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Dynamic quantification of drought response is a key issue both for variety selection and

for functional genetic study of rice drought resistance. Traditional assessment of drought

resistance traits, such as stay-green and leaf-rolling, has utilized manual measurements,

that are often subjective, error-prone, poorly quantified and time consuming. To relieve

this phenotyping bottleneck, we demonstrate a feasible, robust and non-destructive

method that dynamically quantifies response to drought, under both controlled and

field conditions. Firstly, RGB images of individual rice plants at different growth points

were analyzed to derive 4 features that were influenced by imposition of drought.

These include a feature related to the ability to stay green, which we termed greenness

plant area ratio (GPAR) and 3 shape descriptors [total plant area/bounding rectangle

area ratio (TBR), perimeter area ratio (PAR) and total plant area/convex hull area ratio

(TCR)]. Experiments showed that these 4 features were capable of discriminating reliably

between drought resistant and drought sensitive accessions, and dynamically quantifying

the drought response under controlled conditions across time (at either daily or half

hourly time intervals). We compared the 3 shape descriptors and concluded that PAR

was more robust and sensitive to leaf-rolling than the other shape descriptors. In

addition, PAR and GPAR proved to be effective in quantification of drought response

in the field. Moreover, the values obtained in field experiments using the collection

of rice varieties were correlated with those derived from pot-based experiments. The

general applicability of the algorithms is demonstrated by their ability to probe archival

Miscanthus data previously collected on an independent platform. In conclusion, this

image-based technology is robust providing a platform-independent tool for quantifying

drought response that should be of general utility for breeding and functional genomics

in future.
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INTRODUCTION

Rice, a staple food that feeds half of the world’s population
(Yang et al., 2013), is one of the most water-hungry crops
(Xia et al., 2006). Widespread pollution, climatic change, and
a growing population further aggravate the water shortage
problem. Thus, water scarcity has become an urgent global and
environmental problem (Hussain and Mumtaz, 2014; Trenberth
et al., 2014). Furthermore, water availability varies geospatially
and across seasons, making drought a key restraining factor in
rice production (Uga et al., 2013). When drought stress occurs
during the reproductive stage, rice yield is very significantly
reduced (Venuprasad et al., 2009; Vikram et al., 2011).

Drought resistant varieties assist in maintaining and
improving rice yield under such conditions. Therefore, as in
many crops, one of the major targets in breeding is to develop
drought resistant varieties. To accelerate the identification of
novel drought resistant varieties in breeding programs, a rapid
species-agnostic method for evaluation of drought-resistance
under diverse conditions is a necessary prerequisite. Since
cost-effective solutions are likely to be based on visible attributes,
we explored the readily observable (macroscopic) reactions of
leaves to drought.

As with many species of grass, rice leaves roll, and change
their overall geometry in response to drought conditions and
then recover when water is available (Begg et al., 1980; Tardieu,
2013). Therefore, leaf rolling and general leaf geometry could be
useful indicators and have already been widely used to identify
drought resistant varieties (Richards et al., 2010). Variation in leaf
rolling has been recorded using visual scores (O’Toole and Cruz,
1980; Turner, 1997). Color change is another commonly reported
reaction, as leaves tend to become yellow when subjected
to drought. Therefore, prolonged persistence of green color
(sometimes also referred to as the stay-green trait) could be an
appropriate indicator for identifying drought tolerance varieties
(Fang and Xiong, 2015). In maize, the stay-green trait was
considered to be closely related to yield (King and Purcell,
2001). Similar to leaf-rolling, the stay-green trait is traditionally
evaluated using a manual visual score (Kholová and Vadez, 2013;
Sukumaran et al., 2016).

The visual scores can only provide qualitative measurement of
drought response. Most importantly, visual scores as evaluated
by different people may be different, suggesting that the visual
scores are subjective and error-prone. Continuous quantification
of the drought response through measurement of leaf rolling and
stay-green could, therefore, provide a useful means to monitor
drought response. This would have particular advantages for
large dispersed breeding trials.

Optical imaging and computer-assisted feature extraction
have the advantages of being non-destructive, potentially high-
throughput and objective. They have been widely applied in
phenotyping plant growth and development (Spalding and
Miller, 2013; Duan et al., 2015; Montagnoli et al., 2016; Rebolledo
et al., 2016), seeds (Duan et al., 2011), root systems (Lobet et al.,
2017), plant disease symptoms (Mutka and Bart, 2014), and
plant abiotic stress (Altamimi et al., 2016; Fisher et al., 2016;
Malinowska et al., 2017).

Honsdorf et al. (2014) calculated 8 imaging parameters,
along with 3 harvest parameters and 4 indices, to evaluate
the kinetics of growth under early drought stress and detect
drought tolerance QTL in Barley. Petrozza et al. (2014) used
non-invasive imaging to evaluate the plant water content, plant
health state, state of the photosynthetic apparatus and digital
biomass to characterize the response to drought stress in tomato.
Born et al. (2014) adopted terahertz time-domain spectroscopy
to measure the leaf water content for monitoring plant drought
stress response. Stay-green or senescence was also calculated
and used to evaluate drought responses (Petrozza et al., 2014;
Malinowska et al., 2017). However, to the best of our knowledge,
there is little research on quantification of leaf-rolling using
these nondestructive approaches. Sirault et al. (2015) applied
smoothing splines to skeletonized images of transverse wheat leaf
sections to quantify the inter-genotypic variation for hydronastic
leaf rolling in wheat. Neilson et al. (2015) estimated the degree
of leaf rolling in sorghum by comparing projected plant area
in the late afternoon (when the plants are least hydrated) with
area early the following morning (when hydration would be
expected to be maximal). They concluded that the decrease of
projected leaf area was related to the degree of leaf-rolling over
the diurnal cycle and the method seems effective over this time
period. These and other related papers using pot experiments to
study drought response and drought tolerance were listed in the
Supplementary Presentation 1.

In this paper, we present a novel method to non-intrusively
quantify drought response in vivo by analyzing simple color
images of rice under both controlled and field conditions.
Specifically, we

(1) Provide an image analysis pipeline for analyzing images,
extracting drought-related features that provide continuous
and quantitative measurements related to the drought
response,

(2) Test the ability of the method to discriminate between
drought resistant and drought sensitive accessions,

(3) Test the ability of the method to dynamically quantify
drought response under controlled and field conditions and
finally

(4) Show that the method can be easily adopted to quantify
drought response and determine the initial date of leaf-
rolling forMiscanthus and maize, indicating that the method
is applicable to gramineous crops in general.

MATERIALS AND METHODS

Experimental Design for Dynamic
Quantification of Rice Drought Response
Under Controlled Conditions
The experimental design is shown in Figure 1A. To dynamically
quantify rice drought response under controlled conditions,
40 accessions (20 drought resistant accessions and 20 drought
sensitive accessions, Supplementary Presentation 2) with 4
replications of each genotype were grown in the greenhouse
during summer, 2013. Each accession was deemed as drought
resistant or drought sensitive by 3 experts evaluated manually
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based on its leaf-rolling and stay-green ability. The germination
dates of the 40 accessions were staggered to ensure synchronized
flowering. Seeds were sown in the field. Twenty-day-old seedlings
were transplanted to pots containing 4.5 kg soil and transferred
to a controlled environment. When an accession grew to the
booting stage (panicle elongation), the plant was imaged by
RAP (Rice Automatic Phenotyping, Yang et al., 2014) to collect
image features before application of stress. Irrigation was then
stopped to allow drought stress to occur. Soil water content was
measured using TRIME-PICO32 (IMKO Micromodultechnik
GmbH, Ettlingen, Germany) on the basis of time domain
reflectometry (TDR). When the soil water content reduced
to 15% (TDR value), the plants were watered to maintain
the soil water content at 15% (TDR value) for 5 days. Then
images of plants under stress conditions were collected using
RAP. The time interval between the two imaging times was
approximately 1 week, depending on the decline in soil water.
The 4 image-derived features, whose behavior seemed related to
drought response (1 feature related to stay-green and 3 shape
descriptors, hereafter referred to as 4 drought-related features),
were extracted and tested for their ability to discriminate known
drought resistant accessions from drought sensitive accessions
(see section Discrimination Between Drought Resistant and
Drought Sensitive Accessions).

To further study the drought response from a dynamic
standpoint, 38 accessions (Supplementary Presentation 2) that
displayed pronounced leaf-rolling were planted at 18/August,
2015 as a single plants and subjected to drought stress from
DAP 52 (days after planting) to DAP 70. All the plants were
imaged daily by RAP from DAP 58 to DAP 70. The 4 drought-
related features were extracted and analyzed to study the drought
response at daily intervals. To study the detailed dynamics of the
response to drought stress and rehydration, 2 accessions, namely
Maweinian and Zaoxian240 were monitored over the course of a
day at approximately 30min. intervals in summer, 2016. At the
booting stage, irrigation was interrupted to allow drought stress
to occur. While the soil remained visibly wet and no leaf-rolling
occurred, images were taken to record the plants before stress.
When the leaves of the plants started to roll, images were taken
at approximately 30min intervals to record the plants response
under drought stress. After all the leaves of the plant rolled up,
the plant was re-watered to collect images after rehydration at
approximately 30min intervals.

Experimental Design for Dynamic
Quantification of Rice Drought Response
Under Field Conditions
To test whether these drought-related features could be used
to quantify drought response in the open field, 42 accessions
with 2 replicates (Supplementary Presentation 2) were planted
in an experimental paddy field (Figure 1B) in summer, 2016.
Each accession was planted as a single 90 × 90 cm2 field-plot
containing 20 plants (5 rows and 4 columns). A guard row was
planted as a boundary between the field-plots to depress any edge
effects. Images were taken with a consumer grade Nikon D40
camera. At the booting stage, irrigation was cut off to allow the

drought stress to occur. Images were taken at five stages, which
we classified as well watered (before stress, C), mild drought stress
(D1), moderate drought stress (D2), severe drought stress (D3),
and after rehydration (R). Specifically, when there was no water
in the field but the soil kept wet (no visible leaf-rolling), images
for plants before stress were collected. The time interval between
different level of drought stress (D1 and D2, D2, and D3) was
5–6 days. Water was supplied again immediately after images
under severe drought stress were taken. A week after rehydration,
images for plants after rehydration were taken. Drought-related
features were extracted from the images at all 5 stages to quantify
the drought response.

Experimental Design for Dynamic
Quantification of Leaf-Rolling in
Miscanthus
To evaluate our method on other species grown on other
phenotyping platforms, RGB side-view archival images from 39
accessions of the elephant grass Miscanthus were acquired from
the large plant platform at National Plant Phenomics Centre
(NPPC), IBERS, Aberystwyth University, UK (Malinowska et al.,
2017). The 39 Miscanthus accessions (8 replicates for each
accession) were planted at 07/ April, 2014, and moved to
large plant platform at 12/ May, 2014. After transfer to NPPC,
plants were grown for 2 weeks in well-watered conditions (90%
relative soil water). Drought stress treatments were applied at
roughly the time of emergence of the fifth leaf of the main
stem. 4 replicates for each accession were treated for control
(90% relative water capacity), and the other 4 replicates were
treated for drought (taken to and held at 15–20% relative water
capacity). Lateral side view RGB images (2 per day per plant)
had been acquired daily from DAP 37 to DAP 71 and were re-
used here to extract and calculate the drought related features
(Figure 1C). Detailed experimental designs were listed in the
Supplementary Presentation 3.

Image Capture and Analysis Under
Controlled Conditions
Images of pot-grown rice plants were captured using the visible
light imaging unit in the RAP (Yang et al., 2014) previously
developed by our group. The RAP facility adopted an industrial
conveyor to move the pot-grown rice plants to the imaging
area. As the plants were rotated, side-view images from different
angles were captured by a Charge Coupled Device (CCD) camera
(Stingray F-504C, Applied Vision Technologies, Germany).
Image acquisition was performed using NI-IMAQ Virtual
Instruments (VI) Library for LabVIEW (National Instruments
Corporation, USA). More details concerning the RAP system can
be found in Yang et al. (2014).

The image analysis and feature extraction was performed
in LabVIEW (National Instruments Corporation, USA). Image
analysis consisted of 6 steps (Figure 2A):

(1) Segmentation and total projected plant area calculation: the
original RGB image was transformed to HSI color space.
Background pixels and plant pixels were discriminated using
fixed thresholds. A binary image of the plant was obtained by
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FIGURE 1 | The experimental design for dynamic quantification of drought response for (A) rice under controlled conditions, (B) rice under field conditions, and (C)

Miscanthus under controlled conditions.
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FIGURE 2 | Image analysis and feature extraction pipeline under (A) controlled conditions and (B) field conditions.

setting plant pixels as 1 and background pixels as 0. Regions
with areas less than a predefined threshold were removed.
The number of plant pixels was computed as total projected
plant area.

(2) Green component extraction and greenness projected
plant area calculation: Using the binary image of the

plant as a mask, a RGB image without background was
generated from the original RGB image. The ExG and
ExR planes of the plant’s RGB image were extracted
according to Equations (1, 2). The pixels were deemed
as greenness pixels if their ExG value was greater than
a predefined ExG threshold and their ExR value was
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FIGURE 3 | Discrimination between rice drought resistant and drought sensitive accessions.(A) General dynamics of 4 drought-related features before/after stress

between drought resistant and drought sensitive accessions. The markers and the bars in each line represent the mean value and standard deviation across the

accessions, respectively. (B) A drought resistant and a drought sensitive accession before and after stress.

less than a predefined ExR threshold. Greenness projected
plant area was then calculated as the number of greenness
pixels.

ExG = 2Ng−Nr−Nb (1)

ExR = 1.4Nr−Nb (2)

where Nr, Ng, Nb was the normalized r, g, b plane, defined
by Equations (3–5).

Nr = R/(R+ G+ B) (3)

Ng = G/(R+ G+ B) (4)

Nb = B/(R+ G+ B) (5)

where R, G, B was the R, G, B plane of the RGB image,
respectively.

(3) Edge detection and plant perimeter calculation: The edge of
the plant was extracted using IMAQ Edge Detection VI. The
plant perimeter was calculated as the number of pixels in the
plant edge.

(4) Bounding rectangle detection and bounding rectangle area
calculation: The bounding rectangle of the plant was the
minimum rectangle that enclosed the plant. In this study,
the bounding rectangle was detected using IMAQ Particle
Analysis VI. The bounding rectangle area was calculated as
the product of its width and height.

(5) Convex hull detection and convex hull area calculation: The
convex hull of the plant was the smallest convex set that
contained the plant and detected using OpenCV. The convex
hull area was computed as the pixel number of the convex
hull.

(6) Drought-related feature extraction: 4 image-derived features
related to drought were calculated, including 1 stay-green
related feature: greenness plant area ratio (GPAR), and 3
shape descriptors: total plant area/bounding rectangle area
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ratio (TBR), perimeter area ratio (PAR), and total plant
area/convex hull area ratio (TCR). The definitions of the 4
drought-related features were provided in Equations (6–9).

GPAR =
greenness projected plant area

total projected plant area
(6)

TBR =
total projected plant area

bounding rectangle area
(7)

PAR =
plant perimeter

total projected plant area
(8)

TCR =
total projected plant area

convex hull area
(9)

These 4 drought-related features were extracted from each image.
The drought-related features for a plant at a specific time point
was then computed as the average feature value across all the
side-view images from different angles at a given time point. The
image analysis pipeline for Miscanthus was similar to the indoor
rice, allowing for differences in number of side images.

Image Analysis for GPAR and PAR of Rice
Under Field Conditions
Images of rice in field-plots were taken with a Nikon D40 camera
containing a 23.7 × 15.6mm CCD matrix of 6.24 million pixels,
and equipped with a 35mm focal length lens. As shown in
Figure 2B, after original images were captured in field plot, the
green component was extracted also using ExG plane. With
the greenness projected plant area and total projected plant
area in plot, the GPAR was calculated using the greenness
projected plant area divided by total projected plant area. To
avoid interference of overlapping plants and to better detect leaf-
rolling, the top 1/3 of the original image was isolated from the
whole image and used to calculate PAR. The detail of image
analysis for GPAR and PAR under field conditions was shown in
the Supplementary Presentation 4.

Statistical Analysis
Statistical analyses used SPSS (Statistical Product and Service
Solutions, Version 19.0, SPSS Inc., USA). To test the effect
of replications, genotypes and water treatment, the one-way
analysis of variance (ANOVA) with subsequent post-hoc pairwise
comparison using Tukey Honest Significant Difference (HSD)
was applied at 95% confidence level. Pearson coefficients were
calculated to analysis the relevance of the drought-related
features under controlled conditions and field conditions.

RESULTS AND DISCUSSION

Discrimination Between Drought Resistant
and Drought Sensitive Accessions
To determine the ability of the 4 drought-related features
in discriminating drought resistant accessions from drought
sensitive accessions under controlled conditions, 40 accessions
were subjected to drought stress. The digital features before and
after drought stress were extracted. First, we tested whether there
was a significant replication effect. There were no significant

differences between the 4 replications (ANOVA, p > 0.05,
Supplementary Table 1 in Supplementary Presentation 5). The
mean of the 4 replications for each feature was then
calculated and used for subsequent analysis. We analyzed the
dynamics of the 4 drought-related features before/after stress
between drought resistant and drought sensitive accessions
(Figure 3). The markers and the bars in each line represent
the mean value and standard deviation across the accessions,
respectively. There were no significant differences between
drought resistant and drought sensitive accessions for all 4
drought-related features before stress (ANOVA, p > 0.05,
Supplementary Table 2 in Supplementary Presentation 5). In
contrast, significant differences were observed between drought
resistant and drought sensitive accessions for all 4 features after
stress (ANOVA, p-value ranging from 2.261E-15 to 3.078E-
12, Supplementary Table 2 in Supplementary Presentation 5).
This indicated that the drought resistant and drought sensitive
accessions responded to the drought treatment differently and
that all the image derived features reported this difference
faithfully.

More specifically, GPAR of both the drought resistant
and drought sensitive accessions decreased after the drought
stress. However, the decreasing amplitude of GPAR was much
smaller for drought resistant accessions than drought sensitive
accessions. PAR of the drought resistant accessions increased
after drought stress while PAR of the drought sensitive accessions
was relatively stable. In contrast to PAR, TBR and TCR
decreased after drought stress in drought resistant accessions
yet increased in drought sensitive accessions. These results show
that the 4 drought-related features are capable of quantifying
the differences in response to drought between drought resistant
accessions and drought sensitive accessions.

Plant size is a known variable that affects water use and
potentially could be a confounding factor in the interpretation of
these features. To estimate the extent to which plant size affected
the features, we used TDR as a direct measure of soil water to
impose water stress and then compared plants of comparable
biomass. When we surveyed the entire population based on
biomass (dry weight), there was only a weak relationship between
shoot dry weight and PAR change (R2 = 0.22, Figure 4A). And
there were moderate relationships between shoot dry weight and
the other 2 shape descriptors (R2 were 0.41 and 0.35 for TBR
change and TCR change, respectively, Figures 4B,C). The change
of a drought-related feature was calculated as the feature value
after stress minus the feature value before stress. Genotypes of
comparable biomass could have either high scores or low scores
(Figure 5). Therefore, we concluded that the features are unlikely
to be directly related to plant size, and are more likely to be
affected by actual water use and the ability of the leaves to
conserve water.

Dynamic Quantification of Drought
Response at Daily and 30Minute Intervals
The 38 accessions were monitored at daily intervals
for 13 days to study the dynamic response to drought.
Supplementary Figure 1A illustrates general dynamics of the

Frontiers in Plant Science | www.frontiersin.org 7 April 2018 | Volume 9 | Article 492

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Duan et al. Digital Features Quantify Drought Response

FIGURE 4 | Scatter plot for plant dry weight after stress (g) and (A) the PAR change, (B) TBR change and (C) TCR change. The feature change was defined as

feature value after stress minus feature value before stress.

4 drought-related features for rice. Supplementary Figure 1B

illustrates the dynamics of the 4 drought-related features for
a randomly selected accession PeiC122. In general, as the
drought stress intensified, PAR increased while TBR, TCR and
GPAR decreased, which was in agreement with theoretical
predictions. Supplementary Figure 1C shows the dynamics of
the first derivative of the 4 drought-related features for accession
PeiC122. The first derivative of a specified feature was defined
as Xi- Xi−1, where Xi was the feature value at the i-th day.
From day 5(D5) to day 6(D6), the peak or valley of the first
derivative of the 3 shape descriptors indicated visibly detectable
leaf-rolling. As shown in Supplementary Figure 1C, visibly
detectable leaf-rolling occurred at D6, which was consistent with
Supplementary Figure 1D and Supplementary Video 1.
Supplementary Figures 2 and 3 illustrate the detailed
dynamics of the 4 drought-related features for accessions
Maweinian and Zaoxian240, respectively. As expected,
PAR increased as the drought stress intensified and then
decreased after rehydration, while TBR, TCR and GPAR
decreased as the drought stress intensified and increased after
rehydration. An RGB image series for accession Maweinian
at 30min intervals is shown in Supplementary Figure 2B and
Supplementary Video 2.

Comparison of the 3 Shape Descriptors in
Quantification of Leaf-Rolling
As discussed in the previous sections, TBR, PAR, and TCR all
provided appropriate and continuous measures of leaf-rolling
when plants were subjected to drought. However, PAR tended
to be more robust than TBR and TCR. As shown in Figure 6,
theoretically, PAR should increase while TBR and TCR decrease
as drought stress intensifies. However, TBR and TCR were
more susceptible to perturbation by non-drought related factors,
such as wind or cultivation induced damage. For example, in
Figure 6A, a single leaf within the red dashed bounding rectangle
became bent at day 4, probably due to mechanical damage. This
reduced the size of the minimum bounding rectangle and the
calculated convex hull. On the other hand, the reduction of the
total projected plant area caused by leaf-rolling was relatively
small. Therefore, instead of decreasing, TBR and TCR increased,
in contrast to the aforementioned theoretical expectation. At

day 6, the leaves started to roll, and TBR and TCR decreased
as expected. However, the change rate of TBR and TCR were
much smaller than PAR, indicating that PAR was more sensitive
to leaf-rolling (Figure 6B). In addition, as shown in Figure 4,
compared with TBR change and TCR change, PAR change had
a weaker relationship with biomass, which indicated that PAR is
less related to plant size. We conclude therefore that PAR is more
robust and sensitive to leaf-rolling than either TBR and TCR. For
these reasons, PAR was selected as the optimal digital proxy for
leaf-rolling.

Quantification of Drought Response Under
Field Conditions
To verify the ability of PAR and GPAR in quantifying drought
response under field conditions, 42 accessions were cultivated
in field plots and subjected to drought stress. The time series
of PAR and GPAR at five time points (C: before stress, D1:
mild drought stress, D2: moderate drought stress, D3: severe
drought stress, and R: after rehydration) were calculated
and analyzed (Figure 7). First, we tested whether there was
a significant replication effect. There were no significant
differences between the replications (ANOVA, p > 0.05,
Supplementary Table 3 in Supplementary Presentation 5).
The mean of the replications for each feature was then
calculated and used for subsequent analysis. There were
no significant differences between drought resistant and
drought sensitive accessions for both PAR and GPAR
before stress (ANOVA, p > 0.05, Supplementary Table 4

in Supplementary Presentation 5). In contrast, significant
differences were observed between drought resistant and drought
sensitive accessions for PAR and GPAR at time points D1, D2,
D3, R (ANOVA, p value ranging from 5.572E-12 to 0.029,
Supplementary Table 4 in Supplementary Presentation 5).
This suggested that drought resistant and drought sensitive
accessions responded to the water restriction differently in a
field environment. As shown in Figure 7A, PAR of the drought
resistant accessions increased as the drought stress intensified
and decreased after rehydration, while PAR of the drought
sensitive accessions dropped after mild drought stress and
was relatively stable as the drought stress intensified and after
rehydration. As shown in Figure 7B, GPAR of both drought
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FIGURE 5 | Accessions with similar plant dry weight may have different drought tolerance. 1PAR was PAR change, and DW was plant dry weight after stress (g).

resistant and drought sensitive accessions decreased as the
drought stress intensified and increased after rehydration.

However, the amplitude of variation in GPAR was much

smaller for drought resistant accessions than drought sensitive

accessions.

Correlation Analysis of the
Drought-Related Features Under
Controlled Conditions and Field Conditions
We further examined whether the drought-related features
derived under controlled conditions reflected, and were
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FIGURE 6 | Comparison of the 3 shape descriptors in quantification of leaf-rolling. (A) RGB image at day 1, day 4, and day 6 for a rice plant. (B) Values of the 3 shape

descriptors at day 1, day 4, and day 6, with the percentage change in each feature provided to the right.

correlated with, those under field conditions. The same 42 rice
accessions used in the field experiment (section: Quantification
of Drought Response Under Field Conditions) with 4
replications were phenotyped under controlled conditions.
The experimental design was the same as that described in
section Experimental Design for Dynamic Quantification
of Rice Drought Response Under Controlled Conditions.
GPAR and PAR before and after stress were calculated
and analyzed. Similarly, we first tested whether there was
a significant replication effect. There were no significant
differences between the 4 replicates (ANOVA, p > 0.05,
Supplementary Table 5 in Supplementary Presentation 5). The
mean of the 4 replicates for each feature was then calculated
and used for subsequent analysis. There were no significant
differences between drought resistant and drought sensitive
accessions for GPAR and PAR before stress under controlled
conditions (ANOVA, p > 0.05, Supplementary Table 6 in
Supplementary Presentation 5). In contrast, significant
differences were observed between drought resistant and drought
sensitive accessions for all 4 features after stress (ANOVA, p value

ranging from 4.862E-04 to 2.584E-03, Supplementary Table 6 in
Supplementary Presentation 5).

First the change trends of GPAR and PAR both under
controlled conditions and field conditions were compared.
Because the rice accessions had gone through severe drought
stress under controlled conditions, the time point D3 (severe
drought stress) under field conditions was deemed as the
corresponding time point of “after stress” under controlled
conditions. As shown in Figures 8A,B, similar results were
obtained under both controlled and field conditions. GPAR
of both the drought resistant and drought sensitive accessions
decreased after the drought stress. However, the decreasing
amplitude of GPAR was much smaller for drought resistant
accessions than drought sensitive accessions. PAR of the drought
resistant accessions increased after drought stress while PAR
of the drought sensitive accessions was relatively stable. Then
we evaluated the correlation between feature changes under
controlled conditions (represented by the suffix “_Control”) and
feature changes under field conditions (represented by the suffix
“_Field”). As is shown in Figure 8C and Supplementary Table 7
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FIGURE 7 | Quantification of rice drought response under field conditions. (A) Dynamics of PAR at five time points. (B) Dynamics of GPAR at five time points. The

markers and the bars in each line represent the mean value and standard deviation across the accessions, respectively. (C) A drought resistant accession and a

drought sensitive accession at five time points. C, before stress; D1, mild drought stress; D2, moderate drought stress; D3, severe drought stress, and R: after

rehydration.

in Supplementary Presentation 5, feature change under field
conditions exhibited a significant positive correlation with
feature change under controlled conditions. In addition, to test
the robustness of the correlation between controlled conditions
and field conditions for GPAR change and PAR change,
40 rice accessions were randomly selected from the 42 rice
accessions for the correlation analysis (10 repeated analysis).
The results showed the range of r was 0.339–0.414 for GPAR
change (Supplementary Presentation 6) and 0.315–0.371 for
PAR change (Supplementary Presentation 7), respectively with
all p values below 0.05. This indicated the robustness of the
correlation of GPAR and PAR between controlled conditions
and field conditions. We conclude, therefore, that GPAR and
PAR can be extended to quantify drought response in field but
the relatively low level of the correlation probably reflects root
restriction in pots (Poorter et al., 2012).

Quantification of Drought Response in
Other Species Using PAR
To test the generality of PAR as a means to quantify the
leaf-rolling in other species grown on other phenotyping
platforms, 39 Miscanthus accessions were imaged daily and
analyzed. PAR values for the accessions grown under two
water treatments (control and drought) were obtained over 35

time points. There were no significant differences between the
4 replicates (ANOVA, p > 0.05, Supplementary Table 8

in Supplementary Presentation 5). The mean of the 4
replicates for each feature was then calculated and used for
subsequent analysis. There were no significant differences
between the drought and control groups before time
point D20 (ANOVA, p > 0.05, Supplementary Table 9

in Supplementary Presentation 5). Significant differences
between drought and control groups was first observed at
time point D21 (ANOVA, p < 0.05, Supplementary Table 9

in Supplementary Presentation 5) and highly significant
differences appeared since time point D22 (ANOVA, p-value
ranging from 3.066E-06 to 0.019, Supplementary Table 9 in
Supplementary Presentation 5).

In general, the PAR value of the control group decreases over
the 35 time points (Figure 9B), because the Miscanthus plant
grows rapidly and the growth rate of the plant perimeter is less
than the growth rate of projected plant area. The PAR value of
the drought group first decreased at a similar rate to the control
and then increased, which indicated leaf-rolling (Figure 9A). The
leaf-rolling performance for the drought group varied across the
different Miscanthus accessions (Figures 9C,D). The leaf-rolling
performance (such as initial date and variation rate of leaf rolling)
may be related to the level of drought resistance. In addition, the
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FIGURE 8 | Relevance of the drought-related features under controlled conditions and field conditions. (A) Dynamics of GPAR and PAR under controlled conditions.

(B) Dynamics of GPAR and PAR under field conditions. The markers and the bars in each line represent the mean value and standard deviation across the accessions,

respectively. (C) Scatter plot of feature change under controlled conditions vs. feature change under field conditions.

ability of PAR to quantify leaf-rolling for maize plants was also
demonstrated and a similar trend in PAR change can be obtained
after drought treatment (Supplementary Presentation 8).

Phenotyping Drought Response Using
Non-destructive Imaging
Non-destructive imaging was shown to be an effective method
for measuring drought response in plant. Plant area, estimated

from images, is considered as a proxy for biomass and plant
growth, and has been adopted to evaluate and quantify the
plant response to drought stress (Honsdorf et al., 2014; Petrozza
et al., 2014; Fisher et al., 2016; Malinowska et al., 2017).
However, as organ occlusion becomes more pronounced (for
instance, for many cereals including rice and wheat at the
reproductive stages), the accuracy of projected plant area for
estimating the biomass and plant growth decreases (Munns et al.,
2010).
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FIGURE 9 | Quantification of leaf-rolling for 39 Miscanthus accessions at daily intervals. Dynamics of PAR at 35 time points for (A) drought group and (B) control

group. The markers and the bars in each line represent the mean value and standard deviation across the accessions, respectively. (C) Leaf-rolling performance and

PAR change for a Miscanthus accession under drought (MS3-51221) and control (MS3-51211). (D) Leaf-rolling performance and PAR change for a Miscanthus

accession under drought (MS3-63221) and control (MS3-63211). (C,D) Illustrate the difference in leaf-rolling performance among two accessions and the difference in

PAR change in drought/control group for each accession. The markers and the bars represent the mean value and standard deviation for the 4 replications,

respectively.

Sirault et al. (2015) applied smoothing splines to skeletonized
images of transverse wheat leaf sections to quantify inter-
genotypic variation for hydronastic leaf rolling in wheat. Their
method was destructive and involved sampling the flag leaves,
excising a 30mm segment that needs careful orientation prior to

image capture under a dissecting microscope. Although effective,
this method would be difficult to scale as each observation
quantifies the leaf rolling of a single leaf at a single point in
time. Neilson et al. (2015) quantified the effect of leaf rolling
on the diurnal variation in leaf area by imaging plants in the
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late afternoon (when the plants are least hydrated) and early the
following morning (when hydration would be expected to be
maximal). They concluded that leaf rolling caused the decrease
of leaf area and the degree of leaf-rolling could be estimated
by the reduction of leaf area. Their method was efficient in
quantification of leaf-rolling over the diurnal cycle. However,
for long term quantification with intermittent imaging, this
method may lose its efficacy because the plant area increases
over time as the plant grows. We present a robust image feature
PAR that is largely independent of imaging frequency, as well
as being platform-agnostic. The method should therefore be
applicable to quantifying responses to water restriction in a broad
range of cereals and related grasses, under a wide range of
environments.

CONCLUSIONS

This paper demonstrates the use of high-throughput
phenotyping and image analysis to dynamically quantify rice
drought response in vivo in a non-intrusive manner. We propose
a simple method for continuous measurement of drought
response under controlled and field conditions. Three shape
descriptors, namely, TBR, PAR, and TCR, were derived from the
images and their behavior is related to changes in the leaf. We
also present an image-derived feature, GPAR, for quantification
of stay-green ability. Results showed that these 4 drought-related
features were capable of discriminating drought resistant and
drought sensitive accessions and dynamically quantifying the
rice drought response under controlled conditions across time
(at either daily or half hourly time intervals). We compared the
3 shape descriptors and concluded that PAR was more robust
and sensitive to leaf-rolling than TBR and TCR. In addition,
PAR and GPAR proved to be effective in quantification of
drought response in the field. Notably, there was a small but
significant correlation between drought responses of different
genotypes in field and in pot, as measured by these features.
This indicates that pot-based experiments can indeed provide
an indication of drought responses of different genotypes, even
though the physiology of drought is likely to be quite different
under the 2 situations. Finally, we demonstrate the general
applicability of the algorithms to other grass species, using our
approach to test archival Miscanthus data that had previously
been collected on an independent platform. In conclusion,
this image-based technology provides a robust platform-
independent tool for quantifying drought response and should
be of general utility for breeding and functional genomics in
future.
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