, CDCl3) δ(ppm): 162.36, 158.24, 157.56, 154.37, 154.00, 151.43, 137.13, 129.70,
129.70, 124.09, 123.68, 119.11, 118.27, 117.78, 112.01, 112.01, 105.95, 40.21, 40.21, 24.61, 24.38;
HRMS (ESI MS) m/z: theor: 329.1722 found: 329.1719 ([M + H]+ detected).

Synthesis of Cu1
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111.97, 106.10, 40.19, 40.19, 24.38; HRMS (ESI MS) m/z: theor: 315.1565 found: 315.1564 ([M 

+ H]+ detected). 

Synthesis of 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile 

 

Potassium tert‐butoxide (1.2 g) and β‐aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 

g/mol) were dissolved in acetonitrile (300 mL) and the solution was heated at 35 °C for 15 

min. Chalcone (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(6‐methylpyridin‐2‐yl)prop‐2‐en‐1‐

one (L3) (2.66 g, 10.0 mmol, M = 266.34 g/mol) was added and stirring was maintained for 

three days. The solid was filtered off and washed with ethanol and water. It was purified 

by filtration on a plug of SiO2 using DCM as the eluent (2.76 g, 84% yield). 1H NMR (400 

MHz, CDCl3) δ(ppm): 8.40 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.69–7.63 

(m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 6.85–6.79 (m, 2H), 3.05 (s, 6H), 2.88 (s, 3H), 2.63 (s, 3H); 
13C NMR (101 MHz, CDCl3) δ(ppm): 162.36, 158.24, 157.56, 154.37, 154.00, 151.43, 137.13, 

129.70, 129.70, 124.09, 123.68, 119.11, 118.27, 117.78, 112.01, 112.01, 105.95, 40.21, 40.21, 

24.61, 24.38; HRMS (ESI MS) m/z: theor: 329.1722 found: 329.1719 ([M + H]+ detected). 

Synthesis of Cu1 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenylphosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (314 

mg, 1.0 mmol, M = 314.39 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Diethyl ether was added, 

as the product was a solid (866 mg, 98% yield). 1H NMR (400 MHz, CDCl3) δ(ppm): 8.96 

(s, 1H), 8.51 (s, 1H), 8.26 (s, 1H), 8.14 (dd, J = 14.2, 7.6 Hz, 2H), 7.85–7.70 (m, 4H), 7.70–7.59 

(m, 4H), 7.52–7.35 (m, 5H), 7.24 (t, J = 8.1 Hz, 2H), 6.94 (s (br), 2H), 3.21 (s, 3H), 3.11 (s, 6H); 

HRMS (ESI MS) m/z: theor: 737.1486 found: 737.1481 (M+. detected); Anal. Calc. for 

C40H31CuF6N6O3P2: C, 54.4; H, 3.5; O, 5.4; Found: C, 54.6; H, 3.4; O, 5.5%. 

Synthesis of Cu2 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenyl phosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (328 

mg, 1.0 mmol, M = 328.42 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Addition of diethyl 

ether precipitated the product as a yellow solid (883 mg, 98% yield). 1H NMR (400 MHz, 

DMSO) δ(ppm): 8.76 (s, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 8.02 (dd, J = 13.2, 7.2 Hz, 2H), 7.79 

(s, 6H), 7.67 (s, 2H), 7.56 (t, J = 7.9 Hz, 2H), 7.35 (dd, J = 21.3, 8.0 Hz, 5H), 6.92 (d, J = 8.8 Hz, 

2H), 3.14 (s, 3H), 3.06 (s, 6H), 2.93 (s, 3H); HRMS (ESI MS) m/z: theor: 751.1642 found: 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 g/mol),
bis(2-isocyanophenyl)phenylphosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 g/mol) and
4-(4-(dimethylamino)phenyl)-6-methyl-[2,2′-bipyridine]-5-carbonitrile (314 mg, 1.0 mmol,
M = 314.39 g/mol) were dissolved in DCM (100 mL) and the solution was stirred at
25 ◦C for 2 h. The solution was concentrated to ca. 5 mL. Diethyl ether was added,
as the product was a solid (866 mg, 98% yield). 1H NMR (400 MHz, CDCl3) δ(ppm):
8.96 (s, 1H), 8.51 (s, 1H), 8.26 (s, 1H), 8.14 (dd, J = 14.2, 7.6 Hz, 2H), 7.85–7.70 (m, 4H),
7.70–7.59 (m, 4H), 7.52–7.35 (m, 5H), 7.24 (t, J = 8.1 Hz, 2H), 6.94 (s (br), 2H), 3.21 (s, 3H),
3.11 (s, 6H); HRMS (ESI MS) m/z: theor: 737.1486 found: 737.1481 (M+. detected); Anal.
Calc. for C40H31CuF6N6O3P2: C, 54.4; H, 3.5; O, 5.4; Found: C, 54.6; H, 3.4; O, 5.5%.

Synthesis of Cu2
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111.97, 106.10, 40.19, 40.19, 24.38; HRMS (ESI MS) m/z: theor: 315.1565 found: 315.1564 ([M 

+ H]+ detected). 

Synthesis of 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile 

 

Potassium tert‐butoxide (1.2 g) and β‐aminocrotonitrile (4.92 g, 60 mmol, M = 82.10 

g/mol) were dissolved in acetonitrile (300 mL) and the solution was heated at 35 °C for 15 

min. Chalcone (E)‐3‐(4‐(dimethylamino)phenyl)‐1‐(6‐methylpyridin‐2‐yl)prop‐2‐en‐1‐

one (L3) (2.66 g, 10.0 mmol, M = 266.34 g/mol) was added and stirring was maintained for 

three days. The solid was filtered off and washed with ethanol and water. It was purified 

by filtration on a plug of SiO2 using DCM as the eluent (2.76 g, 84% yield). 1H NMR (400 

MHz, CDCl3) δ(ppm): 8.40 (s, 1H), 8.27 (d, J = 7.8 Hz, 1H), 7.72 (t, J = 7.8 Hz, 1H), 7.69–7.63 

(m, 2H), 7.21 (d, J = 7.6 Hz, 1H), 6.85–6.79 (m, 2H), 3.05 (s, 6H), 2.88 (s, 3H), 2.63 (s, 3H); 
13C NMR (101 MHz, CDCl3) δ(ppm): 162.36, 158.24, 157.56, 154.37, 154.00, 151.43, 137.13, 

129.70, 129.70, 124.09, 123.68, 119.11, 118.27, 117.78, 112.01, 112.01, 105.95, 40.21, 40.21, 

24.61, 24.38; HRMS (ESI MS) m/z: theor: 329.1722 found: 329.1719 ([M + H]+ detected). 

Synthesis of Cu1 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenylphosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (314 

mg, 1.0 mmol, M = 314.39 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Diethyl ether was added, 

as the product was a solid (866 mg, 98% yield). 1H NMR (400 MHz, CDCl3) δ(ppm): 8.96 

(s, 1H), 8.51 (s, 1H), 8.26 (s, 1H), 8.14 (dd, J = 14.2, 7.6 Hz, 2H), 7.85–7.70 (m, 4H), 7.70–7.59 

(m, 4H), 7.52–7.35 (m, 5H), 7.24 (t, J = 8.1 Hz, 2H), 6.94 (s (br), 2H), 3.21 (s, 3H), 3.11 (s, 6H); 

HRMS (ESI MS) m/z: theor: 737.1486 found: 737.1481 (M+. detected); Anal. Calc. for 

C40H31CuF6N6O3P2: C, 54.4; H, 3.5; O, 5.4; Found: C, 54.6; H, 3.4; O, 5.5%. 

Synthesis of Cu2 

 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 

g/mol), bis(2‐isocyanophenyl)phenyl phosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 

g/mol) and 4‐(4‐(dimethylamino)phenyl)‐6,6′‐methyl‐[2,2′‐bipyridine]‐5‐carbonitrile (328 

mg, 1.0 mmol, M = 328.42 g/mol) were dissolved in DCM (100 mL) and the solution was 

stirred at 25 °C for 2 h. The solution was concentrated to ca. 5 mL. Addition of diethyl 

ether precipitated the product as a yellow solid (883 mg, 98% yield). 1H NMR (400 MHz, 

DMSO) δ(ppm): 8.76 (s, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 8.02 (dd, J = 13.2, 7.2 Hz, 2H), 7.79 

(s, 6H), 7.67 (s, 2H), 7.56 (t, J = 7.9 Hz, 2H), 7.35 (dd, J = 21.3, 8.0 Hz, 5H), 6.92 (d, J = 8.8 Hz, 

2H), 3.14 (s, 3H), 3.06 (s, 6H), 2.93 (s, 3H); HRMS (ESI MS) m/z: theor: 751.1642 found: 

Tetrakis(acetonitrile)copper(I) hexafluorophosphate (372 mg, 1.0 mmol, M = 372.72 g/mol),
bis(2-isocyanophenyl)phenyl phosphonate (binc) (360 mg, 1.0 mmol, M = 360.31 g/mol) and
4-(4-(dimethylamino)phenyl)-6,6′-methyl-[2,2′-bipyridine]-5-carbonitrile (328 mg, 1.0 mmol,
M = 328.42 g/mol) were dissolved in DCM (100 mL) and the solution was stirred at 25 ◦C
for 2 h. The solution was concentrated to ca. 5 mL. Addition of diethyl ether precipi-
tated the product as a yellow solid (883 mg, 98% yield). 1H NMR (400 MHz, DMSO)
δ(ppm): 8.76 (s, 1H), 8.62 (s, 1H), 8.21 (s, 1H), 8.02 (dd, J = 13.2, 7.2 Hz, 2H), 7.79 (s, 6H),
7.67 (s, 2H), 7.56 (t, J = 7.9 Hz, 2H), 7.35 (dd, J = 21.3, 8.0 Hz, 5H), 6.92 (d, J = 8.8 Hz,
2H), 3.14 (s, 3H), 3.06 (s, 6H), 2.93 (s, 3H); HRMS (ESI MS) m/z: theor: 751.1642 found:
751.1639 (M+. detected); Anal. Calc. for C41H33CuF6N6O3P2: C, 54.9; H, 3.7; O, 5.3;
Found: C, 55.0; H, 3.4; O, 5.5%.
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2.2. Other Chemicals

Chemical structure of the different monomers and additives are presented in Figure 2.
Di-tert-butyl-diphenyl iodonium hexafluorophosphate (Iod) and ethyl 4-(dimethylamino)-
benzoate (EDB) were obtained from Lambson Ltd. (UK). Di(trimethylolpropane) tetraacry-
late (TA), trimethylolpropane triacrylate (TMPTA), (3,4-epoxycyclohexane)methyl 3,4-
epoxycyclohexylcarboxylate (EPOX; Uvacure 1500), N-phenylglycine (NPG), N-vinylcarbazole
(NVK) and N,N-dimethyl-p-toluidine (TMA) were obtained from Allnex or Sigma Aldrich.
TA, TMPTA and EPOX were chosen as acrylic and cationic monomers for the radical and
cationic polymerizations.
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Figure 2. Other organic compounds used.

2.3. Irradiation Sources: Light-Emitting Diodes

All the irradiation sources used during these experiments are based on light-emitting
diodes (LEDs) and used as safe sources: (1) LED at 375 nm (I0 = 75 mW·cm−2) for the pho-
tolysis experiments, (2) LED at 405 nm (I0 = 110 mW·cm−2) and 455 nm (I0 = 75 mW·cm−2)
for the photopolymerization experiments, (3) LED conveyor at 395 nm (I0 = 4 W·cm−2) for
the photocomposite synthesis.

2.4. Photopolymerization Kinetics Determination by Real-Time Fourier Transform Infrared
Spectroscopy (RT-FTIR)

In the present work, copper derivatives were used in two and three-component PISs for
both FRP and CP under irradiation with LEDs at 405 and 455 nm. PISs were mainly based
on two-component Cu1 (or Cu2)/Iod (0.1%-0.2%-0.5%/1% w/w) and three-component Cu1
(or Cu2)/Iod/amine (NPG, NVK) (0.1%/1%/1% w/w/w) systems. The weight percOKent
of the photoinitiating (PI, co-initiator and amine) system was calculated from the global
monomer content. Firstly, two different samples were studied for each photosensitive
formulation in (i) thick (thickness = 1.4 mm) and (ii) thin samples (thickness = 25 µm).
The epoxy and acrylate conversions were continuously followed by RT-FTIR using a
JASCO FTIR 6600 (JASCO France, Lisses, France), so it was possible to determine the final
conversion of reactive functions and to calculate the polymerization rate of each kinetic.
Acrylate functions in thick and thin samples show peaks towards 6160 cm−1 and 1630 cm−1,
respectively, and the epoxide functions show peaks around 3600 cm−1 and 790 cm−1 for
the thick and thin samples, respectively.

2.5. Redox Potentials: Electrochemical Properties

Redox potentials of copper derivatives were determined in DCM by cyclic voltam-
metry using tetrabutylammonium hexafluorophosphate as the supporting electrolyte (po-
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tentials vs. saturated calomel electrode (SCE)). Free energy change (∆Get) for an electron
transfer reaction was calculated from Equation (1) [109], where Eox, Ered, E* and C repre-
sent the oxidation potential of the electron donor, the reduction potential of the electron
acceptor, the excited-state energy level (determined from fluorescence experiments) and
the coulombic term for the initially formed ion pair, respectively. Here, C is neglected as is
usually the case for polar solvents.

∆Get = Eox − Ered − E* + C (1)

2.6. UV-Visible Absorption, Steady-State Photolysis and Luminescence Experiments

Acquisition conditions have been detailed elsewhere [13,92,100].

2.7. Computational Procedure

Computational conditions have been detailed elsewhere [13,92,100,110,111]. Simu-
lated absorption spectra of copper complexes were obtained by time-dependent density
functional theory at the MPW1PW91/6-31G* level of theory on the relaxed geometries
calculated at the UB3LYP/6-31G* level of theory.

2.8. Photocomposite Access Using a Near-UV Conveyor

Photocomposite materials were obtained using a Dymax-UV conveyor at 395 nm.
Firstly, photosensitive resins were deposited on the glass fibers (reinforcement), then, this
mixture was cured using an LED conveyor @395 nm (I = 4 W·cm−2). Distance between the
belt and the LED was fixed to 15 mm, and the belt speed was fixed at 2 m/min.

2.9. Direct Laser Write (DLW) Experiment

The photosensitive formulation was deposited on a glass slide and 3D patterns were
obtained under air using a computer-controlled diode laser at 405 nm (spot size = 50 µm).
Analysis of the 3D patterns was carried out using a numerical optical microscope (DSX-
HRSU from OLYMPUS Corporation, Rungis, France) [112].

3. Results

Light-absorption properties, initiation ability and applications (photocomposite syn-
thesis and direct laser write) of the investigated copper complexes will be studied in
this section.

3.1. Synthetic Routes to Copper Complexes Cu1 and Cu2

Copper complexes bearing a pyridine-based chelate ligand showed excellent pho-
tochemical properties for photocatalysis processes, such as a high-oxidation potential in
the excited state [96–99], a long-excited-state lifetime, high-emission quantum yields and
high-absorption properties in the UV-visible region. In this work, two new copper com-
plexes have been developed, allowing, by the convenient choice of the ligands, a shift in
the absorption properties in the visible range, while maintaining high efficiency.

To allow such a shift of the absorption properties towards the visible, two bipyridine
ligands were synthesized starting from a chalcone. Structures of these chalcones and,
therefore, of the corresponding ligands have been selected in order to induce a significant
shift in the absorption spectrum of the copper complexes towards the visible range.

For the synthesis of the two chalcones, a Claisen-Schmidt condensation reaction
under basic conditions between 2-acetylpyridine A1 or 2-acetyl-6-methylpyridine A2 and
aldehyde A3 was carried out (See Scheme 1) [113–125].

These two chalcones engage in a cyclization reaction with β-aminocrotonitrile, al-
lowing the ligands to be formed. This reaction and its corresponding mechanism were
described in the literature in 1992 by Masaki Matsui [105,106].

As shown in Scheme 2, the mechanism proposed by Masaki Matsui involves the forma-
tion of two (L1 or L2) ligands. β-Aminocrotononitrile can exist as amino (1) and imino (2)
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isomers in solution. A Michael addition of thae carbanion of imino isomer 3 to C1 or C2 can
give intermediate 4, which, after an intramolecular cyclization and dehydration reaction,
can provide intermediate 6. At room temperature, dehydrogenation of 6 can give 7.
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Scheme 2. Probable mechanism described by Masaki Matsui.

Starting from the conditions described by Masaki Matsui, the ligands were indeed
obtained. The synthesis conditions were then optimized by using reduced quantities of
solvent, base and β-aminocrotonitrile, and with a simplified reaction treatment due to the
precipitation of the ligand at the end of the reaction, while maintaining a good yield. The
optimized synthesis of the ligands is detailed in the synthetic procedure detailed above.

Heteroleptic copper complexes bearing a pyridine-based chelate ligand and a diphos-
phine ligand, such as 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (or Xantphos) and
bis[2-(diphenylphosphino)phenyl]ether (or DPEphos), have previously been reported in the
literature. In this work, this second ligand was replaced by a bisisonitrile ligand, namely
bis(2-isocyanophenyl)phenylphosphonate. Indeed, as previously mentioned in a study
reported by Matthias Knorn [107], copper complexes bearing this ligand showed a higher
photocatalytic activity than their counterpart comprising a bisphosphine ligand. The lower
activity of copper complexes comprising bisphosphine ligands can be assigned to the
tendency of heteroleptic complexes to form an equilibrium with their homoleptic forms
in solution [108], especially for heteroleptic copper complexes combining biphosphine
and phenanthroline ligands. In contrast, in the case of the bisisonitrile ligand, studies
have revealed the low ability of heteroleptic complexes to undergo ligand exchanges. The
ligand was synthesized following the procedure described in the literature. Using these
two ligands, the pyridine ligands and the bisisonitrile ligand in a one-step complexation
reaction, the two desired copper complexes were obtained.

3.2. UV-Visible Absorption Spectra of Cu1 and Cu2

Ground-state absorption spectra of the new studied copper derivatives were de-
termined in DCM and the results are presented in Figure 3. Extinction coefficients at
different emission wavelengths used in photopolymerization experiments are reported
in Table 1. New complexes are characterized by a broad absorption band, which ex-
tends between 380 nm and 650 nm, and high-extinction coefficients in the blue region,
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e.g., ε = 7570 M−1·cm−1, 7040 M−1·cm−1 @400 nm for Cu1 and Cu2, respectively. These
compounds also have high-extinction coefficients at the emission wavelengths of LEDs
(at 405 nm and 455 nm) used in different experiments achieved in this work, for exam-
ple, ε@405nm = 8460 and 7950 M−1·cm−1 for Cu1 and Cu2, respectively. Remarkably, a
bathochromic shift in the absorption spectra of Cu2 was observed compared to that of Cu1.
This effect could be related to the presence of a methyl group, which is considered as an
electron-donating group (inductive effect), on the pyridine ligands of Cu2 (λmax = 445 nm
for Cu1 and 441 nm for Cu2). This difference could also be explained by the optimized ge-
ometries, as well as the frontier orbitals (highest occupied molecular orbital—HOMO—and
lowest unoccupied molecular orbital—LUMO), which are shown in Figure 4.
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Figure 3. UV-visible absorption spectra of (1) Cu1 and (2) Cu2 in DCM.

Table 1. Maximum absorption wavelengths (λmax), extinction coefficients at λmax, and molar extinc-
tion coefficients for the investigated copper complexes at different emission wavelengths for different
LEDs used.

λmax
(nm)

εmax
(M−1·cm−1)

ε375nm
(M−1·cm−1)

ε405nm
(M−1·cm−1)

ε455nm
(M−1·cm−1)

Cu1 445 14,000 7150 8460 13,600
Cu2 441 12,700 5760 7950 11,740
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Figure 4. HOMO and LUMO for Cu1 and Cu2 at the UB3LYP/6–31G* level.
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3.3. Photopolymerization Experiments
3.3.1. Free Radical Photopolymerization Using TA as a Benchmark Monomer

Due to their good light-absorption properties in the visible range, copper complexes
were tested as photoinitiators for the FRP of acrylate-based monomers upon exposure to
LEDs at 405 nm (I = 110 mW·cm−2) and 455 nm (I = 75 mW·cm−2).

In fact, photoinitiators (0.1% or 0.2%) were dissolved and mixed into the TA acrylate
monomer in combination with Iod salt (1%) in order to make two-component photoini-
tiating systems, on the one hand, and in combination with Iod/amine (1%/1% w/w) to
form three-component photoinitiating systems, on the other hand. Interestingly, these
dyes exhibit excellent free radical photopolymerization conversions in thick and thin sam-
ples. The related results are gathered in Figure 5 and the data are summarized in Table 2.
Remarkably, copper complexes alone, Iod and amine alone cannot polymerize the sam-
ple. Iod salt and amine are used as co-initiators in this work because they do not absorb
visible light. It is important to introduce the dyes (i.e., the copper complexes) into the
photosensitive formulations in order to obtain a good light absorption at 405 nm and 455
nm. The obtained results using copper derivatives in two-component PISs showed that
Cu2 was more efficient than Cu1 for the FRP of TA using different PI percentages, e.g.,
FC ~ 64% for Cu1/Iod (0.1%/1% w/w) vs. 70% for Cu2/Iod (0.1%/1% w/w) (Figure 5A
curve 1 vs. 2), and FC ~ 62% for Cu1/Iod (0.2%/1% w/w) vs. 85% for Cu2/Iod (0.2%/1%
w/w) (Figure 5A curve 3 vs. 4).
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Figure 5. Free radical photopolymerization profiles of acrylate functions vs. irradiation time
in: (A) thick samples @455 nm, (B) thin sample @455 nm, (C) thick sample @405 nm and (D) thin sam-
ple @405 nm: (1) Cu1/Iod (0.1%/1% w/w), (2) Cu2/Iod (0.1%/1% w/w), (3) Cu1/Iod (0.2%/1% w/w),
(4) Cu2/Iod (0.2%/1% w/w), (5) Cu1/Iod/EDB (0.1%/1%/1% w/w/w), (6) Cu2/Iod/EDB (0.1%/1%/1%
w/w/w), (7) Cu1/Iod/NPG (0.1%/1%/1% w/w/w), (8) Cu2/Iod/NPG (0.1%/1%/1% w/w/w),
(9) Iod/EDB (1%/1% w/w) and (10) Iod/NPG (1%/1% w/w). Irradiation starts at t = 10 s.

Furthermore, Iod/NPG couple showed a weak polymerization initiation ability upon
exposure to LEDs at 405 nm and 455 nm after 60 s (e.g., FC ~ 10% @405 nm). Inter-
estingly, a greater efficiency was observed when NPG was incorporated into the for-
mulation. Compared to their two-component system analogues, the different three-
component PISs showed a better final conversion of reactive functions and a higher
polymerization rate upon irradiation with LEDs at 405 nm or 455 nm (for example, an
FC up to 86% is obtained with Cu1/Iod/NPG (0.1%/1%/1% w/w/w), and 88% using
Cu2/Iod/NPG (0.1%/1%/1% w/w/w) with a LED @455 nm).



Polymers 2022, 14, 1998 10 of 21

Table 2. Final reactive functions conversion (FC) for TA monomer using two or three-component
PISs upon exposure at different wavelengths (LED at 405 and 455 nm).

At 405 nm At 455 nm

Thick Sample Thin Sample Thick Sample Thin Sample

Cu1/Iod 56% a 62% b 36% a 28% b 64% a 64% b 26% a 26% b

Cu2/Iod 64% a 67% b 45% a 33% b 70% a 87% b 48% a 46% b

Cu1/Iod/amine 57% c 80% d 58% c 65% d 69% c 85% d 59% c 65% d

Cu2/Iod/amine 82% c 83% d 65% c 74% d 71% c 87% d 64% c 65% d

a: Cu/Iod (0.1%/1% w/w), b: Cu/Iod (0.2%/1% w/w), c: Cu/Iod/EDB (0.1%/1%/1% w/w/w), d: Cu/Iod/NPG
(0.1%/1%/1% w/w/w).

3.3.2. Cationic Polymerization and IPN Synthesis

Typical epoxide function conversion-time profiles for Cu1 and Cu2-based photoinitiat-
ing systems are given in Figure 6 and the data are gathered in Table 3. In fact, the cationic
polymerization of the epoxide functions was carried out under air and upon irradiation
at 405 nm. Indeed, the cationic polymerization is insensitive to oxygen. As expected,
copper complexes alone and the additives alone were not able to initiate the CP in these
irradiation conditions. The addition of Iod salt or Iod/NVK into the formulation containing
the PI induced good photopolymerization profiles, i.e., the combination Cu/Iod/NVK
(0.1%/2%/3% w/w/w) is very efficient to produce polymer materials in terms of Rp and
final epoxy function conversion compared to Cu/Iod (0.1%/1% w/w), e.g., (FC ~ 50% for
Cu1/Iod/NVK (0.1%/2%/3% w/w/w) vs. 27% for Cu1/Iod (0.1%/1% w/w)). The con-
sumption of epoxide functions was accompanied by the formation of a polyether network
(appearance of peak at ~1080 cm−1), characterizing the obtained polymer.
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Figure 6. (A) Cationic polymerization (CP) profiles of epoxy functions (thin sample) vs. irradiation
time upon exposure to LED at 405 nm: (1) Cu1/Iod (0.1%/1% w/w), (2) Cu2/Iod (0.1%/1% w/w),
(3) Cu1/Iod/NVK (0.1%/2%/3% w/w/w) and (4) Cu2/Iod/NVK (0.1%/2%/3% w/w/w). (B) IR
spectra recorded before and after polymerization. Irradiation starts at t = 10 s.

Table 3. Final reactive function conversions for EPOX monomer using two and three-component PISs
upon irradiation at 405 nm during the polymerization of thin samples.

Cu/Iod (0.1%/1% w/w) Cu/Iod/NVK (0.1%/2%/3% w/w/w)

Cu1 27% 49%
Cu2 16% 45%

On the other hand, IPNs syntheses were also carried out in this work and polymer-
ization tests were performed in thick and thin samples using LEDs at 405 nm and 455 nm
(See Tables 4 and 5). Photopolymerization profiles for the IPN formation are presented
in Figure 7. For example, the acrylic network formation was very fast with a high final
conversion (98%) for Cu2/Iod/NPG (0.1%/1%/1% w/w/w) in TA/EPOX (50%/50%) upon



Polymers 2022, 14, 1998 11 of 21

irradiation at 455 nm, and the formation of the epoxy network was also efficient (high final
conversion and Rp) using this system (FC ~ 55%).

Table 4. Final conversions of acrylate and epoxides functions for the IPN synthesis of TA/EPOX
blend using Cu1 (or Cu2)/Iod/NPG (0.1%/1%/1%/ w/w/w) as PIS upon exposure to visible light
at 405 nm.

IPN Synthesis of TA/EPOX Blend
Performed in Thick Sample at 405 nm

IPN Synthesis of TA/EPOX Blend
Performed in Thin Sample at 405 nm

30%/70% 50%/50% 30%/70% 30%/70% 50%/50% 70%/30%
Cu1 90%/25% 90%/15% 93%/27% 88%/25% 87%/31% 84%/47%
Cu2 99%/30% 98%/20% 96%/38% 92%/22% 90%/35% 80%/32%

Table 5. Final conversions of acrylate and epoxides functions for the IPN synthesis of TA/EPOX
blend using Cu1 (or Cu2)/Iod/NPG (0.1%/1%/1%/ w/w/w) as PIS upon exposure to visible light
at 455 nm.

IPN Synthesis of TA/EPOX Blend
Performed in Thick Sample @455 nm

IPN Synthesis of TA/EPOX Blend
Performed in Thin Sample @455 nm

30%/70% 50%/50% 30%/70% 30%/70% 50%/50% 70%/30%
Cu1 90%/30% 90%/23% 90%/41% 90%/15% 90%/25% 90%/15%
Cu2 100%/38% 98%/55% 99%/51% 98%/22% 99%/30% 98%/22%
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Figure 7. Photopolymerization profiles of acrylate functions (A) (thick sample), (B) (thin sample))
upon irradiation at 455 nm, and epoxide function ((C) (thick sample), (D) (thin sample)) upon
exposure to LED at 405 nm of TA/EPOX using Cu1/Iod/NPG (0.1%/1%/1% w/w/w): (1) 30%/70%,
(2) 50%/50%, (3) 70%/30%, and Cu2/Iod/NPG (0.1%/1%/1% w/w/w): (4) 30%/70%, (5) 50%/50%,
(6) 70%/30%. The irradiation starts at t = 10 s.

3.4. Photocomposites Synthesis

Nowadays, many of our modern technologies require materials with enhanced proper-
ties. This is particularly true for materials used in aerospace, underwater and transportation
applications. For example, for aeronautical applications, engineers research materials with
properties of low density, rigid, solid, impact resistance, temperature and pressure resis-
tance and obviously materials that do not easily corrode. For this purpose, composite
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materials have been used for different applications. By definition, a composite material
is composed of a least two components that results in better properties than those of the
individual components used alone: matrix (monomer blends) and reinforcement. The main
advantages of composite materials are their high stiffness, strength and low density. The
introduction of light for the synthesis of photocomposites will make the manufacture of
these materials more ecological.

In this study, the matrix is based on acrylic monomers, such as TMPTA or TA, and the
second component (reinforcement) is based on glass fibers. Firstly, the acrylic resins were
deposed on the reinforcement (50%/50% w/w) and the mixtures were irradiated using
an LED conveyor at 395 nm. Interestingly, a very fast polymerization on the surface and
the bottom was observed with tack-free surfaces, after one pass only using one layer of
glass fibers (1 mm). Increasing the reinforcement thickness by adding several layers, the
polymerization on the surface is always fast and takes place after one pass, but the curing
on the bottom is more complicated and will be done after several passes using Cu1 or
Cu2/Iod/NPG (0.1%/1%/1% w/w/w) as PISs. The curing photocomposite results are
depicted in Figure 8 and Table 6.
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Figure 8. Free radical photopolymerization for the photocomposite synthesis upon near-UV irra-
diation at 395 nm (4 W·cm−2) using Cu2/Iod/NPG (0.1%/1%/1% w/w/w) in TA [(1)–(4)], (5))
Cu2/Iod/NPG (0.1%/1%/1% w/w/w) in TMPTA, (6) Cu1/Iod/NPG (0.1%/1%/1% w/w/w) in
TMPTA and (7) Cu1/Iod/NPG (0.1%/1%/1% w/w/w) in TA.

3.5. Direct Laser Write (DLW)

The new copper complexes were tested in some direct laser write experiments for
the FRP of TMPTA or TA using a laser diode at 405 nm (spot size: 50 µm). The obtained
3D patterns were carried out under air and using different PISs based on Cu1/Iod/TMA,
Cu2/Iod/TMA in TA or TMPTA (Figure 9). Due to their high ability to initiate the FRP
of acrylates, these systems were able to generate high-spatial-resolution 3D patterns with
a great thickness of curing (~2500 µm) in the irradiated area. As such, 3D patterns were
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generated with very short irradiation times (2–3 min) and they were characterized by
numerical microscopy.

Table 6. Photocomposite synthesis results using TA as acrylic monomer (or TMPTA) and number of
passes to reach the tack-free character on the surfaces.

Thickness Number of Passes to Reach
Tack-Free Character on the Surface

Number of Passes to Reach
Tack-Free Character on the Bottom

Cu2/Iod/NPG 1.6 mm 1 1
Cu2/Iod/NPG 2.9 mm 1 2
Cu2/Iod/NPG 4.2 mm 1 6

Cu2/Iod/NPG (TMPTA) 7.1 mm 1 25
Cu2/Iod/NPG 6.5 mm 1 30
Cu1/Iod/NPG 5.25 mm 1 40

Cu1/Iod/NPG (TMPTA) 5.1 mm 1 45
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Figure 9. 3D patterns produced by free radical photopolymerization of acrylate functions
(TA or TMPTA) using a laser diode at 405 nm and their characterization by numerical op-
tical microscopy: (A) Cu2/Iod/TMA (0.057%/1%/0.46% w/w/w) in TA, (B) Cu1/Iod/TMA
(0.058%/0.506%/0.44% w/w/w) in TMPTA; (C) Cu2/Iod/TMA (0.048%/0.65%/0.259% w/w/w) in
TA and (D) Cu1/Iod/TMA (0.05%/0.5%/0.305% w/w/w).

3.6. Mechanical Properties: Tensile Test Measurements

The tensile strength of IPNs synthesized using different compositions of the TA/EPOX
mixture are presented in Table 7. The results show that with the increase in the percentage
of acrylic monomer, the tensile strength increases, which may be due to the rigid character
of the acrylates (e.g., 7.2 MPa for Cu2/Iod/NPG in TA/EPOX (30%/70%) vs. 37.2 MPa for
the same system in TA/EPOX (70%/30%)).

Table 7. The tensile strength of IPN materials as a result of hybrid polymerization of the TA/EPOX
mixture using Cu/Iod/NPG (0.1%/1%/1% w/w/w) as a photoinitiating system.

Tensile Strength
[MPa]

0.1%PA/Iod/NPG
TA/EPOX (30% 70%)

@ 395 nm

0.1% PA/Iod/NPG
TA/EPOX (50% 50%)

@ 395 nm

0.1% PA/Iod/NPG
TA/EPOX (70% 30%)

@ 395 nm

Cu1 6.5 7.3 34.3

Cu 2 7.2 26.3 37.2
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4. Discussion

In order to explain the initiating ability of the organometallic complexes, their pho-
tochemical and photophysical properties were studied using different characterization
techniques, allowing for the characterization of the associated chemical mechanisms.

4.1. Steady-State Photolysis of the Investigated Compounds

Photolyses of Cu1 and Cu2 dyes in DCM were investigated upon irradiation at 375 nm
and 405 nm, and the related results are shown in Figure 10. First of all, no photolysis
occurred for Cu1 and Cu2 alone (0% consumption) upon irradiation at 375 nm and 405 nm,
but the incorporation of the iodonium salt into the photosensitive solution could promote
the degradation of the dyes, so that a strong decrease in the absorbance band intensity was
observed by increasing the irradiation time, e.g., consumption ~ 80% @375 nm and 82% for
Cu2/Iod at 375 nm and 405 nm, respectively (Figure 11B). It is important to note that the
photolysis of Cu1 in the presence of Iod salt involved the formation of a photoproduct after
60 s of irradiation in the solution, which had an absorption band more shifted in the visible
(bathochromic effect) spectrum, then this photoproduct degrades under the effect of the
irradiation (Figure 10A).
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Figure 10. Photolysis experiments of (A) Cu1 with Iod salt (10−2 M), (B) Cu2 with Iod salt (10−2 M)
and (C) Cu2/Iod/NPG (10−2 M) upon exposure to LED at 405 nm. (D) Consumption percentage of
Cu2: (1) alone, (2) with Iod, (3) with Iod/NPG.

This difference between these two consumption percentages may be due to the high
light-absorption ability of Cu2 at 405 nm, as well as the highest intensity of the LED at
405 nm (110 mW·cm−2), compared to that at 375 nm (75 mW·cm−2). Furthermore, in the
case of three-component PISs, the consumption of Cu2 was lower compared to that of the
two-component Cu2/Iod system. It can be confidently assigned to the regeneration of Cu2
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in the three-component system due to the presence of the sacrificial amine or the formation
of new photoproducts (%consumption ~ 31%).
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Figure 11. (A) Photolysis of Cu2 with Iod (10−2 M) upon irradiation @375 nm. (B) Consumption of
Cu2 with irradiation @375 nm and 405 nm.

4.2. Photoluminescence and Electrochemical Properties

Fluorescence emission spectra, fluorescence quenching (measured using a JASCO
FP-6200 spectrofluorimeter, Lisses, France) and the oxidation potential (measured in DCM
by cyclic voltammetry, OrigaLys, Rillieux-la-Pape, France) results of the different Cu
derivatives are gathered in Figure 12 and Table 8. The excited-state energy was calculated
from the crossing point of the emission and absorption spectra. Using these different values,
the free-energy change (∆G) could be calculated; this parameter reflects the reactivity
between Cu and Iod. In fact, a slight decrease in the fluorescence intensity was observed for
Cu1/Iod, but this emission spectra showed a strong decrease for Cu2 upon addition of Iod.
These behaviors explain the high reactivity of Cu2/Iod compared to Cu1/Iod e.g., φ = 0.55
for Cu1/Iod vs. 0.74 for Cu2/Iod. In addition, the ∆G value is negative for both complexes,
so that the photo-oxidation interaction Cu1 (or Cu2)/Iod is favorable in both cases, with a
superiority observed for Cu2 (∆G = −0.74 and 0.62 eV for Cu2 and Cu1, respectively). It,
therefore, explains the high-photoinitiation ability of Cu2 compared to Cu1.

Finally, the initiation ability of the new copper complexes could be explained by differ-
ent characterization techniques, which allowed us to propose a chemical photoinitiation
mechanism. Firstly, Cu is excited upon irradiation at 405 or 455 nm and interacts with Iod
to generate aryl radical (Ar•) and radical Cu•+ [r1–r2]. A charge transfer complex CTC can
be formed after adding NPG into the photosensitive formulation. This complex is able to
produce aryl radicals as active species for the radical photopolymerization [r3–r4]. Then,
1,3Cu could react with NPG and generate two radicals (NPG-H

•, Cu-H•) [r5], and the first
radical can undergo a decarboxylation and produce active radicals (NPG(-H,-CO2)

•) [r6].
This radical can also lead to the formation of two active species after interaction with Iod
salt (NPG(-H,-CO2)

+, Ar•) [r7]. Lastly, copper complex derivatives are regenerated [r8–r9]
(See Scheme 3).
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Figure 12. (A) Fluorescence quenching of Cu2 by Iod salt, (B) ES1 determination for Cu2, (C) Stern–
Volmer coefficient determination of Cu2 quenched by Iod and (D) oxidation potential determination
of Cu2.

Table 8. Parameters characterizing the chemical mechanisms between Cu1 (or Cu2) and Iod. For Iod,
a reduction potential of −0.7 eV was used for the ∆Get calculations.

Eox
(V)

ES1
(eV)

∆G(Cu/Iod)
(eV) KSV(Cu/Iod) Φ(Cu/Iod)

Eox
(V)

Cu1 1.07 2.34 −0.62 13.58 0.55 Cu1
Cu2 0.97 2.41 −0.74 61.83 0.74 Cu2
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5. Conclusions

In the present paper, new copper complexes were synthesized and tested as photoini-
tiators. These compounds have strong visible-light absorption and are able to initiate both
the free radical photopolymerization and cationic polymerization. IPN synthesis through
the simultaneous polymerization of acrylate/epoxy monomer blends was performed under
air upon irradiation at 405 nm and 455 nm, using a very low quantity of copper complex,
in two or three-component PIS. Cu2 showed a very interesting photoinitiation capacity
compared to Cu1 in terms of final conversions of reactive functions and polymerization
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rates. The high reactivity of these compounds was demonstrated through some direct laser
write experiments, where high-spatial-resolution 3D patterns were obtained. In addition,
the synthesis of thick glass fiber photocomposites was possible. This work paves the way
for the development of new organometallic photoinitiators.
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