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Background: Parkinson’s disease (PD) is Pengfei Zhang Liwen Zhao Pengfei Zhang

Liwen Zhao a common neurological disorder involving a complex relationship with

immune infiltration. Therefore, we aimed to explore PD immune infiltration patterns

and identify novel immune-related diagnostic biomarkers.

Materials and methods: Three substantia nigra expression microarray datasets were

integrated with elimination of batch effects. Differentially expressed genes (DEGs)

were screened using the “limma” package, and functional enrichment was analyzed.

Weighted gene co-expression network analysis (WGCNA) was performed to explore

the key module most significantly associated with PD; the intersection of DEGs and

the key module in WGCNA were considered common genes (CGs). The CG protein–

protein interaction (PPI) network was constructed to identify candidate hub genes

by cytoscape. Candidate hub genes were verified by another two datasets. Receiver

operating characteristic curve analysis was used to evaluate the hub gene diagnostic

ability, with further gene set enrichment analysis (GSEA). The immune infiltration

level was evaluated by ssGSEA and CIBERSORT methods. Spearman correlation

analysis was used to evaluate the hub genes association with immune cells. Finally,

a nomogram model and microRNA-TF-mRNA network were constructed based on

immune-related biomarkers.

Results: A total of 263 CGs were identified by the intersection of 319 DEGs and 1539

genes in the key turquoise module. Eleven candidate hub genes were screened by

the R package “UpSet.” We verified the candidate hub genes based on two validation

sets and identified six (SYT1, NEFM, NEFL, SNAP25, GAP43, and GRIA1) that distinguish

the PD group from healthy controls. Both CIBERSORT and ssGSEA revealed a

significantly increased proportion of neutrophils in the PD group. Correlation

between immune cells and hub genes showed SYT1, NEFM, GAP43, and GRIA1 to be

significantly related to immune cells. Moreover, the microRNA-TFs-mRNA network

revealed that the microRNA-92a family targets all four immune-related genes in PD

pathogenesis. Finally, a nomogram exhibited a reliable capability of predicting PD

based on the four immune-related genes (AUC = 0.905).
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Conclusion: By affecting immune infiltration, SYT1, NEFM, GAP43, and GRIA1, which

are regulated by the microRNA-92a family, were identified as diagnostic biomarkers

of PD. The correlation of these four genes with neutrophils and the microRNA-92a

family in PD needs further investigation.

KEYWORDS

Parkinson’s disease, bioinformatics analysis, immune infiltration, weighted gene co-
expression network analysis (WGCNA), hub genes, gene set enrichment analysis

Introduction

Neurological disorders, as the main cause of disability worldwide,
impose a major financial burden (Feigin et al., 2019). Compared to
other neurological disorders, Parkinson’s disease (PD) has shown
the fastest growth in prevalence and incidence in recent years
(Bloem et al., 2021). The main characteristic features of PD include
progressive loss of neurons in specific areas of the substantia nigra
and the presence of Lewy bodies in the brain (Wakabayashi et al.,
2013), which lead to dysfunction in patients. There have been
significant advances in the treatment of PD, such as dopamine
substitution and deep-brain stimulation, which retard symptom
progression and improve quality of life for decades after disease
onset (LeWitt and Fahn, 2016; Limousin and Foltynie, 2019).
However, PD eventually leads to severe disability, which remains
a healthcare challenge. Therefore, modifying PD progression and
delaying disability are still key problems that need to be solved. When
early clinical signs are inadequate for diagnosis of PD, in particular
a lack of typical motor symptoms, diagnosis is often delayed and
misdiagnosis may occur (Feigin et al., 2019; Bloem et al., 2021). By the
time a diagnosis of PD is made, a substantial proportion of neurons
in the brain have been lost (Gaenslen et al., 2011; Postuma and Berg,
2016). Thus, new diagnostic methods, including biomarkers that can
identify individuals at risk and early before clinical manifestation of
the onset of motor symptoms are needed.

In recent years, growing evidence has indicated that the immune
system is involved in the pathophysiology of PD and increases the
progression of PD (Öberg et al., 2021; Zhang et al., 2021). For
instance, immune infiltrating cells CD8+ and CD4+ T cells, which
were significantly different in PD samples compared with control
animal models (Brochard et al., 2008; Harms et al., 2017), were
related to dopaminergic neuron cell loss in the PD group (Brochard
et al., 2008; Williams et al., 2021). Notably, a high proportion of
substantia nigra CD8 T-cell infiltration has been considered an early
alteration in PD, even occurring before death of dopamine neuronal
cells and α-synuclein aggregation, which is also associated with
progression of PD (Galiano-Landeira et al., 2020). However, the
pathological mechanism underlying immune infiltration in PD lacks
comprehensive evidence. Thus, understanding the mechanism of
immune regulation in PD and identifying reliable biomarkers related
to immune regulation can guide clinical diagnosis and immune
strategies for treatment of the disease.

MicroRNA (miRNA), a small single-stranded non-coding RNA
molecule, binds to mRNA and induces mRNA degradation
and translational repression for posttranscriptional regulation of
gene expression. Recent studies have elucidated that dysregulated
expression of miRNAs plays a substantial role in regulating PD

(Briggs et al., 2015; Nair and Ge, 2016). For instance, miR-153
can significantly reduce expression of synuclein-alpha (SNCA) (Je
and Kim, 2017), which has been confirmed to be relevant to the
pathogenesis of PD (Lesage et al., 2020; Kung et al., 2022). Moreover,
miRNAs are not only related to dopaminergic neuron survival
(Kabaria et al., 2015) and neuroinflammation (Yao et al., 2018),
but can also serve as diagnostic biomarkers (Shu et al., 2020) and
therapeutic tools for PD (Gan et al., 2019; Nies et al., 2021). Therefore,
miRNAs can provide useful insight into the pathophysiology of PD
to identify new therapeutic targets and strategies to slow or reverse
neurodegeneration.

In recent years, with the development of microarray technology,
bioinformatics analysis has been widely applied to identify
potential novel biomarkers and reveal key pathways to explore
the pathogenesis and drug targets of different diseases (Zhou
et al., 2021). In this study, we conducted systematic bioinformatics
analysis to identify novel immune infiltration-related diagnosis
genes and understand the potential immune mechanism during the
development of PD.

We integrated three datasets from the Gene Expression Omnibus
(GEO) database, including 38 substantia nigra samples from the
PD group and 29 normal samples. Differential expression gene
(DEG) analysis of the integrated dataset comparing PD samples
with normal controls, Gene Ontology (GO) functional analysis,
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
analysis, weighted gene co-expression network analysis (WGCNA),
and protein–protein interaction (PPI) analysis were successively
performed. Next, six hub genes were identified after validation using
another two cohorts. The diagnostic effectiveness of the hub genes,
gene set enrichment analysis (GSEA) of the hub genes, and the
correlation between the hub genes and immune infiltration type
were investigated. Then, four immune infiltration-related marker
genes were confirmed. Finally, a nomogram model and miRNA-TF-
mRNA network were constructed based on four immune infiltration-
related marker genes, constituting potential biomarkers for the early
diagnosis and treatment of PD.

Materials and methods

Data collection and preprocessing

We used the keyword “Parkinson’s disease” to search the
GEO1 (Clough and Barrett, 2016). Five datasets were downloaded,

1 https://www.ncbi.nlm.nih.gov/geo/
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and those datasets met of the following inclusion criteria: (1)
related to Homo sapiens; (2) datasets containing Parkinson’s patients
and control subjects; and (3) tissue derived from the substantia
nigra.

We downloaded the original data files (∗.CEL) of the four
datasets (GSE8397, GSE20163, GSE20164, and GSE20292), which
were all based on the GPL96 (HG-U133A) Affymetrix Human
Genome U133A Array (Affymetrix, Santa Clara, CA, United States).
The GSE26927 dataset, including 12 PD substantia nigra tissue
samples and 8 normal substantia nigra samples, was based
on the GPL6255 platform Illumina humanRef-8 v2.0 expression
beadchip (Illumina Inc., Bethesda, MD, United States). The GSE8397
dataset (GPL96, HG-U133 A chips) consisted of 47 individual
brain tissue samples, including substantia nigra tissues of 24
patients with PD and 15 control samples. GSE20163 contained
17 substantia nigra tissue samples, including 9 patients with PD
and 8 normal substantia nigra tissue samples. GSE20164 consisted
of 11 substantia nigra tissue samples, including 5 PD samples
and 6 normal samples. GSE20292 consisted of 29 substantia
nigra tissue samples, including 11 PD samples and 18 normal
samples. GSE26927 was used to validate the hub genes. The
raw data files (∗.CEL) of the four datasets (GSE8397, GSE20163,
GSE20164, and GSE20292) were processed by the “affy” package
(version 1.74.0) (Gautier et al., 2004). The robust multichip
average (RMA) method was used for the above four datasets to
obtain the gene expression matrix after background correction,
normalization and calculation of expression values in the “affy”
package.

We used the “limma” package (version 3.52.2) of R software2

(ver. 4.2.0) (Ritchie et al., 2015) to match the identity document
(IDs) of the datasets with that of the gene (gene symbol)
based on each platform annotation file; empty probes that
did not match the gene symbol were removed. If multiple
probes corresponded to the same gene symbol, the maximum
expression value was taken as its expression value. The gene
expression profiles of GSE8397, GSE20163, and GSE20164 were
integrated by the “limma” package in R. The combined dataset
is processed using the surrogate variable analysis (SVA) package
(version 3.44.0) (Leek et al., 2019) to remove batch effects
and other unwanted variations in high-throughput experiments.
Supplementary Table 1 shows the detailed information of the
five datasets, and a flow chart of the study design is shown in
Figure 1.

Analysis of differentially expressed genes
(DEGs)

The “limma” package was used to normalize the integrated
dataset with the ‘normalize Between Arrays’ function in R software
(version 4.2.0) and then screen DEGs between 38 patients with PD
and 29 normal substantia nigra tissues from control patients with
the threshold of adjusted p-value < 0.05 and | log2 Fold change
(FC)| > 0.5. Heatmap and volcano plots of DEGs were created by
the “pheatmap” package (version 1.0.12) and the “ggplot2” package
(version 3.3.6) in R software (version 4.2.0), respectively.

2 https://www.r-project.org/

Gene ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) analyses

We examined GO functions from three classifications,
including biological processes (BP), cellular component (CC),
and molecular function (MF), to further explore the potential
molecular mechanisms of DEGs. KEGG was used to integrate
pathway information for those DEGs. The R project was used to
perform GO and KEGG analyses based on the “clusterProfiler”
(Wu et al., 2021), “org.Hs.e.g.db” (Carlson et al., 2019), “ggplot2”
(Villanueva and Chen, 2019), “enrichplot” (Yu, 2019), and “DOSE”
(Yu et al., 2015) packages, and adjusted p < 0.05 was considered to
be statistically significant.

Construction of weighted gene
co-expression network analysis (WGCNA)
and identification of hub modules

Weighted gene co-expression network analysis, a systematic
biology approach, was utilized to construct a co-expressed gene
network and to explore genes closely associated with the clinical
phenotype. First, according to variation across samples in the
integrated dataset, the top 5000 genes were imported into WGCNA
using the “WGCNA” package (version 1.71) (Langfelder and
Horvath, 2008). Second, all samples were clustered, and discrete
samples were removed to ensure the reliance of the network
construction results. Third, the soft threshold parameter was
calculated, and the optimal parameter β was selected to form the
scale-free network based on the scale independence and mean
connectivity. According to the suitable power of β = 7 (R2 = 0.85), the
topological overlap matrix (TOM) and corresponding dissimilarity
(1-TOM) were calculated. Fourth, through the dynamics cut tree
algorithms, hierarchical clustering genes were identified, and then
similar genes were classified into the same modules based on the
TOM-based dissimilarity measure.

Each module of the gene dendrogram contained at least 50 genes,
and similar modules were merged, with a height cutoff of 0.25.
Finally, the module membership (MM) and gene significance (GS)
were measured. The relevance between module eigengenes (MEs)
and clinical traits was assessed by the Pearson correlation test and
was shown with a heatmap to identify the most significant modules
associated with MEs. Significant module genes were selected for
further analysis.

Construction of a protein–protein
interaction (PPI) network and
identification of candidate hub genes

The “VennDiagram” package (Chenn, 2018) (version 1.7.3) was
used to obtain intersecting common genes (CGs) between DEGs
and the genes in the most significant module of WGCNA. The
PPI network of CGs was analyzed with the Search Tool for the
Retrieval of Interacting Genes (STRING3; version 11.0) online

3 www.string-db.org
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FIGURE 1

Flowchart of the study. GEO, gene expression omnibus; DEGs, differentially expressed genes; WGCNA, weighted gene co-expression network analysis;
ssGSEA, single-sample gene set enrichment analysis; GSEA, gene set enrichment analysis; GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; PPI, protein–protein interaction; PD, Parkinson’s disease; TF, transcriptional factor.

database (Szklarczyk et al., 2019). In addition, we selected PPI
interaction pairs with a significance cutoff of interaction score over
0.4 while hiding disconnected nodes in the network. Finally, the
results of the PPI network were visualized in Cytoscape (Shannon
et al., 2003) (version 3.9.1). We selected the CytoHubba (version
0.1) plugin in Cytoscape by nine algorithms, namely, maximal clique
centrality (MCC), maximum neighborhood component (MNC),
node connection degree (Degree), edge percolated component (EPC),
BottleNeck, closeness, radiality, stress, and betweenness, to detect the
top 30 genes by each approach from the PPI network. Then, the
number of nodes for each gene (PPICount) was calculated, and the
top 30 genes with the largest nodes were obtained in R software. For
this study, nine approaches of CytoHubba and PPIcount were used
to screen candidate hub genes by the “UpSetR” package (Gehlenborg,
2019) (version 1.4.0) in R.

Identification of hub genes and diagnostic
implications of hub genes for PD

Expression of candidate hub genes was extracted from GSE20292
and GSE26927. The difference between PD and normal samples
of each candidate hub gene was calculated and visualized by the

“ggpurb” package (Kassambara, 2020). Candidate hub genes that
were statistically significant in both training and validation sets were
considered hub genes. A p-value of<0.05 was considered significant.

To evaluate the ability of the hub genes in both the training and
validation sets to identify PD, the “pROC” package (Robin et al.,
2011) was used to conduct receiver operating characteristic (ROC)
curve analysis. The area under the curve (AUC) value was used
to examine the diagnostic effectiveness in discriminating PD from
control samples in both training and validation sets.

Single-gene gene set enrichment analysis
(GSEA)

Through the median expression value of six hub genes (SYT1,
GAP43, SNAP25, GRIA1, NEFL, and NEFM), we divided the 38 PD
substantia nigra tissues into low- and high-expression groups based
on each hub gene. Then, to further explore the function of hub genes,
single-gene GSEA was implemented by the ordered gene expression
matrix based on the Pearson correlation between each hub gene
and other genes in R software using the “clusterProfiler” (Wu et al.,
2021) and “enrichplot” (Yu, 2019) packages. A p-value of <0.05 was
considered significant.
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Evaluation of immune cell infiltration by
ssGSEA and CIBERSORT

Single-sample gene set enrichment analysis (ssGSEA) was
implemented to estimate infiltration levels of 16 immune cells and 13
immune functions on the basis of expression profiling between the
PD and control samples using the “GSVA” package (version 1.40.1)
(Hänzelmann et al., 2013). The “pheatmap” package (version 1.0.
12) (Kolde, 2019) was used to visualize the heatmap of 29 immune
cells and immune functions. The correlation heatmap between risk
scores and the scores of 16 immune cells and 13 immune functions
was generated using the “corrplot” package (Version 0.90) (Wei and
Simko, 2021). Boxplots were separately generated using the “ggpubr”
package (version 0.4.0) (Kassambara, 2020) and the “reshape2”
package (Wickham, 2007). We used Spearman correlation analysis
to reveal the correlations between the candidate hub genes and 29
immune cells and immune functions.

In addition, the CIBERSORT algorithm (Newman et al., 2015)
was applied to quantify and calculate the proportion of 22 types
of infiltrating immune cells among the merged expression profile;
CIBERSORT filters the samples at p< 0.05. A bar plot was generated
to show the percentage of 22 types of immune cells in each sample.
The heatmap, violin plot, and correlation heatmap were generated
using the “pheatmap” package (Kolde, 2019), “vioplot” package
(version 0.3.7) (Adler and Kelly, 2020), and “corrplot” package (Wei
and Simko, 2021) by the R program, respectively.

Correlations between the candidate hub genes and 20 types
of immune infiltrations were calculated and visualized by
using Spearman correlation analysis. Based on ssGSEA and
CIBERSORT, four hub genes that were most relevant to immune
infiltration were selected.

Construction of a nomogram model for
PD

We established a nomogram model based on four immune-
related biomarker genes for predicting the occurrence of PD using
the “rms” package (Harrell, 2021). The accuracy of the nomogram
was assessed through calibration curve analyses. In addition, the
AUC value was utilized to quantify the predictive performance of the
nomogram model based on ROC curve analyses using the “ROCR”
package (Sing et al., 2005).

Analysis of transcription factors (TFs) and
miRNAs of immune-related hub genes

We searched the target miRNAs of immune-related biomarker
genes in the miRWalk (Dweep et al., 2011), RNAInter (Kang et al.,
2022), and TargetScan (Agarwal et al., 2015) databases and retained
common miRNAs. Moreover, we determined the transcription
factors (TFs) for the hub genes in the Enrichr database4 and screened
the results with a p-value < 0.05. Finally, a miRNA-TF-mRNA
regulatory network was constructed using Cytoscape.

4 http://amp.pharm.mssm.edu/Enrichr/

Statistical analysis

We used version 4.2.0 of R software (limma, ggpurb, pheatmap,
violplot, corrplot package, and so on) for all statistical analyses.
Student’s t test was applied to compare the mean difference
between groups. Correlation between variables was determined using
Pearson’s or Spearman’s correlation test. Two-tailed p-values < 0.05
were considered significant.

Results

Identification of DEGs

Differentially expressed genes of the integrated dataset were
analyzed using the “limma” package. A total of 319 genes were
differentially expressed between 38 PD samples and 29 normal
substantia nigra tissue samples, with 45 genes being upregulated and
274 downregulated. The volcano plot and heatmap of DEGs are
shown in Figures 2A, B, respectively.

GO and KEGG analyses of DEGs

Differentially expressed genes were assessed through GO and
KEGG analyses to explore the biological functions associated with
PD. KEGG enrichment analysis results showed that DEGs are
mainly related to synaptic vesicle cycle, phagosome, collecting duct
acid secretion, gap junction, GABAergic synapse, and Parkinson’s
disease, among others (Figures 3A–C and Supplementary Table 2).
GO enrichment analysis indicated DEGs to be associated with
neurotransmitter transport, vesicle-mediated transport in synapse,
synaptic vesicle cycle, regulation of neurotransmitter levels, and
regulation of trans-synaptic signaling, among others, in biological
processes (BP) analysis. Cellular component (CC) analysis showed
the DEGs to be mainly enriched in presynapse, neuronal cell body,
transport vesicle, distal axon, and exocytic vesicle, among others.
The top five significant terms enriched in molecular function (MF)
analysis were structural constituent of cytoskeleton, ATPase-coupled
ion transmembrane transporter activity, ATPase activity (coupled to
transmembrane movement of ions, rotational mechanism), proton-
transporting ATPase activity (rotational mechanism), and GTPase
activity (Figure 3D and Supplementary Table 2).

Construction of a weighted co-expression
network and identification of hub modules

The variance of all genes in integrated dataset was calculated,
and the top 5000 variant genes were selected for analysis using the
“WGCNA” package. We performed clustered hierarchically analysis
of all samples to remove outliers by setting the threshold value to
50, and no outlier samples were removed (Figure 4A). The power
of β = 7 (scale-free R2 = 0.885) was selected as the soft threshold to
ensure a scalefree network (Figure 4B). As shown in Figure 4C, 12
modules were finally identified after merging similar modules in the
cluster tree by setting the threshold to 0.25. The correlation between
module eigengene (ME) values and clinical features is presented
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FIGURE 2

Identification of DEGs in the integrated dataset. (A) Volcano plot of all DEGs. The tomato nodes represent upregulated DEGs with p-value < 0.05 and
logFC > 0.5; the cyan nodes represent downregulated DEGs with p-value < 0.05 and logFC < –0.5. (B) Heatmap of DEGs in PD samples vs. normal
samples. Each row of the heatmap represents one gene, and each column represents one sample. The red and blue colors represent gene expression
levels corresponding to upregulated and downregulated expression. DEGs, differentially expressed genes; FC, fold change; PD, Parkinson’s disease.

in Figure 4D. Seven modules exhibited significant correlation with
PD (p < 0.05), and the turquoise module represented the highest
negative correlation with PD compared (r = 0.62; p = 3E-8). The
correlation between different modules was illustrated through the
cluster diagram and heatmap (Figure 4E). Moreover, 400 genes
were randomly selected in R software to draw a heatmap of the
weighted gene co-expression correlations to further illustrate the
correlation between different modules (Figure 4F). GS and MM
of all modules were calculated to draw scatterplots. As expected, a
significant correlation existed in the turquoise module MM and GS
(| cor| = 0.72, p < 1E-200, Figure 4G), including 1593 genes, which
were most significantly associated with PD and selected for further
analysis.

PPI network and candidate hub genes

Venn analysis was performed based on the DEGs screened from
the integrated dataset and the genes in turquoise module, and 263
common genes (CGs) genes were found (Figure 5A). The PPI
network of 263 CGs was constructed to investigate the relationships
of those genes at the protein level and obtain candidate hub genes
using Cytoscape according to the STRING database (Figure 5B).
The top 30 genes with the largest number of adjacent nodes were
screened as PPICount, including SNAP25, SYN1, SYT1, SNCA,
GAP43, GRIA1, STXBP1, RAB3A, TH, and CALB1 (Figure 5C
and Supplementary Table 3). Then, we applied nine algorithms to
calculate the score of each node gene using the CytoHubba plug-
ins of Cytoscape and selected the top 30 genes of each algorithm
(Supplementary Table 3). Finally, we screened 11 intersected genes
(SNAP25, SNCA, SYT1, ENO2, GRIA, STXBP1, SYN1, TH, NEFM,
GAP43, and NEFL) through 10 approaches by “UpSet” in the R
package (Figures 5D, E). All these intersected genes that were defined
as candidate hub genes were found to be downregulated.

mRNA expression of hub genes in patients

The mRNA expression results for the candidate hub genes in the
GSE20292 indicated SNAP25, SNCA, SYT1, GRIA, NEFM, GAP43,

and NEFL to be expressed at significantly lower levels in the PD
group than the control group (Figure 6A, p < 0.05). No significant
differences were found in mRNA expression of ENO2, STXBP1,
SYN1, and TH. In addition, we verified expression of marker genes
in the GSE26927 dataset, and SNAP25, SYT1, GRIA, NEFM, GAP43,
NEFL, and TH expression was significantly lower in PD patients than
normal samples (Figure 6B, p< 0.05). Finally, SNAP25, SYT1, GRIA,
NEFM, GAP43, and NEFL, which could effectively differentiate PD
patients from controls (p< 0.05), were selected and considered as the
hub genes and potential biomarkers for PD.

Diagnostic effectiveness of hub genes for
PD

Receiver operating characteristic curves analyses were used to
examine the accuracy of the six potential biomarker genes to
diagnose PD, with AUC values of 0.896 (GAP43), 0.837 (GRIA1),
0.775 (NEFL), 0.762 (NEFM), 0.740 (SNAP25), and 0.890 (SYT1),
respectively, in the training set (Figure 7A). As shown in Figure 7B,
the AUC values of GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1
were 0.722, 0.808, 0.813, 0.773, 0.788, and 0.788, respectively, in the
validation set (GSE20292). Figure 7C indicates that the AUC for
all genes was greater than 0.7 in the GSE26927 dataset. The above
evidence suggests that GAP43, GRIA1, NEFL, NEFM, SNAP25, and
SYT1 can be used as diagnostic biomarkers for differentiating PD
patients from normal controls.

Single-gene GSEA

Parkinson’s disease substantia nigra tissues were divided into
two subgroups based on the median expression of the six hub
genes. Then, we utilized single-gene GSEA to explore potential
signaling pathways of the potential biomarker genes. The top five
pathways enriched for potential biomarker genes are illustrated
in Figures 7D–I. After comprehensive analysis, we found low
NEFM expression to be associated with immune responses (B-
cell receptor signaling pathway, Th1 and Th2 cell differentiation,
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FIGURE 3

Gene ontology and KEGG pathway enrichment analyses of DEGs. (A) Barplot of KEGG analysis based on the obtained 263 genes. (B) The bubble
diagrams show the top ten significantly enriched terms in KEGG analysis. The X-axis is the GeneRatio (gene count/gene size) of the term, and the Y-axis
denotes the name of the term. The darker the color is, the smaller the adjusted p-value is. (C) Subnetwork showing the top five KEGG pathways and
related genes. (D) The top 5 terms for BP, CC, and MF with p < 0.05 are shown. DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of
Genes and Genomes; GO, gene ontology; BP, biological processes; CC, cell component; MF, molecular function.

etc.) and various immunologic disease pathways (systemic lupus
erythematosus, intestinal immune network for IgA production,
etc.), and the neuroinflammation response (NF-kappa B signaling
pathway, IL-17 signaling pathway, etc.). The remaining five hub
genes are also involved in several immune response pathways
or various immunologic disease pathways, including viral protein
interaction with cytokine and cytokine receptor (GAP43, GRIA1,
NEFL, SNAP25, and SYT1), primary immunodeficiency (GAP43,
GRIA1, NEFL, SNAP25, and SYT1), autoimmune thyroid disease
(GRIA1, NEFL, SNAP25, and SYT1), and maturity-onset diabetes
of the young (GAP43, NEFL, and SNAP25), among others. The
details of the KEGG pathway results for the six hub genes are
shown in Supplementary Table 5. The above results suggest that

these potential marker genes may influence PD development through
immune-related pathways.

ssGSEA of immune infiltration

We evaluated the samples in the integrated dataset by ssGSEA
to quantify the immune infiltration and enrichment scores of
29 immune cells and immune-related functions. A heatmap was
drawn to investigate correlations between substantia nigra tissue
samples with or without PD and immune cells (Supplementary
Figure 1A). In the PD group, immune cells such as B cells,
neutrophils, plasmacytoid dendritic cells (pDCs), T follicular helper
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FIGURE 4

The WGCNA process for the integrated dataset. (A) Clustering dendrogram of 38 PD substantia nigra tissue and 29 normal substantia nigra tissue gene
expression patterns. (B) Analysis of the scale-free fit index (left) and the mean connectivity (right) for various soft-thresholding powers; the power value β
was set as 7 for further analysis. (C) Clustering dendrograms of 5000 genes based on a dissimilarity measure (1-TOM). Seventeen co-expression modules
were constructed with various colors under the gene tree, and similar modules were merged into twelve modules with a height cutoff of 0.25. Each
color represents one module. (D) Heatmap of associations between modules and clinical traits. Correlation coefficients and p-values are shown in each
cell, which were obtained by the intersection of rows and columns. The turquoise module correlated significantly with PD. (E) Visualization of the
eigengene dendrogram and eigengene adjacency heatmap. Red indicates more similarity, and blue indicates less similarity. (F) Visualization of 400
random genes from the WGCNA network using a heatmap plot to depict the TOM among all modules included in the analysis. A redder background
indicates a higher module correlation. (G) Scatter plot of module membership vs. gene significance for PD in the turquoise module. WGCNA, weighted
gene co-expression network analysis; TOM, topological overlap matrix; PD, Parkinson’s disease.

cells (Tfhs), tumor-infiltrating lymphocytes (TILs), and regulatory
T cells (Tregs) had higher ssGSEA scores (p < 0:05, Figure 8A).
Moreover, the box plot illustrated that immune pathways such
as APC_co_stimulation and CCR were associated with elevated
ssGSEA scores in the PD group, whereas Type_I_IFN_Reponse
immune function was lower in the PD group (p < 0:05, Figure 8B).
The corHeatmap of immune-related functions result showed that

check-points were positively related with T_cell_co-stimulation and
T_cell_co-inhabition (r = 0.84 and 078, respectively, Supplementary
Figure 1B). Similarly, parainflammation had a significant positive
correlation with CCR (r = 0.78, Supplementary Figure 1B).
Immune cells such as neutrophils, pDCs, T_helper_cells were
positively related with TILs (r = 0.77, 0.73, and 0.73, respectively,
Supplementary Figure 1C), whereas aDCs were negatively related to
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FIGURE 5

Protein–protein interaction network and identification of candidate hub genes. (A) Venn plot showing the intersection between the DEGs and genes in
the turquoise module, and 263 CGs were obtained. (B) PPI network of CMs by Cytoscape. The size and gradient color of circles are adjusted by the
degree value, which reflects the connectivity between nodes. The size of circles has a positive correlation with the degree value. (C) PPI Count, revealing
the number of adjacent nodes of the top 30 genes (ranked from low to high) based on the PPI network. (D) UpSet plot showing the intersection of ten
algorithms, namely, MCC (top 30), MNC (top 30), Degree (top 30), EPC (top 30), BottleNeck (top 30), Closeness (top 30), Radiality (top 30), Stress (top
30), and Betweenness (top 30), and PPI Count (top 30). (E) Eleven candidate hub genes. All these candidate hub genes were found to be downregulated.
PPI, protein–protein interaction; CGs, common genes; MCC, maximal clique centrality; MNC, maximum neighborhood component; EPC, edge
percolated component.

Tregs (r = −0.42, Supplementary Figure 1C). Correlation analysis
showed that most of immune cells had a negative correlation with all
of the hub genes (Figure 8C and Supplementary Table 4).

CIBERSORT analysis of immune infiltration

We performed CIBERSORT analysis to assess infiltrating levels
of 22 immune cells in PD samples and normal samples by R
software. The heatmap showed the relationship between immune
cells and all of the samples filtered (Supplementary Figure 2A). The
correlation heatmap of 22 types of immune cells demonstrated that
T cells regulatory were positively related with T cells CD8 (r = 0.56,
Supplementary Figure 2B) but that activated dendritic cells and M1
macrophages had a negative correlation (r = −0.70); activated mast
cells were negatively related to resting mast cells (r = −0.69). The
violin plot of the immune cells showed that PD patients had a higher
level of neutrophils, activated NK cells and monocytes (p < 0:05,
Figure 9A). Supplementary Figure 2C illustrates the proportion
of each type of immune cell in each sample. Pearson correlation
analysis revealed a negative correlation for neutrophils with four
downregulated genes, including NEFM, GRIA1, SYT1, and GAP43
(Figure 9B and Supplementary Table 4). Combined with above two

methods, four genes (NEFM, GRIA1, NEFL, and SYT1) were strongly
negatively related to immune infiltration, especially neutrophils, and
regarded as marker hub genes related to immune infiltration.

Construction of a nomogram model to
predict occurrence of PD

The marker hub genes, namely, NEFM, GRIA1, NEFL, and
SYT1, were then used to construct a nomogram model to predict
PD occurrence (Figure 10A). We also utilized calibration plots to
confirm the performance of this nomogram model, with a sufficient
degree of fit for predicting the incidence of PD (Figure 10B). The
AUC was 0.905, suggesting that the predictive model had high
predictive accuracy (Figure 10C).

MiRNA–TF–mRNA regulatory network
analysis based on marker genes

After miRNA and TF pairs were predicted based on the four
marker hub genes, we constructed a miRNA-TF–mRNA network,
including 70 miRNAs common in three databases (miRWalk,
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FIGURE 6

Validation of candidate hub genes. (A) Validation of candidate hub genes in the GSE20292 dataset. (B) Validation of candidate hub genes in the
GSE20681 dataset (*p < 0.05, **p < 0.01). PD, Parkinson’s disease.

RNAInter and TargetScan database), 10 TFs, and 4 downregulated
marker genes. The regulatory network included 69 nodes and 81
edges, as established through Cytoscape 3.9.1 (Figure 11). Within the
network, expression of all marker genes is regulated by hsa-miR-92a-
3p, hsa-miR-92b-3p, and hsa-miR-25-3p.

Discussion

Parkinson’s disease is the most common movement disorder,
though its mechanisms have not been fully clarified. This present
study used bioinformatics analysis to identify immune infiltration-
related marker genes, which were used to construct a nomogram
model for the early prediction of PD and miRNA-TF-mRNA network
analysis to explore potential therapeutic targets for PD. We obtained
a total of 319 DEGs based on the integrated dataset. WGCNA was
performed and confirmed the turquoise module as the key module

correlating with PD. Intersecting DEGs and genes in the turquoise
module were obtained; a total of 263 CMs were screened, which
were then used for PPI network construction. We then used 10
approaches based on Cytoscape software and obtained 11 candidate
hub genes. Moreover, those 11 genes were validated in the GSE20292
and GSE26927 datasets, with 6 genes, namely, SNAP25, SYT1, GRIA,
NEFM, GAP43, and NEFL, screened. ROC analysis demonstrated the
effective diagnostic of those six hub genes in PD, suggesting potential
for distinguishing PD patients from normal controls.

Six hub genes were selected for further single-gene GSEA by
dividing the PD samples into two subgroups based on median
expression of the six hub genes. We found that low expression of
hub genes was mainly related to the immune response and immune
diseases. Then, we analyzed differences in immune cell infiltration
level between the substantia nigra of PD samples and healthy
brain tissue. Our result indicates that the proportion of neutrophils,
monocytes, and activated NK cells were significant higher in PD
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FIGURE 7

Diagnostic efficacy of potential biomarkers (GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1) for prediction of PD and GSEA based on expression levels of
those potential biomarkers. ROC analysis of six hub genes (GAP43, GRIA1, NEFL, NEFM, SNAP25, and SYT1) for diagnosing PD in the integrated dataset
(A) and the validation sets GSE20292 (B) and GSE26927 (C). Single-gene GSEA-KEGG pathway analysis of GAP43 (D), GRIA1 (E), NEFL (F), NEFM (G),
SNAP25 (H), and SYT1 (I). PD, Parkinson’s disease; GSEA, gene set enrichment analysis; ROC, receiver operator characteristic.

samples than in controls by CIBERSORT analysis. The ssGAEA
algorithm also showed that B cells, neutrophils, pDCs, Tfhs, TILs,
Treg, APC_co_stimulation, and CCRs had higher ssGSEA scores in
the PD group but that immune function of Type_I_IFN_Reponse was
lower in the PD group. The above results revealed that the immune
cells (DC, NK cells, T cells, CCRs, neutrophils, and monocytes) play
a vital role in the pathogenesis of PD.

Overexpressed α-synuclein induces infiltration of pro-
inflammatory monocytes through C-C chemokine receptor type 2
(CCR2) in the CNS, whereas deletion of CCR2 prevents this and
subsequent dopaminergic neuronal death in the progression of PD
(Harms et al., 2018). Dysregulation of peripheral human monocytes
in PD has also been observed (Grozdanov et al., 2014), subsequently
inducing a higher infiltration level of monocytes in the cerebrospinal
fluid than in the control group (Schröder et al., 2018). The correlation
of circulating monocytes and immune cells may be that chemokines
lead to increased blood–brain barrier permeability, invasion of

peripheral monocytes into the CNS, and infiltration of immune cells
(Harms et al., 2018). However, the potential role monocytes in the
pathogenesis of PD in humans has not yet been investigated, and
further research is warranted.

Increasing evidence suggests that significantly increased T
cells (CD8 and CD4) are present in the substantia nigra of PD
patients compared with control subjects (Theodore et al., 2008;
Harms et al., 2017), and T-cell responses were connected with
dopaminergic neuron cell loss (Brochard et al., 2008; Lira et al.,
2011; Williams et al., 2021). A growing body of evidence shows
that Treg cells, Foxp3-expressing CD4+ CD25+ T lymphocytes,
play an important role in immune regulation (Noack and
Miossec, 2014). Treg cells protect neurons by inhibiting microglial
oxidative stress and inflammation in the central nervous system
(CNS) (Reynolds et al., 2007). Huang et al. (2017) revealed
that dopaminergic neuronal protection of Treg cells is achieved
via interaction between CD47 and signal regulatory protein α
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FIGURE 8

Visualization and evaluation of immune infiltration levels based on ssGSEA. (A) Comparison of 16 immune cells between PD samples and control
samples. (B) Box diagram of different immune function expression levels in the PD and control groups. (C) Pearson correlation analysis of 29 types of
immune cells and immune-related functions with hub genes (*p < 0.05 and **p < 0.01). PD, Parkinson’s disease.

(SIRPA) in PD processes. Moreover, dysfunction of Treg cells
decreases the ability to suppress the function of effector T cells
in PD, which may accelerate its progression (Saunders et al.,
2012).

T follicular helper cells, which are essential in B-cell activation,
are a specialized subtype of CD4+ T cells that are expressed
at significantly higher levels in PD patients than in controls
(Zhao et al., 2020). In addition, Tfh cells promote Th-17-induced
neuroinflammation by inducing inflammatory B-cell responses in
the CNS and increasing disease severity (Quinn et al., 2018). Such
progression of disease severity can be reduced by inhibiting Tfh cells
in the CNS.

Combining two methods, ssGSEA and CIBERSORT, we found
that neutrophils were differentially expressed between PD samples
and normal samples. The PD-relevant immune response is related
not only to changes in brain immune cells and neuroinflammation
but also to changes in the peripheral blood system. A recent study
reported higher neutrophil counts in PD compared to controls
and a decreased lymphocyte count (Jensen and Jacobs, 2021). The
neutrophil-to-lymphocyte ratio, which has proven prognostic value
in infection, inflammatory diseases and several types of cancers,
is significantly higher in PD patients than the peripheral immune

profile (Akıl et al., 2015; Muñoz-Delgado et al., 2021). Such an
elevated neutrophil population leads to mitochondrial changes,
increased markers of oxidative stress, and overexpression of nitric
oxide, suggesting that neutrophils participate in the pathological
progression of PD (Vitte et al., 2004).

Plasmacytoid dendritic cells can regulate the immune response by
producing large amounts of cytokines, particularly type I interferons,
which induce B cells to differentiate into plasma cells and produce
immunoglobulin (Jego et al., 2003; Poeck et al., 2004; Menon et al.,
2016), activate NK-cell cytolytic activity (Colonna et al., 2004), and
affect T-cell functions (Agnello et al., 2003). The former is supported
by studies in other disease, whereas a direct influence of pDCs in PD
remains to be confirmed.

Similarly, Alzheimer’s disease (AD), the most common
neurodegenerative disease, is also closely related to immune
infiltration (Hu and Wang, 2021; Qian et al., 2022; Zhang et al.,
2022). A previous study revealed that some specific immune cells in
brain tissue, including Treg cells, activated NK cells, and neutrophils,
were significantly more or less abundant in patients with AD than
in healthy controls (Hu and Wang, 2021), which is consistent with
the results of this study. The infiltration levels of some immune cells,
such as pDCs, macrophages, and basophils, were altered in the brain
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FIGURE 9

Visualization and evaluation of immune infiltration levels based on the CIBERSORT algorithm. (A) Comparison of 22 immune cells between PD samples
and control samples. (B) Pearson correlation analysis of immune cell infiltration with hub genes (*p < 0.05 and **p < 0.01). PD, Parkinson’s disease.

tissue samples of PD and AD patients compared to healthy controls
(Qian et al., 2022; Zhang et al., 2022). The potential reasons for
this were that the brain tissue samples were derived from different
regions and that the pathological mechanisms of these two diseases
are not completely the same. The roles of immune infiltration in
neurodegenerative diseases still require further investigation.

Moreover, we identified the relationship between the six genes
(NEFM, GRIA1, NEFL, SYT1, NEFL, and SNAP25) and immune
cell type by CIBERSORT and ssGSEA, and NEFM, GRIA1, NEFL,
and SYT1 were found to be closely related to immune cells. KEGG
analysis results showed DEGs to be enriched in the synaptic vesicle
cycle. Disorders of the synaptic vesicle cycle participate in the
pathogenesis of PD and play a critical role in degeneration of
dopaminergic neurons. Synaptotagmin-1 (SYT1), a potential target
in treating nervous system disorders, regulates neuron exocytosis and
the synaptic vesicle cycle (Mingazov and Ugrumov, 2016; Liu and
Kaeser, 2019). It has been demonstrated that by sponging miR-34-
5p, overexpression of SYT1 has a neuroprotective effect in a mouse
model of PD (Shen et al., 2021).

Growth-associated protein-43 (GAP-43), also known as
neuromodulin, a marker of synaptic formation and neuronal
elongation, plays an essential role in the early stage of nervous system
development. PD patients have significantly lower expression levels
of GAP-43 in dopaminergic neurons than age-matched controls,
which results in reduced regenerative capacity in dopaminergic
neurons, as well as involvement of GAP43 downregulation in
glial PD pathophysiology (Saal et al., 2017; Chung et al., 2020).
Another study revealed that an enriched environment promotes
GAP-43 upregulation to induce plastic brain changes and prevent
dopaminergic cell loss on the progression of neuronal impairment
related to PD (Yuan et al., 2018).

Emerging evidence supports that GluA1 (also known as GRIA1),
a subunit of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptors, mediates synaptic plasticity, thereby playing
a critical role in brain function and dysfunction (Qu et al.,
2021). The GluA1-homomeric form, a calcium-permeable AMPA
receptor subtype, induces trafficking and insertion of AMPARs
(AMPA receptors) in synapses (Zhang and Abdullah, 2013;
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FIGURE 10

Construction of the nomogram. (A) Construction of a nomogram for immune-related hub genes (GAP43, GRIA1, NEFM, and SYT1) for predicting the
occurrence of PD. (B) Calibration curve estimates the prediction accuracy of the nomogram for PD patients. (C) The area under the curve (AUC) was
0.905. PD, Parkinson’s disease; AUC, area under the curve.

Tamano et al., 2018). Defects in regulated AMPAR trafficking can
lead to movement disorders, which may be involved in the
pathogenesis of PD (Tamano et al., 2018). One study demonstrated
that the mechanism for the treatment of Alzheimer’s disease (Qu
et al., 2021) is mainly related to upregulation and phosphorylation
of GluA1.

Neurofilament proteins, composed of a triplet of neurofilament
medium chain (NFM), heavy chain (NFH), and light chain (NFL)
proteins according to their molecular weight, are commonly used as
reliable biomarkers for neurodegenerative pathology (Zucchi et al.,
2020). It has been demonstrated that NEM, also known as NEFM,
is linked to regulatory functions in dopaminergic neurotransmission
(Kim et al., 2002) and is associated with the immune response
(Barboni et al., 2014; Li et al., 2021). Increased levels of NEFM have
been detected in various neurological diseases, such as brain damage
(Martínez-Morillo et al., 2015), schizophrenia spectrum disorders
(Runge et al., 2022), and amyotrophic lateral sclerosis (Häggmark
et al., 2014). However, the association of NEFM with PD has not been
reported previously and requires further investigation.

We also investigated the associations between four biomarker
genes and AD. NEFM (Mirza and Rajeh, 2017; Hu et al., 2020)
and SYT1 (Mirza and Rajeh, 2017) were notably downregulated
in AD compared with control brain tissues in previous studies,
demonstrating that these two genes are linked to the pathogenesis
of AD. In a postmortem study, the hippocampal expression levels
of GRIA1, GAP-43, and NEFM were significantly decreased in
AD patients compared with controls (Chowdhury et al., 2020). In
addition, the CSF levels of both GAP-43 and SYT1 significantly
increased in patients with dementia due to AD, implying that these
genes can potentially be used as biomarkers of synaptic dysfunction to
predict the progression of AD (Öhrfelt et al., 2016; Qiang et al., 2022).
The above evidence identifies four biomarker genes associated with
AD; however, their roles in this disease still require further research.

Various biomarkers for early PD diagnosis have been proposed
(Surguchov, 2022), but they remain investigational and need further
confirmation. Recent studies have demonstrated that exosomes
mediate the transfer of α-synuclein protein to brain cells, providing a
potential mechanism for the propagation of pathological α-synuclein
aggregation in brain cells and the acceleration of pathology in PD
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FIGURE 11

The miRNA-TF-mRNA interaction network. The red circles represent marker hub genes, the blue triangles represent miRNAs, and the green inverted
cones indicate TFs. mRNAs, messenger RNAs; miRNAs, microRNAs; TFs, transcription factors.

(Pinnell et al., 2021; Valencia et al., 2022). α-Synuclein aggregation
in CSF as detected by protein misfolding cyclic amplification
(PMCA) and real-time quaking-induced conversion (RT-QuIC)
had high diagnostic accuracy (AUC 0.93 and 0.89, respectively)
in distinguishing PD patients from controls (Kang et al., 2019).
Pathological α-synuclein in plasma neuron-derived exosomes can
serve as a biomarker to differentiate PD patients from healthy
controls (Kluge et al., 2021). Moreover, CNS-derived exosomes in
plasma were significantly higher in PD patients than in controls,
whereas the performance of plasma exosomal α-synuclein was only
moderate (AUC 0.654). We should conduct further research to
shed more light on this extraordinary phenomenon. Whether the
four biomarker genes drive this discrepancy by interacting with
or regulating α-synuclein aggregation in fluid or neuron-derived
exosomes and lead to this discrepancy also remains to be explored.

Next, the four immune-related biomarkers were selected as key
genes for further miRNA-TF-mRNA network analysis. Taking the
miRNA-TF-mRNA network into account, we explored the regulatory
mechanisms of NEFM, GRIA1, NEFL, and SYT1, which might be
regulated by hsa-miR-92a-3p and hsa-miR-92b-3p. Our findings
indicate that hsa-miR-92a is the hub miRNA in both regulatory

and co-expression networks and has a strong functional role in PD.
Based on integrated network analysis, hsa-miR-25-3p and hsa-miR-
363-3p were also identified as bridges connecting to GRIA1, NEFL,
and SYT1. Campos-Melo et al. demonstrated that miR-92a-3p is
expressed in motor neurons of the spinal cord and can directly
downregulate NEFM. MiR-92a is also able to repress translation of
GluA1 receptors to block homeostatic scaling in rats (Letellier et al.,
2014). Moreover, researchers have found that an inhibitor of miR-363
increases the expression level of GAP43 in glioma cells (Conti et al.,
2016). Interestingly, miR-25, miR-92a-3p (miR-92a-1 and miR-92a-
2), and miR-363 all belong to the miR-92 family, a group of highly
conserved miRNAs (Olive et al., 2010). MiR-92a may be viewed as
a potential therapeutic target for PD. Previous studies have revealed
aberrant expression of miR-92a in various cancers, and it exerts its
function in tumors mainly by promoting cell proliferation, invasion
and metastasis and inhibiting apoptosis (Dou et al., 2020; Feng et al.,
2021). Overexpression of miR-92a suppresses immune cell function
in many kinds of malignant tumors (Dou et al., 2020; Feng et al.,
2021). However, the regulatory mechanisms of miR92a have rarely
been studied in PD. Thus, we speculate that the miR92a family
may regulate the identified biomarkers to participate in immune
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infiltration in PD, and further studies to explore the pathophysiology
of the miR92a family in PD are required in the future.

Finally, we developed a nomogram to predict the occurrence
in PD patients based on the four immune-related biomarkers. The
results showed that the nomogram model had excellent individual
predictive effects. Therefore, this nomogram may provide new insight
and contribute to accurate diagnosis of PD, particularly for early stage
PD.

To the best of our knowledge, this is the first diagnostic
nomogram to predict PD based on GEO datasets. However,
there are still some limitations in this study. First, although we
performed rigorous bioinformatics analysis and external validation
to verify expression of the hub genes and their predictive power
in PD diagnosis, the results need to be thoroughly investigated
in in vitro experiments. Second, there are few datasets of miRNA
expression in the substantia nigra of PD, and the relationship of
miRNAs and immune infiltration should be investigated. Further
studies are warranted to focus on miRNAs with mechanisms in
PD. Finally, although a nomogram to predict PD is presented,
this analysis was based on genome-wide expression of the
substantia nigra from postmortem brains, and detection of substantia
nigra mRNA expression in practical applications is difficult to
implement. Future research should focus on comparing gene
expression and immune infiltration patterns between different
neurodegenerative diseases, enabling the identification of early stage
disease biomarkers that can improve the understanding of the
pathophysiology of neurodegenerative diseases and facilitate the
application of timely symptomatic interventions. Nevertheless, this
study provides new insight into exploring the mechanism of PD and
PD diagnosis.

Conclusion

In conclusion, this study not only suggests that immune cell
infiltrates are associated with PD but also presents four effective
diagnostic immune-related biomarkers for PD patients. We also
predict that the miRNA-92a family might target these immune-
related biomarkers in regulating PD. Our research provides further
insight into potential therapeutic targets for PD.
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