
Mobile Information Systems 4 (2008) 333–349 333
IOS Press

Novel directory service and message delivery

mechanism enabling scalable mobile agent

communication

Jinho Ahn∗

Department of Computer Science, Kyonggi University, Suwon, Korea

Abstract. Mobile agent technology has emerged as a promising programming paradigm for developing highly dynamic
and large-scale service-oriented computing middlewares due to its desirable features. For this purpose, first of all, scalable
location-transparent agent communication issue should be addressed in mobile agent systems despite agent mobility. Although
there were proposed several directory service and message delivery mechanisms, their disadvantages force them not to be
appropriate to both low-overhead location management and fast delivery of messages to agents migrating frequently. To
mitigate their limitations, this paper presents a scalable distributed directory service and message delivery mechanism. The
proposed mechanism enables each mobile agent to autonomously leave tails of forwarding pointers on some few of its visiting
nodes depending on its preferences. This feature results in low message forwarding overhead and low storage and maintenance
cost of increasing chains of pointers per host. Also, keeping mobile agent location information in the effective binding cache
of each sending agent, the sending agent can communicate with mobile agents much faster compared with the existing ones.

Keywords: Distributed system, mobile agent, directory service, message delivery, scalability

1. Introduction

Thanks to its desirable features such as asynchronous and dynamic execution and autonomy [12,17,
22,25], mobile agent technology has emerged as a promising programming paradigm for developing

highly dynamic and large-scale service-oriented computing middlewares in various fields like ubiquitous
computing [1,3,5,9,10,26], web service [28], grid computing [13,15] and adhoc network [19]. However,

as mobile agent systems become built on large-scale networks and the number of mobile agents is rapidly
increasing, several research issues related to mobile agents should be reconsidered to satisfy this demand.

Among them, it is most important to enhance the performance of the agent communication in large-scale
infrastructures. For this purpose, some effective and efficient inter-agent communication mechanism

is required in distributed agent-based systems. Agent mobility may lead to the loss of messages being
destined to an agent on its migration. Thus, it causes reliable inter-agent communications to be not easy

to achieve in the distributed agent based systems. Especially, guaranteeing the delivery of messages to
highly mobile agents, which move frequently among service nodes, is a more challenging problem. In

this paper, we attempt to address these issues effectively like in Fig. 1. Although there were proposed

∗Address for correspondence: Department of C.S., Kyonggi University, San 94-6 Yiuidong, Yeongtonggu, Suwonsi Gyeong-
gido 443-760, Korea. Tel.: +82 31 249-9674; Fax: +82 31 249-9673; E-mail: jhahn@kyonggi.ac.kr.

1574-017X/08/$17.00 2008 – IOS Press and the authors. All rights reserved

334 J. Ahn / Novel directory service and message delivery mechanism

Mobile Agent Systems

Traditional Communication

Mechanisms for Mobile Agents

• Large-Scale Network Based

• A Large Number of Mobile Agents

More Scalable Communication

Mechanism for Mobile Agents

Fig. 1. The motivation of our work.

several directory service and message delivery mechanisms to address this issue as mentioned below,

their disadvantages force them not to be appropriate to both low-overhead location management and fast

delivery of messages to agents migrating frequently.

Firstly, the broadcast-based mechanism [18] guarantees transparent and reliable inter-agent commu-

nication and can also provide multicast communication to a set of agents. But, to locate the message

destination, the mechanism has to contact every visiting node in the network. Thus, its large traffic

overhead makes broadcasts impractical in large-scale distributed agent systems.

Secondly, in the home-based mechanism [14,21], every mobile agent has a home node and should

register its current location with the home node whenever it moves. Thus, when some messages are sent

to a mobile agent currently located at a foreign node, the messages are first directed to its home node,

which forwards them to the agent. This mechanism is simple to implement and results in little mobile

agent locating overhead. However, it is unsuitable for highly mobile agents in distributed agent based

systems because every agent location updating and message delivery are all performed around the home

node, which introduces centralization. Additionally, in the distributed agent-based systems, the home

node may be disconnected from the network.

Lastly, the forwarding pointer-based mechanism [11,16] forces each node on a mobile agent’s move-

ment path to keep a forwarding pointer to the next node on the path. Thus, if a message is delivered to

an agent not being at the home node, the message must traverse a list of forwarding nodes. Thus, this

mechanism can avoid performance bottlenecks of the global infrastructure, and therefore improve its

scalability, particularly in large-scale distributed agent-based systems, compared with the home based

one. Additionally, even if a home node is disconnected from the rest of the network, the forwarding

pointer based mechanism allows agents registering with the node to communicate with other agents.

However, as highly mobile agents leads to the length of their chains of pointers being rapidly increasing,

its message forwarding overhead may be significantly larger. Furthermore, the number of forwarding

pointers each service node needs to keep on its storage may exponentially increase if a large number

of mobile agents are running in the systems. In a previous work [16], a type of update message called

inform message was introduced to include an agent’s current location for shortening the length of trails

of forwarding pointers. In this case, a node that receives the message is allowed to update its table if

the received information is more recent than the one it had. However, it introduces no concrete and

efficient solutions for this purpose, for example, when update messages should be sent, and which node

they should be sent to. In order to mitigate their limitations, this paper presents a scalable distributed

directory service and message delivery mechanism. The proposed mechanism enables each mobile agent

J. Ahn / Novel directory service and message delivery mechanism 335

to autonomously leave tails of forwarding pointers on some few of its visiting nodes depending on its

preferences. This feature results in low message forwarding overhead and low storage and maintenance

cost of increasing chains of pointers per host. Also, keeping mobile agent location information in the

effective binding cache of each sending agent, the sending agent can communicate with mobile agents
much faster compared with the existing ones.

The rest of the paper is organized as follows. Section 2 describes our mobile agent system model

assumed in this paper. In Section 3, we present our directory service and message delivery mechanism

and prove its correctness. Section 4 makes several experiments for performance evaluation and Section 5

reviews related work. Finally, Section 6 concludes this paper.

2. Mobile agent system model

In this paper, we consider an asynchronous distributed agent based system where there is no global

memory, no global clock and no bound on message delay. The system consists of a set of agent service

nodes. Each service node supports an environment in which agents can operate safely and securely,

and provides a uniform set of services that visiting agents can access its local resources in a limited
way regardless of their locations. An agent is initially created on a service node, called home node

of the agent, and is given a unique identifier within the node. So, each agent can be identified as a

globally unique object in the system by using the combination of its local identifier and the identifier of

its home node. When an agent migrates in the system, its code and state information are captured and

then transferred to the next node. After arriving at the node, the mobile agent resumes and performs its

task, if needed, by interacting with other agents. In order to perform an assigned task on behalf of a user,
a mobile agent ma executes on a sequence of l(l > 1) service nodes Ima =[Nhome, N1, · · ·, N(l−1)]

according to its itinerary, which may be statically determined before the mobile agent is launched at its

home node or dynamically while progressing its execution. It is assumed that communication channels

support standard asynchronous message passing and are immune to partitioning, and reliable and FIFO.

Mobile agents can migrate and messages be passed along these channels. Finally, we assume that each

service node is failure-free because this makes it more easy to design and understand our agent tracking
and message delivery mechanism explained hereafter.

3. Scalable directory service and message delivery mechanism

In this section, we first explain basic concept of our scalable mobile agent communication mechanism,

describe its two components, directory service and message delivery algorithms in detail respectively,
and then prove the correctness of the mechanism.

3.1. Basic idea

We attempt to develop our directory service and message delivery mechanism to have all three desirable

features compared with the others as follows.

+ Alleviate the centralized dependency on the home node and its disconnection problem.

+ Require a small size of storage of each service node for agent location management.
+ Incur low message forwarding overhead.

336 J. Ahn / Novel directory service and message delivery mechanism

N
4

N
3

N
1

N
2

N
Home

N
5

N
6

N
8

N
7

N
12

N
11

N
9

N
10

N
i

N
i

forwarder

non-forwarder

migrate

Permanent

Locator

Fig. 2. Home-based mechanism.

Before discussing, the definition of two special directory service nodes should be explained. First,

forwarder of an agent means a service node keeping a forwarding pointer of the agent on its storage.

Thus, depending on the behavior of agent communication mechanisms, there may exist various number

of forwarders of each agent in the system. Second, locator of an agent is the forwarder managing the

identifier of the node where the agent is currently located. In this paper, it is assumed that there is only

one locator in the system. We will explain how the proposed mechanism satisfies the three requirements
using Figs 2, 3 and 4. These figures show all the same example that a mobile agent ma performs its task

while migrating from its home node to nodes N1 through N12 in node number order. In home-based

mechanism, Nhome among all visiting nodes ∈ Ima is the only forwarder of agent ma i.e., its permanent

locator like in Fig. 2. Thus, this mechanism forces every agent created on a node to update its current

location information only at the home node on every migration. Also, all messages destined to the agent

must be always delivered to the agent only via its home node. Therefore, the mechanism doesn’t address
the first requirement.

In forwarding pointer-based mechanism, every visiting node ∈ Ima is a forwarder of agent ma like

in Fig. 3. Thus, when each agent moves to another node, the agent has only to register its location only

with the right before visiting node. Additionally, each sent message can be transmitted to its target agent

via the home node as well as other forwarders of the agent. Therefore, the mechanism can satisfy the

first requirement. However, in this mechanism, whenever each agent, especially highly mobile agent,

migrates to a new node, its previous node has to keep a forwarding pointer of the agent. This feature
may lead to significantly increasing the size of storage on which each service node maintains location

information of agents. Moreover, as the forwarding path for delivering each message to its target agent

highly increases due to the feature like in Fig. 3, its delivery time also increases at the same rate.

Therefore, neither the second requirement nor the third one is addressed in this mechanism.

To satisfy all the three requirements, our proposed mechanism enables each mobile agent to au-

tonomously and systematically leave trails of forwarding pointers only on some few of its visiting nodes

depending on its preferences such as location updating and message delivery costs, network topology,
security policies, communication patterns and so on, where the methods for selecting suitable forwarders

of each mobile agent based on its administrator’s policy may be embedded in the software logic of the

J. Ahn / Novel directory service and message delivery mechanism 337

N4N3N1 N2NHome

N
5

N
6

N
8

N
7

N12N11N9 N10

Which is currently the locator of mobile agent ma ?

The right before visiting node

Fig. 3. Forwarding pointer-based mechanism.

agent. This behavior can considerably reduce both the amount of agent location information each node

needs to maintain and the delivery time of each message because the length of its forwarding path may

be much more shortened. Also, since there exist multiple forwarders, not only one, in this mechanism,

the home node centralization can be avoided. But, as a part of the visiting nodes are forwarders in

this mechanism, a new method is required to consistently manage location of each agent and enable

each sent message to be delivered to the agent despite its migrations unlike in the previous forwarding

pointer-based one. To satisfy the goal, the method is performed as follows. In Fig. 4, when agent ma

moves from Nhome to N1, it forces N1 to be its forwarder. In this case, N1 becomes ma’s locator.

Afterwards in this method, ma should register its location with N1 on every migration until it moves

to the next forwarder N5. When the agent arrives at N5, N5 informs N1 that N5 plays a role of ma’s

locator from now on. Hereafter, ma’s current location information is managed by N5 until the agent

arrives at its next forwarder N10. This method may result in slightly higher location update cost on

every agent migration than that of the previous forwarding pointer-based mechanism. However, if each

agent chooses some among its visiting nodes as forwarders by properly considering several important

performance factors, the gap between the two costs may be almost negligible.

3.2. Data structures and algorithms

3.2.1. Directory service

Every node Ni should keep the following data structures in the directory service algorithm.

• MAExecutedi: A table for saving location information of every agent currently running on Ni. Its

element is a tuple (AID, LID, ts, mFlag, msgQ). LID is the identifier of agent AID’s locator. ts

is the timestamp associated with agent AID when the agent is located at N i. Its value is incremented

by one every time the corresponding agent migrates. Thus, when agent AID migrates to N i, Ni should

inform LID of both its identifier and ts so thatLID can locate the agent. mFlag is a bit flag designating

if the agent is currently migrating to another node(= 1) or not(= 0). msgQ is a message queue for

buffering all the messages destined to agent AID on its migration. Its element consists of two fields, a

message m and the source node ID of the message, SID.

• FPointersi: A table for saving location information of every mobile agent which is not current-

ly running on Ni, but of which Ni is a forwarder. Its element is a tuple (AID, NID, ts, lF lag, mFlag,

338 J. Ahn / Novel directory service and message delivery mechanism

N
1

N
Home

N
5

N
10

N
12

N
11

N
6

N
8

N
7

N
9

N
4

N
3

N
2

Location

Updating

Fig. 4. Our scalable mechanism.

msgQ). NID is the identifier of the node where Ni knows agent AID is currently located and running.

ts is the timestamp associated with the agent when the agent is located at node NNID. It is used for

avoiding updating recent location information by older information [16]. lF lag is a bit flag indicating

whether Ni is agent AID’s locator or not. In the first case, its value is 1 and otherwise, 0. mFlag

is a bit flag designating if the agent is currently migrating to another node(=1) or not(=0). Like in

MAExecutedi, msgQ is a message queue for buffering all the messages destined to agent AID on its

migration. Its element consists of two fields, a message m and the source node ID of the message SID.

The algorithm for managing each agent’s location on its migration is informally described using

Fig. 5. This figure shows message interactions between nodes occurring in ma’s location updating

while migrating from its home node to N1 through N5. In Fig. 5, ma is created on Nhome and then an

element for ma (IDma, home, 0, 0, ∅) is saved into MAExecutedhome. If ma attempts to move to

N1 after having performed its partial task in the first step, it inserts into FPointershome ma’s element

(IDma, 1, 1, 1, 1, ∅) indicating Nhome is ma’s locator and ma is currently moving to N1. Then, Nhome

sends a message Migrated(ma) to N1 for dispatching the agent with the identifier of the first and ma’s

timestamp into the latter. When receiving these, N1 increases the timestamp by one. In this case, as ma

wants N1 to be its locator, it inserts ma’s location information (IDma, 1, 1, 1, ∅) into MAExecuted1.

In the second step, N1 sends Nhome a message Replaced(IDma, 1) including ma’s timestamp in order

to inform Nhome that N1 is ma’s locator from now. On receiving the message, Nhome updates ma’s

location information in FPointershome using the message and sets two fields of ma’s element, lF lag

and mFlag, both to 0. If the messages destined to ma have been buffered in Nhome’s message queue

due to the migration, they are transmitted to N1. When ma attempts to migrate to N2 after ma has

performed a part of its task in the third step, N1 puts ma’s element (IDma, 2, 2, 1, 1, ∅) into FPointers1

and then sends a messageMigrated(ma) for moving agent ma to N2. In this case, N2 increments ma’s

timestamp by one and then inserts ma’s element (IDma, 1, 2, 1, ∅) into MAExecuted2 because ma

wants N2 to be just a visiting node. In the fourth step, the node sends a message Register(IDma, 2)
including the timestamp to its locator N1 for registering ma’s current location with the locator. If there

are any messages sent to the agent in the queue of N1, they are forwarded to N2.

J. Ahn / Novel directory service and message delivery mechanism 339

1. Migrated(ma)

N
Home

N
1

N
2

2. Replaced(Idma,1)

N
3

N
4

3. Migrated(ma)

4. Register(Idma,2)

6. Migrated(ma)

5. Invalidate(Idma)

7. Register(Idma,3)

9. Migrated(ma)

8. Invalidate(Idma)

10. Register(Idma ,4)

N
5

12. Migrated(ma)

11. Invalidate(Idma)

14. Inform(Idma,5)

13. Replaced(Idma,5)

Forwarder of agent maN
i

Fig. 5. An execution of our proposed directory service algorithm for an agent ma during its multi-node movement.

In the fifth step, N2 first sends N1 a message Invalidate(IDma) indicating that ma’s migration
process begins from now. When receiving the message, N1 sets one field of ma’s element, mFlag,
to 1. Suppose the migration is started without the execution of this invalidation procedure. If N1

receives any message destined to ma in this case, it forwards the message to N 2 because it doesn’t know
whether the migration continues to be executed. But, neither ma may be currently running on N2 nor
N2 keep ma’s location information on FPointers2 because N2 isn’t ma’s forwarder. In this case, the
message cannot be delivered to ma. Therefore, N2 should transmit a message Migrated(ma) to N3

after having performed the invalidation procedure on ma’s locator, and then remove ma’s element from
MAExecuted2. Afterwards,ma’s visiting nodeN3 incrementsma’s timestamp and savesma’s element
(IDma, 1, 3, 1, ∅) into MAExecuted3 in the sixth step, and then sends a message Register(IDma, 3)
to N1 in the seventh step. On the receipt of the message, N1 updates ma’s element in FPointers1 to
(IDma, 3, 3, 1, 0, ∅) using the message. When ma migrates to N4, the same procedure is performed like
in this figure. When agent ma moves from N4 to N5 and decides that N5 is the proper node as ma’s
locator, N5 creates ma’s location information (IDma, 5, 5, 1, ∅) and inserts it into MAExecuted5 in
the twelfth step. Afterwards, in the thirteenth step, the node sends N1 a message Replaced(IDma, 5)
for notifying the previous locator N1 that N5 is ma’s locator from now. Also, ma may send a message
Inform(IDma, 5) to Nhome for updating its current location at Nhome in the fourteenth step to reduce
the message delivery time incurred when another agent initially sends a message to ma via Nhome.
If ma recognizes this consideration helps no performance improvement, it doesn’t perform the update
procedure on the home node.

340 J. Ahn / Novel directory service and message delivery mechanism

Fig. 6. Modules for a service node i on agent migration.

The informally stated modules for every service node in the directory service algorithm are formally

given in Figs 6 and 7.

3.2.2. Message delivery

Every node Ni should have an agent location cache MALinks i in the message delivery algorithm. It

is a cache for temporarily storing location information of each mobile agent which agents running on N i

communicate with. Its element is a tuple (AID, NID, ts). NID is the identifier of the node where Ni

knows agent AID is currently located and running. Thus, when attempting to deliver messages to agent

AID, each agent on Ni forwards them to NID regardless of whether this address is outdated. ts is the

timestamp assigned to agent AID when the agent was located at node NNID.

We intend to use an example in Fig. 8 to clarify the algorithm to enable every sent message to be

reliably delivered to its target agent despite agent migrations. This example illustrates agent γ sends

three messages, m1, m2 and m3 to agent ma in this order while ma is migrating from its home node

to N1 through N5 according to its itinerary. In this figure, after ma has moved from Nhome to N3, γ

at Nw attempts to deliver the first message m1 to ma. In this case, Nw has no location information for

ma in its location cache MALinksw. Thus, Nw creates and saves ma’s element (IDma, home, 0) into

J. Ahn / Novel directory service and message delivery mechanism 341

Fig. 7. Modules for a service node i on agent migration (continued).

N
Home

N
1

N
2

Migrated(ma)

N
3

N
4

N
w

4. ChgL(Idma,3)

3. M(Idma,m1, Idw)3. M(Idma,m1, Idw)

Migrated(ma)

2. M(Idma,m1, Idw)2. M(Idma,m1, Idw)

Migrated(ma)

Migrated(ma)

N
5

1. M(Idma,m1, Idw)1. M(Idma,m1, Idw)

5. M(Idma,m2, Idw)5. M(Idma,m2, Idw)

6. M(Idma,m2, Idw)6. M(Idma,m2, Idw)

Migrated(ma)

7. M(Idma,m3, Idw)7. M(Idma,m3, Idw)

8. M(Idma,m3, Idw)

9. ChgL(Idma,5)

Fig. 8. An execution of reliably forwarding messages from their source agent γ to their target agent ma during its multi-node
movement.

MALinksw. Then, it sends the message m1 to Nhome. Receiving the message, Nhome retrieves ma’s

element from FPointershome. In this case, as the value of the bit flag lF lag in the element is 0, Nhome

isn’t ma’s locator. Thus, it consults the element and forwards the message m1 to the next forwarder

N1. On the receipt of the message, N1 obtains ma’s element from FPointers1 and then checks the

flag lF lag in the element. In this case, N1 is ma’s locator because the value of the flag is 1. Also, as
the value of the second flag mFlag is 0, it forwards the message to ma’s currently running node N 3 by

consulting the element. At the same time, asNw has the outdated identifier of ma’s locator, N1 sendsNw

a message ChgL(IDma, 3) containing the identifier of ma’s current locator(=N1) and timestamp(=3)
in the figure. When receiving the message,Nw updatesma’s element in MALinksw using the message.

342 J. Ahn / Novel directory service and message delivery mechanism

Fig. 9. Modules for a service node i on message delivery.

When ma migrates from N3 to N4 and then γ at Nw sends the second message m2 to ma, Nw finds

ma’s element from MALinksw and then forwards m2 to N1. On the receipt of m2, N1 can see that it is

ma’s current locator because the value of the bit flag lF lag of a’s element in FPointers1 is 1. Also, as

the value of the flag mFlag is 0, N1 can send m2 to ma’s currently running node(= N4). In this case,

as γ knows the identifier of ma’s current locator, N1 doesn’t send any message ChgL to Nw.

After ma has migrated from N4 to N5, γ transmits the third message m3 to ma. At this point, Nw

sends m3 to N1 by consulting ma’s element in MALinksw. In this case, as the value of the flag lF lag

of ma’s element in FPointers1 is 0, N1 forwards m3 to the next forwarder N5. When N5 receives

the message, it can deliver the message to N5 because it recognizes that it is ma’s locator and ma is

currently running on it. Concurrently, N5 informs Nw that ma’s current locator is N5 by sending a

message ChgL(IDma, 5) to Nw.

The modules for every service node in the message delivery algorithm are formally described in Figs 9

and 10.

3.3. Correctness

In this section, we prove the correctness of our proposed scalable communication mechanism.

Definition 1. ForwardingPath(msg, IDma, Ni) is a sequence< Ni, ..., Nn > of a mobile agentma’s

forwarders which compose an acyclic path for delivering a message msg from N i to Nn, the current

locator of agent ma. For all Nj ,Nk in the path, if i � j < k � n, agent ma visited Nj and then Nk.

Theorem 1. When any message is sent to an agent in the system, the proposed mechanism enables the

message to correctly be delivered to the target agent despite its migrations.

J. Ahn / Novel directory service and message delivery mechanism 343

Fig. 10. Modules for a service node i on message delivery (continued).

Proof. Assume that a message msg has to be delivered to its target agent ma. In this case, the

sender agent of the message is γ at node N i and agent ma is currently running on node Nj . When

Ni attempts to send the message to agent ma, Ni first looks up the address for ma from its agent

location cache MALinksi. If there is the address in the cache, Ni sends the message to this address.

Otherwise, it obtains the address of ma’s home node from ma’s identifier and then sends the message

to the address. In both cases, suppose the forwarding address is denoted by N l. The proof proceeds

by induction on the number of all the forwarders ∈ ForwardingPath(msg, IDma, Nl), denoted by
|ForwardingPath(msg, IDma, Nl)|.
[Base case]

In this case, Nl is the locator of agent ma. Therefore, the following two cases should be considered.

Case 1: l = j.

In this case, Nj can find ma’s location information e from MAExecutedj . There are two subcases

considered.

Case 1.1: e.mFlag = 0.

In this case, the message msg is trivially delivered to ma because ma is currently running on node N j .
Case 1.2: e.mFlag = 1.

In this case, agent ma attempts to move to another node Nj+1. Thus, the message is saved on ma’s

message queue e.msgQ in MAExecutedj until the movement process is completed. After agent ma

with the element e including the message has been migrated to Nj+1, the message can be correctly

delivered to ma when the agent resumes its execution on the node N j+1.

Case 2: l < j.

In this case, Nl looks up ma’s location information e from FPointersl. Then, it checks the value of a
flag variable e.mFlag. There are two subcases according to the value.

Case 2.1: e.mFlag = 0.

344 J. Ahn / Novel directory service and message delivery mechanism

In this case, the message is sent directly to Nj . Then, the subsequent procedure is performed like in case
1. Therefore, ma can correctly receive the message.
Case 2.2: e.mFlag = 1.
In this case, agent ma is migrating to another node Nj+1. Thus, the message is buffered into ma’s mes-
sage queue e.msgQ in FPointersl until the movement process is completed. After the migration, the
value of a flag variable e.mFlag changes to 0 and then the message recorded in the queue is forwarded
to Nj+1. Therefore, the message can be correctly delivered to ma.
[Induction hypothesis]

We assume that the theorem is true for the message msg in case that |ForwardingPath

(msg, IDma, Nl)| = k.
[Induction step]

After the message has been safely routed to the k-th forwarder Nα by induction hypothesis, Nα retrieves
ma’s location information e from FPointersα. Then, it forwards the message to the (k+1)-th forwarder

Nβ , which is the locator of agent ma. The following case is similar to the base case mentioned above.
Therefore, the message can be correctly delivered to ma.
By induction, the mechanism can correctly deliver any sent message msg to its corresponding agent
even if the agent migrates. �

4. Experimental evaluation

In this section, we compare performance of our proposed mechanism(Proposed) with that of an
existing forwarding pointer-based one(Existing) [16] by performing an extensive simulation using a
discrete-event simulation language [2]. There are two performance indices as follows. The first is
HopCntr, the average number of nodes which have forwarded a message destined to a mobile agent until
the message is actually delivered to the agent. The second is LInfono, the average number of agent
location entries that each service node keeps on its storage.

A simulated system is composed of 100 nodes each associated with a coordinate(x, y). They are
all interconnected with each other. Any two adjacent nodes are connected with a LAN link having a
bandwidth of 10Mbps and a propagation delay of 2ms. For simplicity of this simulation, we assume
that both bandwidth and propagation delay between any pair of nodes are proportional to their distance.
In our simulation environment, there are some important simulation parameters as follows. The first
is Setsnd, the set of nodes being capable of sending messages to a mobile agent. Nodes in the set are
uniformly distributed along the entire network. The second is LChgthrd, the threshold which is required
when a mobile agent decides whether the current locator of the agent should be changed. If a randomly
generated probability variable δ for an agent ma is greater than its threshold LChgthrd when the agent
attempts to migrate to another node, the next node becomes the locator of the agent. In this simulation, it
is assumed that the threshold LChgthrd is determined when its agent is created and isn’t changed during
the entire life cycle of its agent any more. The third is Staytime, the mean time elapsed when a mobile
agent stays at a node for performing its task, following an exponential distribution. The last simulation
parameter is ASpawnedno, the total number of agents created in the system. Also, the size of each
application message transmitted between any two agents ranges from 512bytes to 1Kbytes and the size
of each control message for the inter-agent communication is 128bytes. All experimental results shown
in this simulation are all averages over a number of trials.

Figure 11 shows the average message forwarding overhead,HopCntr, for the two directory service and
message delivery mechanisms for the specified range of the Stay time. In this figure, as the Staytime of

J. Ahn / Novel directory service and message delivery mechanism 345

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6

Stay time (seconds)

H
o
p
C
n
tr

Existing

Proposed

Fig. 11. HopCntr vs. Staytime.

the two mechanisms decreases, their HopCntrs increase. The reason is that as the length of each agent’s

stay grows shorter, the path for forwarding messages to the agent is contrarily made longer. However,

we can see that the HopCntr of Proposed is significantly lower than that of Existing in this figure. In

particular, as the Staytime becomes shorter, the gap between their message delivery costs considerably

grows larger. In these results, the mechanism Proposed reduces about 76–79% of HopCntr compared

with the mechanism Existing.

Figure 12 shows the amount of agent location information kept by each service node, LInfono, for the

two mechanisms with varying the number of agents generated in the simulated system, ASpawnedno.

As shown in this figure, increasing the ASpawnedno of the two mechanisms causes their LInfonos to

grow higher accordingly. This is because as the number of agents created in the system increases, the two

mechanisms are stepping up the amount of agent location information maintained by each node. But,

as expected, Proposed provides very high performance gains in LInfono over Existing. Especially,

when ASpawnedno is increasing, the increasing rate of LInfono of Proposed is rising much slower

than that ofExisting. In this simulation, the mechanismProposed reducesLInfono by 79% compared

with the mechanism Existing.

Therefore, these simulation results show that even if the scale of a mobile agent system grows

considerably, our proposed mechanism Proposed incurs low message forwarding overhead and reduces

the delivery time of each message destined to a mobile agent and the amount of agent location information

kept by each service node compared with the previous one Existing.

5. Related work

In Mole [4], it is assumed that an agent never migrates while communicating with another. Thus, if

corresponding agents move, their communication is implicitly terminated. It maintains a trail of pointers

346 J. Ahn / Novel directory service and message delivery mechanism

0

500

1000

1500

2000

2500

3000

3500

1000 2000 3000 4000 5000 6000

ASpawned no

L
in
fo

n
o

Existing

Proposed

Fig. 12. LInfono vs. ASpawnedno.

of each agent for faster communication. But, this is exploited only in the context of a orphan detection
protocol. Also, Mole supports group communication for a set of agents being non-mobile during a set
of information exchanges.

A broadcast-based mobile agent communication mechanism was proposed by Murphy and Picco [18].
The mechanism guarantees transparent and reliable inter-agent communication and can also provide
multicast communication for a set of agents. But, to locate the message destination, it has to contact
every visiting host in the network. Thus, its large traffic overhead makes broadcasts impractical in
large-scale mobile agent systems.

Concordia [27] supports inter-agent communication implemented via events. Each agent cannot raise
and listen to events until it should register with an event manager. Subsequently, the sender agent
connects with the event manager and posts an event with its request. As soon as the event manager
receives a particular event, it informs all registered agents of the event. Although an agent migrates to
another node, it can still receive requests from the event manager. It can register with any number of
event managers. But, for one agent to communicate with another agent, the recipient agent should know
the event manager location exactly.

Belle [6] proposed a hierarchical structure-based mechanism to form a location directory consisting
of a hierarchy of servers. The location server at each level keeps lower-level object location information.
For each object, the information is either a pointer to an entry at a lower-level location server or the
agent’s actual current location. However, this hierarchy cannot always be easily formed, especially in the
Internet environment. Moreover, this mechanism may cause useless hops to be taken along the hierarchy.

In [24], a resending-based message delivery mechanism was introduced to use TCP-like sliding-
window protocols for detecting the loss of a message and retransmitting it. After several resendings, the
sender contacts the location server and transmits the message to the new destination. But, the mechanism
needs synchronizing the message routing with agent migration.

A distributed location directory management mechanism for mobile hosts [23] was proposed to be able
to adapt to changes in geographical distribution of mobile hosts population in the network and to changes

J. Ahn / Novel directory service and message delivery mechanism 347

in mobile host location query rate. The mechanism replicates location information about mobile hosts at
O(

√
m)(m is the total number of base stations in the system). This mechanism allows frequently queried

mobile hosts to have their location information saved on a greater number of base stations. Thus, it
may improve lookup and update performance by using replication. However, it is unsuitable for mobile
agent communication because the highly dynamic nature and extremely fast migration speed of software
mobile agents unlike mobile hosts make it very difficult to get the information about the distribution
patterns and location query rates of a large number of mobile agents immediately, which may result in
enormously high communication overhead.

Moreau [16] proposed a distributed directory service and message routing mechanism based on
forwarding pointers for mobile agents. In this mechanism, each mobile agent is associated with a
timestamp that is increased every time the agent migrates. This timestamp avoids cyclic routing when
the agent migrates to previously visited hosts. Also, this mechanism introduces a type of message
inform, containing an agent’s location and the timestamp it had at that location, in order to reduce

chains of forwarding pointers. A host that receives an inform message is allowed to update its table if the
received information is more recent than the one it had. However, it specifies no concrete and efficient
solutions for this purpose, for example, when inform messages must be sent, and which host they should
be sent to.

Feng [8] introduced a mailbox-based mechanism to provide location-independent reliable message
delivery. It allows messages to be forwarded at most once before they are delivered to their receiving
agents. Also, the movement of agents can be separated from that of their mailboxes by determining
autonomously whether each mailbox is migrated to its owner agent. However, uncertainty of message
delivery to mailboxes may result in useless early pollings. On the other hand, even if urgent messages are
forwarded to a mailbox on time, they can be delivered to its corresponding agent very late depending on
the agent’s polling time. Moreover, whenever each mailbox moves, its new location information should
be broadcasted to every node where the mailbox has visited. This may incur high traffic overhead if
assuming most agents are highly mobile.

Coordination models offer a more asynchronous form of communication, typically involving a tuple
space [7]. As coordination spaces are non-mobile, they may result in the centralization problem like
the home agent based mechanism. To alleviate this problem, the tuple space can be implemented in a
distributed manner. But, consistency maintenance overhead is not negligible. Moreover, in this approach,
coordinated processes have to poll tuple spaces, which leads to some difficulties with respect to both
communication and computation. As a result, tuple spaces generally provide a mechanism by which
registered clients can be informed of the arrival of a new tuple. If clients are mobile, the problem of how
to deliver such notifications correctly occurs. When the tuple space is mobile [20], message delivery to
the space should be also considered.

6. Conclusion

This paper introduced a scalable distributed directory and message delivery mechanism for mobile
agents to require a small size of storage of each service node for agent location management and incur
low message forwarding overhead while reducing the dependency on the home node. To achieve this
goal, this mechanism forces only a small number of nodes among its visiting ones of each agent to
become forwarders. It has each agent register its location with its current locator on every migration until
it arrives at the next locator of the agent. This behavior may result in slightly higher location update cost
per agent migration compared with that of the previous forwarding pointer-based mechanism. However,

348 J. Ahn / Novel directory service and message delivery mechanism

if each agent determines some among its visiting nodes as forwarders by properly considering several
performance factors, the gap between the two costs may be almost negligible. Moreover, its message
delivery algorithm enables each sending agent to communicate with mobile agents very fast by effectively
managing and using their bindings in its agent location cache. Our experimental results demonstrated that
the proposed mechanism considerably reduces both the amount of agent location information maintained
by each service node and the delivery time of each message destined to a mobile agent compared with
the existing one.

For future work, our research group are currently developing some methods for selecting appropriate
forwarders of each mobile agent according to the changes which the agent senses in its environment
related to location updating and message delivery costs, security policies, network latency and topology,
communication patterns. In addition, we attempt to extend our mechanism to address fault-tolerance
of forwarders of each mobile agent by using some effective information redundancy technique while
reasonably preserving scalability of our mechanism.

References

[1] K. Alexandros and S. Joseph, A Trustworthy Mobile Agent Infrastructure for Network Management, In Proc. of the 10th

IFIP/IEEE International Symposium on Integrated Network Management (2007), 383–390.
[2] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng, J. Martin and H. Y. Song, Parsec: A Parallel Simulation Environments

for Complex Systems, IEEE Computer (1998), 77–85.
[3] F. Baschieri, P. Bellavista and A. Corradi, Mobile Agents for Qos Tailoring, Control and Adaptation over the Internet:

The UbiQoS Video on Demand Serbvice, In Proc. of the 2nd International Symposium on Applications and the Internet
(2002), 109–118.

[4] J. Baumann, F. Hohl, K. Rothermel and M. Strasser, Mole-Concepts of a Mobile Agent System, World Wide Web 1(3)
(1998), 123–137.

[5] P. Bellavista, A. Corradi and C. Stefanelli, The Ubiquitous Provisioning of Internet Services to Portable Devices, IEEE
Pervasive Computing 1(3) (2002), 81–87.

[6] W. Belle, K. Verelst and T. D’Hondt, Location transparent routing in mobile agent systems merging name lookups with
routing, In Proc. of the 7th IEEE Workshop on Future Trends of Distributed Computing Systems (1999), 207–212.

[7] G. Cabri, L. Leonardi and F. Zambonelli, Reactive Tuple Spaces for Mobile Agent Coordination, In Proc. of the 2nd
International Workshop on Mobile Agents, Lecture Notes In Computer Science 1447 (1998), 237–248.

[8] J. Cao, X. Feng, J. Lu and S. Das, Mailbox-based scheme for mobile agent communications, IEEE Computer 35(9)
(2002), 54–60.

[9] J. Cui and H. Chae, Mobile Agent based Load Balancing for RFID Middlewares, In Proc. of International Conference
on Advanced Computer Technology (2007), 973–978.

[10] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy and G. Picco, Mobile Data Collection in Sensor Networks: The
TinyLime Middleware, Journal of Pervasive and Mobile Computing 4(1) (2005), 446–469.

[11] J. Desbiens, M. Lavoie and F. Renaud, Communication and tracking infrastructure of a mobile agent system, In Proc. of
the 31st Hawaii International Conference on System Sciences 7 (1998), 54–63.

[12] A. Fuggetta, G.P. Picco and G. Vigna, Understanding Code Mobility, IEEE Transactions on Software Engineering 24(5)
(1998), 342–361.

[13] M. Fukuda, K. Kashiwagi and S. Kobayashi, AgentTeamwork: Coordinating Grid-Computing Jobs with Mobile Agents,
In Special Issue on Agent-Based Grid Computing, International Journal of Applied Intelligence (2006).

[14] D. Lange and M. Oshima, Programming and Deploying Mobile Agents with Aglets, Addison-Wesley (1998).
[15] Z. Li and M. Parashar, A Decentralized Agent Framework for Dynamic Composition and Coordination for Autonomic Ap-

plications, In Proc. of the 3rd International Workshop on Self-Adaptive and Autonomic Computing Systems, Copenhagen,
Denmark (2005), 165–169.

[16] L. Moreau, Distributed Directory Service and Message Router for Mobile Agents, Science of Computer Programming
39(2–3) (2001), 249–272.

[17] L. Moreau and D. Ribbens, Mobile Objects in Java, Scientific Programming 10(1) (2002), 91–100.
[18] A.L. Murphy and G.P. Picco, Reliable Communication for Highly Mobile Agents, Journal of Autonomous Agents and

Multi-Agent Systems 5(1) (2002), 81–100.
[19] A.L. Murphy and G.P. Picco, Using Lime to Support Replication for Availability in Mobile Ad Hoc Networks, In Proc.

of the 8th International Conference on Coordination Models and Languages (2006), 194–211.

J. Ahn / Novel directory service and message delivery mechanism 349

[20] A.L. Murphy, G.P. Picco and G.-C. Roman, Lime: A Coordination Middleware Supporting Mobility of Hosts and Agents,
ACM Transactions on Software Engineering and Methodology 15(3) (2006), 279–328.

[21] C. Perkins, IP Mobility Support, RFC 2002 (1996).
[22] V. Pham and A. Karmouch, Mobile Software Agents: An Overview, IEEE Communications Magazine 36 (1998), 26–37.
[23] R. Prakash and M. Singhal, A Dynamic Approach to Location Management in Mobile Computing Systems, In Proc. of

the International Conference on Software Engineering and Knowledge Engineering (1996), 488–495.
[24] M. Ranganathan, M. Bednarek and D. Montgomery, A Reliable Message Delivery Protocol for Mobile Agents, In Proc.

of the 2nd International Symposium on Agent Systems and Applications and the 4th International Symposium on Mobile
Agents, Lecture Notes In Computer Science 1882 (2000), 206–220.

[25] K. Rothermel and M. Schwehm, Mobile Agents, Encyclopedia for Computer Science and Technology 40 (1999), 155–176.
[26] R. Tahboub and V. Lazarescu, Novel Approach for Remote Energy Meter Reading Using Mobile Agents, In Proc. of the

3rd International Conference on Information Technology (2006), 84–89.
[27] D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young and B. Peet, Concordia: An Infrastructure for Collaborating

Mobile Agents, Lecture Notes In Computer Science 1219 (1997).
[28] J. Zhang, A mobile agents-based approach to test the reliability of web services, International Journal of Web and Grid

Services 2(1) (2006), 92–117.

Jinho Ahn received his B.S., M.S. and Ph.D. degrees in Computer Science and Engineering from Korea University, Korea,
in 1997, 1999 and 2003, respectively. He has been an assistant professor in Department of Computer Science, Kyonggi
University. His research interests include distributed computing, fault-tolerance, sensor networks and mobile agent systems. He
has published more than 50 papers in refereed journals and conference proceedings and served as program committee member
or session chair in several domestic/international conferences.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

