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Abstract

Altered levels of cerebrospinal fluid (CSF) peptides related to Alzheimer’s disease (AD) are

associated with pathologic AD diagnosis, although cognitively normal subjects can also have

abnormal levels of these AD biomarkers. To identify novel CSF biomarkers that distinguish

pathologically confirmed AD from cognitively normal subjects and patients with other

neurodegenerative disorders, we collected antemortem CSF samples from 66 AD patients and 25

patients with other neurodegenerative dementias followed longitudinally to neuropathologic

confirmation, plus CSF from 33 cognitively normal subjects. We measured levels of 151 novel

analytes via a targeted multiplex panel enriched in cytokines, chemokines and growth factors, as well

as established AD CSF biomarkers (levels of Aβ42, tau and p-tau181). Two categories of biomarkers

were identified: (1) analytes that specifically distinguished AD (especially CSF Aβ42 levels) from

cognitively normal subjects and other disorders; and (2) analytes altered in multiple diseases

(NrCAM, PDGF, C3, IL-1α), but not in cognitively normal subjects. A multiprong analytical

approach showed AD patients were best distinguished from non-AD cases (including cognitively

normal subjects and patients with other neurodegenerative disorders) by a combination of traditional

AD biomarkers and novel multiplex biomarkers. Six novel biomarkers (C3, CgA, IL-1α, I-309,

NrCAM and VEGF) were correlated with the severity of cognitive impairment at CSF collection,

and altered levels of IL-1α and TECK associated with subsequent cognitive decline in 38

longitudinally followed subjects with mild cognitive impairment. In summary, our targeted

proteomic screen revealed novel CSF biomarkers that can improve the distinction between AD and

non-AD cases by established biomarkers alone.

Keywords
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Introduction

Alzheimer’s disease (AD), frontotemporal lobar degenerations (FTLD) and dementia with

Lewy bodies (DLB) are major neurodegenerative disorders pathologically characterized by

lesions composed of disease-specific misfolded proteins. Their clinical syndromes often have

overlapping features, making antemortem prediction of pathology challenging. Yet, as specific

disease-modifying therapies become available, it is increasingly important that such diagnoses

be made. Analytes in cerebrospinal fluid (CSF) associated with AD pathology, such as total

tau, tau phosphorylated at threonine 181 (p-tau181) and Aβ1-42 (or Aβ42), offer the potential

for more accurate diagnosis, although cognitively normal elderly subjects could have altered

levels of these traditional AD biomarkers [20,24,26]. Peptides in common inflammatory and

apoptotic pathways, growth factors and other analytes have also been proposed as novel CSF

biomarkers for AD [23] and the use of novel biomarkers on their own or in conjunction with

traditional AD biomarkers may improve the specificity of CSF-based AD diagnosis. Recently,

a proteomic approach targeting specific inflammatory and growth factors in the plasma

identified novel biomarkers for the clinical diagnosis of AD [21], but the absence of

pathological confirmation makes these results difficult to interpret since 10–20% of patients

clinically diagnosed with AD are found on autopsy to have a cause for dementia other than

AD. The determination of diagnostic accuracy for novel AD biomarkers thus requires studies

of biofluids obtained during life from well-characterized AD patients longitudinally followed

to autopsy confirmation [1,3,7]. Also, novel CSF biomarkers for AD can potentially facilitate

disease staging and predict rates of clinical decline, as these biomarkers could represent factors

that modulate AD pathogenesis associated with various stages of the disease. Characterization

of a select panel of CSF biomarkers can, therefore, be critical in diagnosis and prognosis, and

alterations in their levels can be further considered as secondary endpoints in future therapeutic

trials.

Here, we tested the hypothesis that distinct sets of CSF peptides and proteins are associated

with AD in contrast to cognitively normal subjects and other common neurodegenerative

disorders, including FTLD with TDP-43-immunoreactive lesions (FTLD-TDP), FTLD with

tau-immunoreactive inclusions (FTLD-Tau), and DLB. We collected and analyzed CSF

samples antemortem from a total of 162 subjects, and the concentrations of 151 analytes in the

Rules Based Medicine Human DiscoveryMAP™ panel (referred to below here as MAP) were

measured by a Luminex-based multiplex platform. As the choice of analytical strategy in this

type of high-dimensional data may significantly alter the composition of the identified

biomarker panel, we analyzed the same body of data through three independent algorithms.

Alterations in the levels of these candidate biomarkers were first analyzed according to the

traditional statistical modeling, including Mann–Whitney U test and logistic regression. To

avoid bias associated with feature pre-selection by univariate analysis and instability of linear

models associated with high-dimensional data, we searched for novel AD biomarkers by two

additional methods: a tree-based classification algorithm (random forest) and a nearest

shrunken centroid algorithm (predictive analysis of microarrays, or PAM) [21,29]. The

diagnostic accuracy of novel analyte combinations predicted by each algorithm was then

assessed. Lastly, novel AD biomarkers were then evaluated for their relationship to the severity

of cognitive impairment in AD, and their potential role in predicting rates of cognitive decline

in patients with mild cognitive impairment (MCI).

Materials and methods

Participants

Patients and control subjects were recruited and longitudinally followed at Penn in specialty

services dedicated to the evaluation and management of neurodegenerative diseases

(Supplementary Table 1). All protocols were approved by the Penn Institutional Review Board.
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Each patient in the autopsy cohort had undergone detailed cognitive, neurological,

neuroimaging and laboratory examinations to ensure the accuracy of clinical diagnosis

according to established criteria for AD [6], frontotemporal dementia (FTD) [16], amyotrophilc

lateral sclerosis (ALS) [22] and DLB [13]. Autopsy-confirmed cases of AD (n = 66), FTLD

(n = 16) and DLB (n = 2) were characterized neuropathologically with detailed

immunohistochemical analysis for pathology associated with each major neurodegenerative

disorder, including Aβ42, hyperphosphorylated tau, hyperphosphorylated TDP-43 and alpha-

synuclein as described by Neumann et al. [18]. Seven patients with clinical FTD-ALS, but no

autopsy was added to the FTLD-TDP group, as these cases nearly always have TDP-43

pathology. Thirty-eight patients with MCI were also recruited to assess predictors of cognitive

decline. Each MCI patient was diagnosed by modified Petersen criteria [30], and followed

longitudinally with serial cognitive and neurological examination. Cognitively normal subjects

were evaluated at the time of CSF collection, and continued to undergo annual testing to

confirm their cognitive status. ApoE genotyping was performed for all subjects

(Supplementary Material).

Procedures

Baseline CSF samples were obtained during routine diagnostic lumbar puncture as previously

described [3,24]. Briefly, lumbar puncture was performed with a 20- or 24- gauge spinal needle,

and CSF was transferred into polypropylene tubes. At the time of CSF collection, aliquots (0.5

mL) were prepared, bar-coded and then stored in polypropylene vials at −80°C until analysis

(mean 8.7 years, SD = 3.6 years). Samples were then grouped altogether and simultaneously

interrogated by Rules-Based Medicine, Inc. (Austin, TX) for levels of 151 analytes using the

Human DiscoveryMAP™ panel and a Luminex 100 platform (Supplementary Material). The

151 MAP analytes were assembled by RBM into pre-formatted assays that RBM designed for

studies of a number of different diseases including cancer, autoimmune disorders and AD based

on the previous associations with AD of many, but by no means all of these analytes in peer-

reviewed literature. Measures of CSF Aβ42, total tau and p-tau181, were performed using the

multiplex xMAP Luminex platform (Luminex Corp, Austin, TX) with Innogenetics (INNO-

BIA AlzBio3, Ghent, Belgium) immunoassay kit-based reagents as described [24].

Statistical analysis

Statistical analysis was performed in SPSS 12.0, Random Forests

(http://www.stat.berkeley.edu/~breiman/RandomForests/) and SAM/PAM. For testing of

stability associated with each analyte, Pearson’s correlation analysis was performed between

analyte levels and time in −80°C storage. For each analytical strategy, diagnostic performance

(sensitivity, specificity, accuracy) was determined using traditional AD biomarkers alone (tau,

p-tau181, Aβ42), MAP biomarkers alone or both traditional and MAP biomarkers. For each

model, performance characteristics reported were based on the cross-validation. In the first

model (Model 1), analytes that differed significantly between cognitively normal and AD by

Mann–Whitney U test (nominal P < 0.01) were entered into logistic regression models for AD

identification, adjusting for age and gender. Sensitivity and specificity of Model 1 were

obtained by leave-one-out approach in discriminant analysis. In random forest analysis,

analytes were entered into the analysis with nodes optimized for best classification of AD

versus cognitively normal (Model 2). Out-of-box error rate was used to derive diagnostic

accuracy, with sensitivity and specificity derived from the confusion matrix. In PAM, analytes

that significantly differentiated AD from cognitively normal were identified, and diagnostic

accuracy was derived through internal cross-validation (Model 3). Given the number of

analytes relative to the number of subjects, interaction terms were not entered in the logistic

regression model (Model 1). Random forest analysis (Model 2) and PAM (Model 3) each relies

less on the assumption of normal distribution and takes into account possible correlations

between analytes, although each algorithm can derive different analytes to account for
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variations in the respective classification model. Thus, to expand our analysis beyond the

strengths and constraints of any one algorithm, we sought to identify biomarkers determined

by at least two of these three well-established analytical strategies as key novel biomarkers. A

similar three-approach strategy was employed to determine biomarkers that distinguished

between AD and non-AD neurodegenerative disorders.

For cross-sectional association between novel AD biomarker levels and severity of cognitive

impairment at the time of CSF collection, Pearson’s correlation coefficient was used to relate

levels of newly identified CSF AD biomarkers with cognitive performance characterized by

Mini-Mental Status Examination (MMSE) in autopsyconfirmed AD cases. For correlation of

CSF biomarker levels and rates of cognitive decline following CSF collection in MCI, rates

of cognitive decline were first estimated by the slope of MMSE score linear regression over

time. Pearson’s correlation coefficient was then determined for CSF biomarker levels and rates

of cognitive decline. Effects from age and gender were adjusted for all diagnostic and

progression models.

Results

All CSF was obtained from patients with informed consent as described [2,12,24]. Levels of

151 analytes in the MAP were measured in the CSF, with 106 analytes having measurable

levels for analysis (Supplementary Table 2). Four analytes (angiotensinogen, BMP-6,

endothelin-1, SGOT) demonstrated level changes that corresponded to time stored in −80°C

freezer and were excluded from the analysis because of their apparent instability with

increasing length of storage. To determine the best biomarkers of AD, we used three

independent analytical strategies to identify MAP analytes associated with AD, and combined

traditional AD biomarkers and MAP analytes to identify complementary AD biomarkers.

AD versus cognitively normal

In Model 1, 21 MAP analytes were found to differ between cognitively normal subjects and

AD (Fig. 1) by Mann–Whitney U test at P < 0.01, and only a minority of these were specifically

changed in AD, including resistin and thrombospondin-1. MAP analytes alone, but not

traditional AD biomarkers, were entered into a forward stepwise logistic regression model

(Table 1). Leave-one-out discriminant analysis using the five resultant MAP analytes achieved

84.8% sensitivity and 87.9% specificity, with overall 85.9% accuracy. By comparison,

traditional AD biomarkers Aβ42 and total tau yielded greater sensitivity (92.4%), but less

specificity (81.8%) for overall accuracy of 88.9%. Combining MAP analytes and traditional

AD biomarkers resulted in a model differentiating AD from cognitively normal subjects by

the following biomarkers: levels of tau, Aβ42, complement 3 (C3), neuron-glia-CAM-related

cell adhesion molecule (NrCAM) and platelet-derived growth factor (PDGF, Table 1). This

combined model has high sensitivity (97.0%) and specificity (93.9%) with 96.0% accuracy,

and improved upon the traditional AD model by correctly reclassifying up to four cognitively

normal subjects with pathologic CSF levels of tau and Aβ42, and three AD subjects with non-

pathologic levels of CSF tau and Aβ42.

Feature pre-selection and the lack of an independent validation set may bias our classification

results. Hence, we performed a similar analysis of AD versus cognitively normal through

random forest (Model 2) and PAM (Model 3) using age, gender and levels of 3 traditional

biomarkers and 106 MAP analytes, as each analysis incorporates internal cross-validation that

is more objective than leave-one-out analysis. Model 2 using MAP analytes alone identified

some analytes from Model 1, including C3, fatty acid-binding protein (Fabp), IL-23, NrCAM

and PDGF, among others (Table 2; Fig. 2a). The out-of-box error rate of traditional AD

biomarkers was 12.1%, which reduced to 6.1% when MAP analytes were introduced with

93.9% accuracy. Model 3 also identified NrCAM and PDGF as important biomarkers useful
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in distinguishing between AD and cognitively normal subjects (Tables 3, 4; Fig. 2a). Diagnostic

accuracy obtained through cross-validation was 93.9% in Model 3. A summary of analytes

important in distinguishing between AD and cognitive normal subjects is shown in Fig. 2a,

including Aβ42, tau, NrCAM and PDGF identified by all three algorithms.

AD versus other neurodegenerative disorders

With the emergence of substrate-specific therapeutic interventions, it is critically important to

identify biomarkers that reliably differentiate the major neurodegenerative disorders from one

another. To this end, we assessed which CSF biomarkers best differentiated AD from other

neurodegenerative disorders using a similar series of analytical strategies.

Among traditional AD biomarkers, Aβ42 and p-tau181 levels discriminated between AD and

non-AD neurodegenerative disorders in all models. Among novel MAP analytes, agouti-

related peptide (AgRP) was identified by all algorithms to distinguish between AD and non-

AD disorders (Fig. 2b). Post hoc analysis showed AgRP as most altered in FTLD-TDP (Fig.

3) and its classification power may rest in identifying FTLD-TDP cases. Tau, eotaxin-3 and

hepatocyte growth factor (HGF) were additionally identified by both RF and PAM to be

important in distinguishing between AD and non-AD disorders (Fig. 2b). Similar to the

classification role of AgRP, eotaxin-3 was most different between AD and FTLD-TDP (P =

0.001), and HGF was most different between AD and FTLD-Tau (P = 0.002, both comparisons

by Mann–Whitney U test; Fig. 3). Thus, biomarkers more specifically associated with other

neurodegenerative disorders can also aid in the diagnosis of AD.

Biomarker associations with cognitive function and decline

Some diagnostic biomarkers may reflect severity of cognitive impairment and thus be useful

in disease staging. To assess this, we correlated CSF biomarker levels with MMSE scores at

the time of CSF collection as a general measure of cognitive impairment. Among CSF

biomarkers for AD identified by at least one approach, six (C3, CgA, IL-1α, I-309, NrCAM

and VEGF) were correlated with MMSE score, and levels of these analytes did not correlate

with MMSE scores in the other neurodegenerative disorders. A multivariate linear regression

analysis adjusting for age, gender and education showed C3, IL-1α and I-309 levels were

independently associated with MMSE scores in autopsy-confirmed cases of AD.

To further test the value of these CSF biomarkers in predicting cognitive decline, we

determined the correlation between levels of these six biomarkers and rates of subsequent

MMSE decline in MCI subjects following CSF collection. The 38 living MCI patients were

similar to AD patients in age (71.39 vs. 70.79 yo, P = 0.674), education (15.66 vs. 14.64 yo,

P = 0.143) and gender (42.1 vs 53.0% women), but MCI patients had higher MMSE scores

(mean 26.16, SD = 2.00) as compared to AD (mean 17.55, SD = 8.57, P < 0.01). The MCI

patients had a median follow-up of 52 months (range 30–129 months) and a median rate of

MMSE decline of 1.2 points per year (mean 2.0, SD = 2.0). Among analytes associated with

cognitive performance at the time of CSF collection in AD, IL-1α levels correlated with the

rates of MMSE decline (P = 0.003), although with modest effect on decline rates (R = 0.498

for model). A search across 4 traditional and 106 MAP analytes additionally identified thymus-

expressed chemokine (TECK) as significantly associated with rates of cognitive decline in

MCI (P < 0.001 adjusting for age, gender and education) and had a stronger effect on the rate

of decline (R = 0.745 for model, Fig. 4).

Discussion

The search for accurate CSF and plasma biomarkers in neurodegenerative diseases has

intensified with the increasing need for informative biomarkers in clinical trials of disease-
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modifying therapies for AD, and has been facilitated by high-throughput multiplex platforms

[21,24]. Using clinically and pathologically well-characterized cases of AD and FTLD, we

identified novel biomarkers useful in improving the distinction between AD and cognitively

normal subjects, such as NrCAM and PDGF and biomarkers associated with other disorders

that improved the classification between AD and non-AD dementia, including AgRP, eotaxin-3

and HGF. C3, IL-1α and I-309 were helpful in the staging of AD, and IL-1α and TECK levels

correlated with rates of subsequent cognitive decline in MCI. We discuss these findings below.

In none of our analytical models did MAP biomarkers alone out-perform traditional AD

biomarkers in identifying AD from non-AD cases, but they complemented traditional

biomarkers in two ways. First, while decreased Aβ42 and increased total/phosphorylated-tau

levels are strongly linked to AD, altered levels of some MAP biomarkers improved the

classification of cognitively normal subjects with decreased levels of CSF Aβ, but no dementia.

Alterations in MAP biomarkers (NrCAM, PDGF) were seen in multiple neurodegenerative

disorders, and likely represent neuronal loss rather than AD-specific processes (Fig. 1).

NrCAM is a member of the L1 family of cell adhesion molecules, and may be involved in ion

channel clustering at the axon initial segment and nodes of Ranvier [4,5]. A decrease in NrCAM

levels in AD and other neurodegenerative disorders likely follows axonal degeneration,

although accumulation of ankryn (which interacts with NrCAM intracellularly) in the insoluble

AD proteome relative to normal and FTLD-TDP brains raises additional possibilities [10].

PDGF was previously identified as a plasma AD biomarker by Ray et al. [21]. PDGF-receptor

activation can promote Aβ precursor protein processing in vitro [9], and inhibition of PDGF-

receptor activation with imatinib mesylate can decrease Aβ40 and Aβ42 secretion [17]. In our

cohort, PDGF was also found to be elevated in multiple disorders, and its constitutive

expression by neurons [8] suggests elevated PDGF levels to also reflect more general neuronal

loss. C3 and Fabp were identified as AD biomarkers by two algorithms, and CSF Fabp was

elevated in AD and DLB cases in one other study [25]. Despite alterations in multiple forms

of dementia, however, changes in these biomarkers associated with neuronal loss improved

the distinction between AD and cognitively normal with age-associated amyloidosis by

traditional AD biomarkers alone, and they can further serve as secondary endpoints in therapies

aimed at Aβ42 or tau clearance.

In addition to traditional AD CSF biomarkers (i.e. tau and Aβ42), altered levels of resistin and

thrombospondin-1 specifically associated with AD despite little classification value beyond

analytes in Fig. 2a. Central resistin modulates leptin action and oral intake [19], and resistin

as a marker of macrophage may mean preferential microglial activation. Thrombospondin-1

is a key molecule in astrocyte-induced neurogenesis [14], and can promote recovery after brain

ischemia. Elevated thrombospondin-1 levels in a subgroup of AD patients may identify a

unique subgroup with vascular and degenerative etiologies for their dementia. Further

stratification of AD patients by their CSF resistin and/or thrombospondin-1 levels in a larger

cohort should clarify their role in AD lesions.

Novel MAP biomarkers also represent candidate biomarkers of disease staging and prediction

of progression. Cross-sectionally, six diagnostic AD biomarkers correlated with cognitive

deficits at the time of CSF collection. Because these analytes likely mirror severity of neuro-

degeneration, correlations between their levels and clinical status should be expected.

Furthermore, IL-1α levels were modestly associated with rates of decline in MCI after the CSF

was collected. IL-1α immunoreactive microglia in AD neuritic plaques have been implicated

in plaque evolution [11], and the difference in IL-1α levels between fast and slow MCI decliners

may signal cognitive deficits insensitive to MMSE alone. We also identified TECK to predict

the rate of cognitive decline among MCI patients, even though TECK itself was not a robust

diagnostic biomarker for AD. This can be due to the potential pathologic heterogeneity of MCI,

or represent a biomarker change that is transient in nature and specifically linked to the MCI
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or pre-AD stage. TECK (CCL25) is best understood as a strong chemoattractant for thymocytes

and intestinal T cells [15]. TECK is a ligand to CCR9 which is predominantly expressed in

epithelial tissues, but also a ligand to CCX-CKR found in the human brain [27,31]. The role

of TECK in AD has never been investigated, and its role as a robust predictor of cognitive

decline in MCI should prompt further examination of its role in AD.

Some analytes were identified by only one analytical strategy as a potential AD biomarker due

to the non-uniqueness of multiple analytical strategies, begging the question of whether such

analytes are “true” biomarkers. Notably, the number of ApoE4 alleles was only identified by

one analytical strategy (logistic regression, data not shown) to be a significant predictor of AD

versus cognitively normal, despite its known association with AD[23]. The ordinal nature of

allele dosage (such as number of ApoE4 alleles) may be more suited for models using linear

scaling and less preferred by random forest and PAM. Consequently, we elected to seek

analytes of wider ranging levels as novel biomarkers for more uniformity among the

algorithms. Among other analytes identified only by one algorithm, IL-1α appears to be

important in disease staging, and HGF was previously found to differentiate between AD and

PSP [28]. Several explanations are possible. First, some analytes may correlate strongly with

others, and each strategy may select different proxy analytes to represent a group of correlated

analytes from the same biological process. Second, different analytical strategies may have

various strengths and weaknesses for detecting particular effects. This was the reason we chose

three analytical strategies to identify putative AD biomarkers, and analytes identified by

multiple strategies may be most reliable. Third, some analytes identified by only one analytical

strategy may be associated with chance difference at the population level not directly associated

with dementia or AD. These speculations notwithstanding, each putative novel biomarker’s

value in diagnosis and prognosis needs independent validation in another single-or a

multicenter study, and their biological significance should be assessed independently. Indeed,

we have studies underway now to do exactly this.

In summary, we identified novel biomarkers associated with pathologically confirmed AD.

Some analytes were specifically associated with AD including Aβ42, resistin, and

thrombospondin-1, while others were associated with multiple neurodegenerative disorders.

Some diagnostic biomarkers mirrored the severity of cognitive impairment at time of CSF

collection, while TECK and IL-1α reflected the rate of cognitive decline among clinically

diagnosed MCI subjects. Accordingly, we propose the inclusion of diagnostic and prognostic

biomarkers in a composite AD biomarker panel. Given the variability of each candidate

biomarker across individuals, their collective classifying power should be determined in a large

multicenter cohort, such as the Alzheimer Disease Neuroimaging Initiative. The biological

relevance of each individual and set of biomarkers should be investigated for potential targets

of therapeutic developments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Boxplots showing median values, quartiles, and outliers (circles) of traditional (i.e. tau and

Aβ42) and other candidate CSF biomarkers that differed in levels between subjects with normal

cognition and AD. Values shown are normalized to mean values of cognitively normal subjects.

a Analytes elevated in AD as compared to cognitively normal subjects. b Analytes decreased

in AD as compared to cognitively normal subjects. Levels in patients with autopsy-confirmed

non-AD neurodegeneration were also shown for comparison. White box cognitively normal

subjects, blue box autopsy-confirmed cases of AD, red box autopsy-confirmed cases of non-

AD neurodegenerative disorders. *I-309 was found to differ between AD and cognitively

normal subjects by random forest and PAM, but not Mann–Whitney U test
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Fig. 2.

AD biomarkers identified by each of the three analytical strategies (logistic regression, random

forest, and PAM). a Biomarkers useful in distinguishing between subjects with AD and normal

cognition. b Biomarkers useful in distinguishing between subjects with AD and other non-AD

neurodegenerative disorders. Analytes in overlapping regions were identified by multiple

strategies as important biomarkers
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Fig. 3.

Boxplots showing median values, quartiles, and outliers (circles) of traditional and candidate

biomarkers that differed in levels between AD and other non-AD neurodegenerative disorders.

Values shown are normalized to mean values of cognitively normal subjects. White box

cognitively normal subjects, blue box AD, yellow box FTLD-TDP, orange box FTLD-Tau,

green box dementia with Lewy bodies

Hu et al. Page 13

Acta Neuropathol. Author manuscript; available in PMC 2010 June 4.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Fig. 4.

Partial residual plots of MAP analytes versus rates of subsequent cognitive decline in MCI.

Linear fit and 95% confidence interval for fit are shown for each graph. The overall model

includes age, gender, education, IL-1α level and TECK level
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Table 1

Factors predictive of AD compared with cognitively normal subjects according to logistic regression

AD versus cognitively normal B P

MAP model

  Age −0.073 0.141

  Male gender 1.845 0.092

  C3 0.932 0.017

  Fabp 0.809 0.002

  IL-23 17.24 0.031

  NrCAM −0.051 <0.001

  PDGF 0.004 0.064

Traditional AD model

  Age −0.024 0.558

  Male gender 0.001 0.999

  Aβ42 −0.035 <0.001

  Tau 0.019 0.051

Combined model

  Age −0.217 0.088

  Male gender 2.038 0.309

  C3 2.376 0.025

  NrCAM −0.063 0.041

  PDGF 0.013 0.061

  Tau 0.08  0.042

  Aβ42 −0.039 0.01  

Traditional AD model incorporated Aβ42 and tau levels

Coefficient (B) and P value for each factor as part of the overall model are shown

Age and gender were entered into first block of LR, while analytes identified to be different between AD and cognitively normal subjects were then

entered in a forward step-wise fashion, with P < 0.05 for entry and P > 0.10 for removal

Acta Neuropathol. Author manuscript; available in PMC 2010 June 4.



N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t

Hu et al. Page 16

Table 2

Analytes differentiating AD from cognitively normal according to random forest analysis

AD versus
cognitively normal

Z score

MAP model

  PDGF 27.585

  IL-1α 26.656

  IL-23 20.686

  C3 18.343

  Fabp 17.888

  NrCAM 15.937

  VEGF 13.894

  TRAIL-R3 12.064

  IL-17 11.209

  Eotaxin-3 11.037

  IL-7 10.48  

  A2M 9.603

  Prolactin 9.549

  Ferritin 8.463

  ThBG 8.371

  I-309 7.743

  HCC-4 3.502

Traditional AD model

  Aβ42 68.401

  Tau 21.826

  Male gender 10.052

Combined model

  Aβ42 47.935

  Tau 26.232

  PDGF 22.506

  IL-1α 19.806

  NrCAM 17.474

  C3 16.702

  IL-23 14.472

  VEGF 13.362

  Fabp 11.583

  Prolactin 11.533

  TRAIL-R3 9.779

  A2M 9.425

  I-309 7.981

  Calcitonin 5.824

  Adiponectin 4.64  
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Table 3

Factors differentiating AD from cognitively normal according to PAM

MAP model Traditional
AD model

Combined model

AD versus cognitively normal

  PDGF Aβ42 Aβ42

  VEGF Tau Tau

  NrCAM p-tau181 PDGF

  CgA Age VEGF

  ApoD NrCAM

  Fabp CgA

  I-309 ApoD

  Eotaxin-3 Fabp

  IL-7 Eotaxin-3

  Myoglobin I-309

  Myeloperoxidase IL-7

  GRO-α Myoglobin

  EN-RAGE Myeloperoxidase

  TGF α

  Thrombospondin-1

  Age

  Stem cell factor

  Tissue factor

  Pancreatic polypeptide

  MDC

  TECK

  SOD

  Ferritin

  EGF-R

  IL-11

  FAS

  IL-1ra

  Prolactin

  AXL

  IL-17

  TRAIL-R3

  FAS-ligand

  IL-16

Threshold was set for each model through internal cross-validation
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