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Degree constrained minimum spanning tree (DCMST) refers to constructing a spanning tree of minimum weight in a complete
graph with weights on edges while the degree of each node in the spanning tree is no more than d (d ≥ 2). 	e paper proposes an
improved multicolony ant algorithm for degree constrained minimum spanning tree searching which enables independent search
for optimal solutions among various colonies and achieving information exchanges between di
erent colonies by information
entropy. Local optimal algorithm is introduced to improve constructed spanning tree. Meanwhile, algorithm strategies in dynamic
ant, random perturbations ant colony, and max-min ant system are adapted in this paper to optimize the proposed algorithm.
Finally, multiple groups of experimental data show the superiority of the improved algorithm in solving the problems of degree
constrained minimum spanning tree.

1. Introduction

Minimum spanning tree (MST) is a classic combinato-
rial optimization problem. Many engineering problems in
common cases, for example, pipeline, circuit design, and
transportation network, can be transformed into minimum
spanning tree. Minimum spanning tree means to construct
a minimum cost spanning tree with weight graph by adapt-
ing proven algorithms like avoid cycle method, tear cycle
method, and so forth. However, things will be di
erent when
values, which bring about restrictions to degree of each
vertex in a tree, are given in advance. It is in fact a prob-
lem of so-called degree-constrained minimum spanning tree
(DCMST). As a matter of fact, it means to �nd out the min-
imum spanning tree with minimum weight while comply-
ing with the vertex constraints in all spanning trees. With the
development of science and society, there is a growing need
for solving the problems of DCMST in di
erent �elds such as
computer communication, telephone communication, trans-
portation, and allocation of resources, thus making DCMST
optimization a problem worth studying.

As NP hard problem, various algorithms with high time
complexity such as branch and bound method, approximate

algorithm, iterative method, and multistart hill-climbing are
exploited in DCMST in previous study. Heuristic algorithms,
for instance, genetic algorithms, simulated annealing algo-
rithm, and ant colony algorithm, have been a research focus
to generate acceptable solutions in a valid time. Among
these modern optimization algorithms, ant colony algorithm
comes as a novel bionics algorithm and converges to the
shortest path by information transferring and updating
among ants. It combines distributed computation, positive
feedback mechanism, and greedy search which enables fast
approaching of better solutions.

Many DCNST problems are solved by ant colony algo-
rithm [1–5]; these applications adopt ant colony algorithm
with single colony. It comes with shortcomings of long
search time and stagnation. Ant colony operates through
organized cooperation and task-sharing in nature and their
pheromone regulation mechanisms di
er from one colony
to another. 	ese corporations show great signi�cance when
ant colony deals with complex tasks. Algorithms that employ
multicolony ant algorithmwill converge in a shorter period of
time compared to those applied with single colony but feature
the same ant population in total especially when the prob-
lem is in large scale. Taking all these factors into account,
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the paper proposes a degree-constrainedminimum spanning
tree based on improvedmultiant colonies.	eproposed algo-
rithm features multipaths search through multiant colonies
under setting conditions. Moreover, the thinking of dynamic
ant colony is utilized here to dynamically adjust volatilization
factor and enhancement factor during the running process
in order to increase the diversity of solutions. Upper and
lower bounds of pheromone are con�gured on the basis of the
thinking of max-min ant system during its updating process.
What is more, the tabu list is applied in case of local circling
while random disturbance factor is set here to increase the
possibility of selection among di
erent paths so as to promote
objective and diverse solutions.

2. Background

Providing � is a connected complete graph with weights
on edges while the values of the weight are not negative,
supposing� is the spanning tree of�,�(�)means the sum of
weights of�.	en construct a spanning tree with aminimum
�(�) under the condition that the degree of each node is
no more than �, where � ≥ 2. Spanning trees meeting the
above description are named degree-constrained minimum
spanning tree (DCMST).

DCMST was �rst proposed by Narula and Ho in 1980.
	en branch and bound algorithm [6, 7], which enables opti-
mal solutions search for DCMST with less nodes, was given
at the same time. A�er that, a branch and cut algorithm [8]
that promoted a more objective construction when searching
for optimal solutions was raised by Caccetta and Hill, and
so forth. In particular, Volgenant presented double solution
information based Lagrangian algorithm [9] for DCMST.
Soon a�er that, Behle et al. further optimized this problem
by presenting preferential branch and cut algorithm [10] by
adopting separation standards and principles of 0/1 integer
programming.

With further exploration of DCMST, evolutionary algo-
rithm [11–13] taking genetic immune thinking as a main
representative emerged. During that period of time Japanese
scholar Zhou and Gen achieved a major breakthrough by
solving DCMST using evolutionary algorithm and encoding
spanning tree by Prufe. Nevertheless, the information of
degree cannot be re�ected in Prufe coding and infeasible
solutions generated in this procession. Since then, many
evolutionary thinking based algorithms have been proposed
to solve the problem of DCMST. 	ese algorithms mainly
focused on bringing improvements in evolutionary coding
and these improvements are insu�cient for a DCMST task.
In addition, randomized primalmethod (RPM) [12], which is
a dynamic table structure, integrated multistart hill-climbing
(MHC) [14], stimulated annealing (SA), and genetic algo-
rithm (GA) [12, 13] and the node weight information as a
whole was presented byKnowles to �nd the optimal solutions
of DCMST. Many heuristic algorithms, for instance, ant
colony algorithm [3, 15–17] and particle swarm optimization
algorithm [18, 19], have been applied to study DCMST from
di
erent ways and have gained positive e
ects.

A typical example was given in [2] to solve DCMST by
an improved ant colony algorithm. In this example, a group

of ants were asked to explore the given graph; then a group
of signed edge set which is related to the pheromone on
paths was selected as a candidate set. A�erwards, Kruskal’s
algorithm was adopted to construct a DCMST according
to the candidate set. Finally, local optimization was carried
out in DCMST to better improve the spanning tree. 	e
algorithm proposed in this paper is basically based on ant
colony algorithm and further optimizes the solutions by
introducing multiant colonies.

3. Mathematical Model of DCMST

In the mathematical model of DCMST, graph � = (�, �,
	) means a connected undirected graph, wherein � = {V1,
V2, . . . , V�} is the vertex set, the edge set is � = {
1, 
2, . . . , 
�},
and 	 = (���)�×� is the weight matrix. Supposing ��� = ���,��� = ∞, , � = 1, 2, . . . , �, if (V�, V�) ∈ �(�), then ��� = 	(V�,
V�); if (V�, V�) ∉ �(�), then ��� = ∞. 	e mathematical model
of DCMST can be described as

min � =
�
∑
�=1

�
∑
�=1

������ (1)

s.t.
�
∑
�=1

��� ≤ �� (2)

�
∑
�,�∈�

��� ≤ |�| − 1, ∀� ⊂ �, � ̸= ⌀ (3)

�
∑
�=1

�
∑
�=1

��� = � − 1 (4)

��� ∈ {0, 1} , , � ∈ �, (5)

wherein variable

��� = {
{{
1, edge (, �) lies on the optimal tree

0, other. (6)

Condition (2) limits the number of edges that connected to
node  which ensures the restrictions of degree constraint.
Condition (3) makes sure that the obtained subgraph is a
spanning tree of graph �. Condition (4) ensures that there
are � − 1 edges in the �nal subgraph.

4. Degree-Constrained Minimum Spanning
Tree Based on Multiant Colonies

In this paper, multiple ant colonies are arranged to search
multiple paths following given conditions.	ey are supposed
to search for optimal solutions independently and to commu-
nicate with each other through information entropy. Entropy
is mainly used for description of the disordered relation in
thermodynamics. In here, information entropy which can
be expressed as ! = −"∑��=1 $� ln$� is employed to display
the diversity of solutions, wherein $� is the possibility that
condition  can be determined while $� ≥ 0, ∑��=1 $� = 1.
	e size of information entropy dominates the diversity of
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Figure 1: Flow chart of the algorithm.

solutions and it is also an important basis for pheromone
updating between ant colonies.

Besides, the improved algorithm enlarged search area of
ant and added to the diversity of solutions by dynamically
adjusting volatilization factor and enhancement factor to
a
ect the distribution of pheromone. By introducing adaptive
optimization strategy in case of local circling and random
disturbance factor to increase the possibility that each path
is being selected, the obtained solutions are supposed to be
objective and diverse.

At the beginning of the experiment, each ant is allocated
with an initial position; then initial values of pheromone
of edges are given. A�er DCMST �best is constructed, ant
colonies start the search process and a set of edge set TE
will be obtained. Kruskal algorithm then will be applied
to construct a spanning tree according to TE. A�er all rge
spanning trees are constructed by each colony, all these span-
ning trees will be compared with each other and the optimal
spanning tree with the least weight will be note into �better.
Algorithms 2-EdgeReplacement and 1-EdgeRepalcement will

be exploited to optimize �better. 	en, comparing �better with�best a�er iteration, the one that features the smaller weight
is set to be �best. Next, globally update the pheromone of
�best and reallocate positions of each ant. If communication
requirements are met between colonies, then pheromone
updating will be conducted between colonies, or next iter-
ation will be conducted. Final solution �best will not be
obtained until all the iterations are complete. See Algorithm
1.

	e �ow chart is as shown in Figure 1.

4.1. 	e Initialization Stage. 	e edge weight will be com-
puted according to the distances between node sets when
initialization begins. Maximum weight % and minimum
weight & will be recorded. 	en the initial pheromone
concentration of each edge is acquired by analyzing obtained
weight. Assuming the range of weight lies between (% −
&)/3 and 4(% − &)/3, the initial edge set will be obtained
according to initial pheromone matrix. A�er that, each ant
will be allocated with an initial position. See Algorithm 2.
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Input:
� = (�, �): a complete graph with weight;
�: function to calculate weight;
�: degree constraint of vertex, � ≥ 2;
MA: the amount of ant colonies

Output:
A degree constrained minimum spanning tree �

Begin
//Initialization
 ← 1; best ← 0; restart ← 0
Create the Multiple set of ants *[%*] of size |�| with the number of colonies "
InitAntsEdges(�, �, �)
�best ← ConstructSpanningTree(�, �)
while  < 

max
and  − best < stop do

for &+ = 1 to MA do
AntsMove(*[&+], �) //Exploration
! ← Calculation Entropy
� ← ConstructSpanningTree(�, �)
If �(�) < �(�better) then�better ← �

&+better ← &+
//local optimization
�better ← 2-EdgeReplacement(�better, �, �, �)�better ← 1-EdgeReplacement(�better, �, �, �)

If �(�better) < �(�best) then�best ← �betterbest ← 
foreach 
 ∈ �best do //enhance
e⋅$ℎ& ← 6 ⋅ 
⋅phm

if 
max

(best, restart) > 7 then
restart ← 
Restart(�best)

if mod gap(s) = 0 then
ExchangePheromone()

 ←  + 1
ResetAnts(*)
Update parameters 6 and 9

return �best

Algorithm 1

InitAntsEdges(�, �, �)
begin

for  = 0 to |�| − 1 do
Ant[]⋅location ← �[]
Ant[]⋅tabuList← 0

foreach 
 ∈ � do
e⋅initPhm ← (% − �(
)) + (% − &)/3
e⋅phm ← e⋅initPhm
e⋅�Visited← 0

Algorithm 2

4.2. 	e Search Stage. 	e transfer rule of an improved ant
colony algorithm is employed when ants start their search for
next target position in the search stage.

	e algorithm integrates the characteristics of optimized
algorithms like dynamic ant colony algorithm and random

disturbance ant colony algorithm as a whole and each ant is
allocated with its own tabu list. Ants will select next target
according to transfer rule in

?��� =
{{{{
{{{{{

!$��� A ≤ A0
$��� A > A0
0 other.

(7)

In this formula, A is a random number within 0∼1. A0 is a
constant; it is set to be 0.5 in here.When A is less than or equal
to A0, according to random disturbance strategy, the next

target position will be the node when !$��� takes the largest

value. Consider

!$��� =
(D��	 ⋅ 9��
)�
∑D��	 ⋅ 9��
 , (8)
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AntsMove(*[&+], �)
begin
for  = 1 tomaxSteps do
if mod updatePeriod = 0 then

UpdatePheromone(�)
foreach + ∈ *[&+] do

�Attempts← 0
moved← False
while not moved and �Attempts < 5 do
V1 ← +⋅location
Select an edge (V1, V2) at random and proportional to (V1, V2)⋅phm
if V2 ∉ +⋅tabuList then
add V2 into +⋅tabuList
+⋅location← V2
(V1, V2)⋅�Visited++
moved← True

else �Attempts++
! ← Calculation Entropy of the current colony

Algorithm 3

wherein F is equal to 1 and G changes with the number of
iterations, recorded as &�, by a kind of dynamic ant colony
strategy. G = 5 when the number of iterations lies in 1 ∼
&�/3. When it comes to be in &�/3 ∼ &�/2, G = 4. G = 3
when the number lies in &�/2 ∼ &�2/3. Similarly, G = 2
when this number lies in&�2/3 ∼ &�.

Γ calculated by 6 = + ⋅ 
�/� is the disturbance factor. +
is a random number within 0∼2. � is equal to 4 and " is the
number of iterations.

When A is larger than A0,

$��� =
D��	 ⋅ 9��


∑D��	 ⋅ 9��
 . (9)

$��� means the possibility that � is being selected; the

possibility increases as $��� grows rather than forcing !$��� to
be the maximum node. 	en next target position will be
determined and add this position to tabu list of this ant in case
of being selected again; then add 1 to the number of visits.

Information entropy of a colony will be calculated as (10)

according to obtained $��� of each ant a�er a colony completes

searching:

! = −"
�
∑
�=1

$� ln$�. (10)

& represents the number of ants in a colony. 	e cal-
culated information entropy of colonies will be a basis for
colonies selection when pheromone exchanges. See Algo-
rithm 3.

4.3. Updating of Pheromone. All ant colonies search for edges
following a given step length. All ants will not stop moving
in parallel in each step and updating pheromone on edges
that have been searched until all the steps have been �nished.
Pheromone updating is set to be operated a�er �nishing

UpdatePheromone(�)
begin

foreach 
 ∈ � do


⋅phm← (1 − 9) × 
⋅phm + 
⋅nVisited × 
⋅initPhm

⋅nVisited← 0
if 
⋅phm >maxPhm then


⋅phm←maxPhm − 
⋅initPhm
if 
⋅phm <minPhm then


⋅phm←minPhm + 
⋅initPhm

Algorithm 4

a group of speci�c steps instead of updating pheromone
concentration a�er each step in order to promote more
e
ective search. Pheromone is supposed to be updated when
an ant has �nished 1/3 of its maximum step.

Pheromone on each path ranges between minPhm and
maxPhm. It is similar to max-min ant system, which will be
of help to prevent the solution from falling into local optimal:

maxPhm = 1000 ⋅ (% − &) + (% − &)
3 ,

minPhm = (% − &)
3 .

(11)

% and & are maximum weight and minimum weight
referred to at the beginning.

A counter will be set on each edge to know how many
times it has been visited a�er an update is complete. Local
update of pheromone is arranged as the formula lists as
follows:

phm = (1 − 9) ⋅ phm + �Visited ⋅ initPhm. (12)
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ConstructSpanningTree(�, �)
begin

�� ← 0
Sort � in order of descreasing pheromone level
? ← top �Candidates edges from �
Sort ? in order of increasing edges cost
while |��| < |�| − 1 do

if ? ̸= 0 then
Let 
 be the next edge in ?
Remove 
 from ?
if adding e into �� with meet the degree constraint then

�� = �� ∪ {
}
else
? ← next �Candidates edges from �
Sort ? in order of increasing edges cost

return ��

Algorithm 5

9 means the volatilization factor and it is updating with
the operating of algorithm. Consider

9 = 9 ⋅ (�Visited
phm

)
�
. (13)

initPhm is the initial pheromone value of edge and
�Visited implies the number on edges being visited. " is a
constant and, in here, it is set to be 0.5. It should be noted that
when the value of pheromone on a path exceeds threshold
value, the value of pheromone will be adjusted by adjusting
initial pheromone values of edges for better solution. See
Algorithm 4.

4.4. Constructing Spanning Tree. A group of edges will be
obtained a�er an ant colony completes searching. Pheromone
matrix is adopted to construct a corresponding DCMST due
to the absolute connectivity of obtained edge sets and they are
all labeled with high pheromone values.

Sort edges sets by pheromone values, from largest to
smallest. Construct a candidate set by choosing the top
�Candidates edges and arrange them from smallest to largest
by weight values. Next, a spanning tree in which the degrees
of nodes meet constraints will be constructed. If the selected
�Candidates set does not meet the requirements to construct
a spanning tree, another �Candidates set will be selected to
construct a spanning tree until a degree constrained spanning
tree was constructed. A�er all ant colonies constructed their
own spanning tree, the one that owns the smallest weight
will be selected as the optimal spanning tree in this iteration,
labeled as �. 	en its pheromone matrix and colony number
will be recorded. See Algorithm 5.

4.5. Local Optimization Stage. Spanning tree � will be
processed by two local optimization algorithms of 2-
EdgeReplacement and 1-EdgeReplacement. 2-EdgeReplace-
ment means to replace any two edges of spanning tree with
two other edges, wherein the weights of two other edges
are smaller than two previous edges being replaced. Fur-
thermore, spanning tree has to meet degree constraints a�er

two edges being replaced. What makes 1-EdgeReplacement
di
erent from 2-EdgeReplacement is that only one edge
rather than two edges is replaced in a spanning tree in 1-
EdgeReplacement. Finally, optimized spanning tree is noted
as �. See Algorithms 6 and 7.

4.6. Global Optimization Stage. Spanning tree � a�er iter-
ative optimization is compared with optimal spanning tree
�best generated in latest iteration; the one that gets the smaller
weight will be noted as�best.	en pheromonewill be updated
globally in �best and ants will be allocated with new positions.
Only if communication requirements between colonies are
met will pheromone be updated between colonies, or a new
iteration will be conducted.

4.7. Information Exchanges between Colonies. Information
exchanges between colonies are conducted at certain time
intervals, which is determined according to information
entropy of all colonies; in other words, it changes by the
convergence of all colonies. Time intervals gap of information
exchanges between colonies is in accordance with the follow-
ing formula:

gap = "1 ⋅ 
∑ℎ�=1 ��/ℎ, (14)

wherein "1 is a constant, ℎ is the number of subcolonies, and
!� is the information entropy of the th subcolony.

Selection criteria of colonies, where information ex-
changes existed between colonies, are determined by infor-
mation entropies of each colony. Provided that colony � is the
selected colony of colony  for information exchanging, then
� is determined by the following formula:

� = arg max
1≤�≤ℎ

(MMMMM!� − !�MMMMM) , (15)

in which !� and !� are information entropies of colonies 
and �, respectively. Colonies with greater entropy will choose
colonies with smaller entropy as objects to exchange infor-
mation. 	en colonies with small information entropy are
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2-EdgeReplacement(�better, �, �, �)
begin

�� ← �better��N
! ← 0
while ��N
! < |�|/2 do


1 ← a random edge in ��
� ← 
1; O� ← 0
foreach 
2 ∈ �better and 
1, 
2 are not adjacent do{
�1, 
�2} ← rep2Opt(
1, 
2)
if �(
1) + �(
2) − �(
�1) − �(
�2) > O� thenO� ← �(
1) + �(
2) − �(
�1) − �(
�2)
� ← 
2

if O� > 0 then
�� ← (�� − {
1, 
�}) ∪ rep2Opt(
1, 
�)��N
! ← 0

else
��N
! ← ��N
! + 1

return ��

Algorithm 6

1-EdgeReplacement(�better, �, �, �)
begin

�� ← �better

Sort � in order of increasing edges cost
repeat

changed← False
Sort �� in order of increasing edges cost
� ← |�| − 1
while � ≥ 0 do

" ← 0
while �(��[�]) > �(�["]) do
if swapping �["] and ��[�] creates no cycle in �� and satis�es degree constraint then

�� ← �� ∪ {�["]} − {��[�]}
changed← True
break

" ← " + 1
� ← � + 1

until not changed
return ��

Algorithm 7

concentratedly distributed and information exchanges with
high entropy colonies will help to improve their pheromone
amount. Similarly, colonies with high information entropy
will be distributed scatteredly to help to improve colonies
with small information entropy.

Pheromone updates will be conducted depending on
formula (16) when colony  selects colony � as an object to
exchange information. Consider

D��V = D��V + PΔD��V. (16)

P = !� − !�, Pmin < P < Pmax, and Pmin and Pmax are
constants and present the minimum and maximum update
coe�cient, respectively.ΔD��V is the pheromone of colony � on
path (R, V). See Algorithm 8.

5. Simulation and Analysis

5.1. Experimental Data. 	e data in Table 1 was selected
as experimental subjects. Single colony ant algorithm was
compared with multicolony ant algorithm. Experimental
parameters were set as follows: maximum number of loop
iterations max = 100, stop = 25.	e number of ant colonies is
3, the maximum search step of ant &Steps = 75, update cycle
of local pheromone updatePeriod = &Steps/3, and the degree
of vertex � = 2, 3, 4, 5.
5.2. Experimental Platform. 	e algorithm is coded with
standard Java and has been compiled and debugged on
the platform of Eclipse. A computer installed with 32-bit
Windows 7 operating system and equipped with 3G RAM
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ExchangePheromone(*, �)
begin

P ← 0
for  = 0 to |%*| − 1 do
for � = 0 to |%*| − 1 do
if |!� − !�| > P then

P ← |!� − !�|&� ← �
for " = 0 to |�| − 1 do

��["]⋅phm← ��["]⋅phm + P × �&�["]⋅phm

Algorithm 8

Table 1

Sample graph
(�)

Number of
vertexes |�|

Sample graph
(�)

Number of
vertexes |�|

att48 20 rand100 100

bier127 127 rat99 99

eil51 51 pr107 107

eil76 76 pr136 136

eil101 101 pr152 152

ulysses16 16 ulysses22 22

kroA100 100 chn31 31

kroA200 200 ch130 130

kroA150 150 ch150 150

rand50 50 st70 70

rand75 75 overil30 30

danzig42 42 bayg29 29

gr96 96 burma14 14

gr120 120 berlin52 52

gr137 137

and 2.20GHz CPU was used to operate the algorithm.
Experimental results are obtained by operating the proposed
algorithm 20 times for each sample data set.

5.3. Parameters Conguration. Parameters are con�gured as
Table 2 in experiment.

5.4. Evaluation Index. In experiment, the optimal value, aver-
age value, standard deviation, coe�cient of variation CV, and
mean deviation valueGapwere selected as evaluation indexes
of experimental results, wherein coe�cient of variation CV
re�ects the robustness of the algorithm: CV = T/U × 100.
	e proposed algorithm tends to be more stable as the value
of CV gets smaller. Mean deviation value Gap illustrates the
possibility of better solution obtaining Gap = (?mean −
?opt)/?opt × 100.
5.5. Experimental Results and Analysis. Experiment was con-
ducted when degree of vertex �was set to be 2, 3, 4, 5, respec-
tively. Each sample graph run 20 times; then a minimum
spanning tree and its weight was gained. If the value � of the

Table 2

Parameters Values Notes


max

100 Maximum number of
iterations

stop 30 Maximum iterations
without improvement

maxSteps 75
Number of steps that
an ant traverses each

iteration

�Candidates 5|�| Candidate set
cardinality

9 0.5 Initial pheromone
evaporation factor

6 1.5 Initial pheromone
enhancement factor

updatePeriod maxSteps/3 Pheromone update
period

7 10
Number of iterations
without improvement

before escaping

minimum spanning tree is not within the scope of the above
set, the output answer is invalid.

Tables 3–6 provide the statistical results of optimal value,
average value, standard deviation, coe�cient of variation CV,
and mean deviation value Gap a�er 20 times of operation for
all the sample graphs under various conditions.

According to the deviation coe�cient CV and mean
deviation value Gap listed in the table, these values are large
when � = 2. Signi�cant changes can be observed comparing
to optimal solution and the changes in optimal search are
obvious.

With the increase of �, the restrictions of spanning tree
construction will not be tightly controlled. It can be drawn
from the table that optimal solution, taking graph att48 as
an example, tends to be stable while changes in deviation
coe�cient and mean deviation value approach zero. Optimal
tree weight tends to be stable and algorithm optimization gets
improvedwith changes of � by adopting improved algorithm.
With the increase of degree in sample graph, variation ranges
of deviation coe�cient and standard deviation value were
kept within 0.00%–6.00%, even close to 0.00%. 	e above
results show advantages of improved ant colony algorithm in
solving DCMST of dense graph and advantages of ant colony
algorithm in solving combinatorial optimization problem in
minimum spanning tree.

When� is equal to 4 or 5, obtained solutions optimized by
ant colony algorithmare basically stable in a certain range and
optimized performance of algorithm and optimized values
of results tend to be constant. 	e results imply that there
are no more promotions on solution searching when degree
constraints go over a certain range. 	erefore, in practical
applications, the degree of limitation on the spanning tree
should be more considered. Excessive restrictions on span-
ning tree will not result in an expected optimization e
ect.
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Table 3: Experimental results when � = 2.
Sample graph
(�)

Optimal value
(best)

Average value
(U)

Standard deviation
(T)

Coe�cient of
variation (CV)

Mean deviation
value (Gap)

att48 32699.57 32865.26 193.35 1.00 1.00

bier127 117484.46 118228.23 0.00 1.00 1.00

eil51 402.00 413.50 9.19 2.00 4.00

eil76 524.00 537.50 0.71 0.00 3.00

eil101 519.00 534.50 2.12 0.00 3.00

ulysses16 43.00 45.50 2.12 5.00 6.00

ulysses22 43.00 45.00 2.83 6.00 5.00

kroA100 21802.88 22214.5 89.54 0.00 2.00

kroA200 32001.91 32139.63 145.86 0.00 0.00

rand50 5450.00 5450.00 0.00 0.00 0.00

rand75 7329.46 7384.14 0.00 0.00 1.00

rand100 8212.65 8398.32 262.58 3.00 2.00

rat99 1203.00 1250.00 41.01 3.00 4.00

pr107 38405.70 38943.71 59.19 0.00 1.00

pr136 105046.60 105417.40 405.11 0.00 0.00

pr152 67577.00 67880.68 312.56 0.00 0.00

chn31 13870.83 14041.91 175.49 1.00 1.00

ch130 6268.00 6389.03 171.16 3.00 2.00

ch150 6787.99 6875.00 0.00 0.00 1.00

overil30 367.23 372.11 6.91 2.00 1.00

Table 4: Experimental results when � = 3.
Sample graph
(�)

Optimal value
(best)

Average value
(U)

Standard deviation
(T)

Coe�cient of
variation (CV)

Mean deviation
value (Gap)

att48 27855.00 27855.00 0.00 0.00 0.00

bier127 94680.00 94680.00 0.00 0.00 0.00

eil51 362.00 363.50 0.71 0.00 0.00

eil76 456.00 459.00 2.83 1.00 1.00

eil101 455.00 458.00 0.00 0.00 1.00

ulysses16 43.00 45.50 2.12 5.00 6.00

ulysses22 43.00 45.00 2.83 6.00 5.00

kroA100 18731.00 18731.00 0.00 0.00 0.00

kroA200 15853.00 25853.00 0.00 0.00 0.00

rand50 4967.00 4967.00 0.00 0.00 0.00

rand75 5996.00 5996.00 0.00 0.00 0.00

rand100 6907.00 6907.00 0.00 0.00 0.00

rat99 1082.00 1082.00 0.00 0.00 0.00

pr107 34890.00 34890.00 0.00 0.00 0.00

pr136 88940.00 88940.00 0.00 0.00 0.00

pr152 59105.00 59105.00 0.00 0.00 0.00

chn31 12111.00 12111.00 0.00 0.00 0.00

ch130 5102.00 5102.50 0.71 0.00 0.00

ch150 5812.00 5812.00 0.00 0.00 0.00

overil30 334.00 334.50 0.71 0.00 0.00
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Table 5: Experimental results when � = 4.
Sample graph
(�)

Optimal value
(best)

Average value
(U)

Standard deviation
(T)

Coe�cient of
variation (CV)

Mean deviation
value (Gap)

att48 27623.00 27623.00 0.00 0.00 0.00

bier127 94680.00 94680.00 0.00 0.00 0.00

eil76 456.00 457.50 2.12 0.00 0.00

eil51 359.00 359.00 0.00 0.00 0.00

eil101 456.00 458.00 1.41 0.00 0.00

ulysses16 41.00 42.00 0.00 0.00 2.00

ulysses22 41.00 43.00 0.00 0.00 0.00

kroA100 18731.00 18731.00 0.00 0.00 0.00

kroA200 25844.00 25844.00 0.00 0.00 0.00

rand50 4665.00 4665.00 0.00 0.00 0.00

rand75 5996.00 5996.00 0.00 0.00 0.00

rand100 6889.00 6889.00 0.00 0.00 0.00

rat99 1082.00 1082.00 0.00 0.00 0.00

pr107 34756.00 34756.00 0.00 0.00 0.00

pr136 88940.00 88940.00 0.00 0.00 0.00

pr152 59105.00 59105.00 0.00 0.00 0.00

chn31 12111.00 12111.00 0.00 0.00 0.00

ch130 5103.00 5103.50 0.00 0.00 0.00

ch150 5809.00 5809.00 0.00 0.00 0.00

overil30 334.00 334.50 0.71 0.00 0.00

Table 6: Experimental results when � = 5.
Sample graph
(�)

Optimal value
(best)

Average value
(U)

Standard deviation
(T)

Coe�cient of
variation (CV)

Mean deviation
value (Gap)

att48 27623.00 27623.00 0.00 0.00 0.00

bier127 94680.00 94680.00 0.00 0.00 0.00

eil76 455.00 460 0.00 0.00 1.00

eil51 360.00 360.00 0.00 0.00 0.00

eil101 456.00 458.50 2.12 0.00 1.00

ulysses16 41.00 41.50 0.71 2.00 1.00

ulysses22 41.00 42.50 0.71 2.00 4.00

kroA100 18731.00 18731.00 0.00 0.00 0.00

kroA200 25844.00 25844.00 0.00 0.00 0.00

rand50 4665.00 4665.00 0.00 0.00 0.00

rand75 5996.00 5996.00 0.00 0.00 0.00

rand100 6889.00 6889.00 0.00 0.00 0.00

rat99 1082.00 1082.00 0.00 0.00 0.00

pr107 34756.00 34756.00 0.00 0.00 0.00

pr136 88940.00 88940.00 0.00 0.00 0.00

pr152 59105.00 59105.00 0.00 0.00 0.00

chn31 12111.00 12111.00 0.00 0.00 0.00

ch130 5102.00 5102.50 0.71 0.00 0.00

ch150 5809.00 5809.00 0.00 0.00 0.00

overil30 334.00 334.50 0.71 0.00 0.00
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Table 7: Results of comparison for multiple and single colony ant algorithm.

Sample graph

� = 2
Average solution (U) Optimal solution (best)

Multiple Single Multiple Single

eil51 374.43 413.50 398.00 402.00

eil76 534.98 537.50 519.00 524.00

chn31 14012.02 14041.91 13870.86 13870.83

overil30 371.92 372.11 365.00 367.23

ulysses16 45.00 45.50 43.00 44.00

ulysses22 46.50 45.00 43.00 44.00

rand75 7390.14 7384.14 7326.04 7329.46

rand100 8248.18 8398.32 8166.56 8212.65

gr96 462.50 463.70 445.00 449.00

gr120 1678.90 1692.41 1631.00 1663.00

gr137 686.80 690.30 682.00 683.00

bayg29 8107.22 8597.52 8432.44 8439.00

beilin52 7702.51 7761.52 7442.58 7627.00

burma14 19.70 19.90 18.00 19.00

danzig42 647.16 656.39 640.65 642.92

st70 662.73 663.90 643.00 650.00

kroA150 27446.79 27611.06 27363.01 27471.08

Table 8: Results of comparison for multiple and single colony ant algorithm.

Sample graph

� = 3
Average solution (U) Optimal solution (best)

Multiple Single Multiple Single

eil51 363.25 363.50 362.00 363.00

eil76 459.00 460.00 454.00 456.00

gr96 398.40 399.75 395.00 397.00

bayg29 7456.81 7459.00 7415.16 7459.00

danzig42 565.75 566.15 565.00 566.00

ulysses22 42.60 45.00 41.00 43.00

st70 544.50 544.65 542.00 543.00

By comparing multicolony ant algorithm with single
colony ant algorithm [2], multicolony ant algorithm is obvi-
ously more e
ective in solution optimization which proves
that multicolony ant algorithm shows greater advantages in
DCMST optimal searching. Conditions under � = 2 and
� = 3 are selected here to illustrate the proposed opinion.
Solution assessment of these two algorithms is evaluated by
average solution (U) and optimal solution (best). Solution
comparisons of multicolony ant algorithm and single colony
ant algorithm under � = 2 and � = 3 are listed in Tables 7 and
8.

Experimental data as shown in Tables 7 and 8 show that
average weight and optimal weight of DCMST obtained by
multicolony ant algorithm are obviously smaller than those
solved by single colony ant algorithm. Multicolony ant algo-
rithm yields better optimization results than single colony ant
algorithm which implies that coordination and cooperation
through information entropy in multiant colonies promotes

better convergence of algorithm and expands search space
which adds to the diversity of solution. By comparing exper-
imental results of � = 2 and � = 3, it can be seen that the
tougher the degree constraints of minimum spanning tree
are, the more accurate the solution searched by multicolony
ant algorithm is.	e above analysis proved that the algorithm
has strong search ability.

It can be drawn from the above analysis that multicolony
ant algorithm shows greater superiority in solving DCMST.
It features outstanding ability of optimal solution �nding and
also it will extensively distribute the solutions and obtain
new optimal solutions, thus making it a better algorithm for
searching DCMST with smallest weight.

6. Conclusion

	e paper carried out studies on applications of ant colony
algorithm in DCMST optimization. Many problems remain
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unresolved in this study since researches on swarm intelli-
gence of ant colony algorithm are still in a primary stage.
Works to be carried out next are as follows: to �nd out links
among genetic algorithm, hill-climbing algorithm, and par-
ticle swarm optimization algorithm and integrate them into
a novel improved algorithm. By adopting it to optimizations
like DCMST, practical application demands can be met.

Another work to be done is to improve parameters
selection criteria of algorithm optimization and assessment
standard of algorithm stability on account of the lack of
related study in depth while ant colony algorithm is a
heuristic search algorithm and also due to few works being
carried out in this �eld to perfectly prove its correctness.

Owing to the complexity and diversity of practical prob-
lems and variations in working environment, multilayered
algorithms have not been reached in this paper. In addition,
complex theory has become a powerful framework to deal
with the complexity problems in real-world systems [20–
23].	us, concurrent collaborations of multiant colonies will
be a key emphasis in work so as to increase the speed and
e�ciency of solving tasks.

In a word, related works presented in this paper re�ect
smart features of intelligent computing and dynamic execu-
tion in parallel, and signi�cant achievements have beenmade
by it in DCMST.
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