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Abstract

Background: Despite their widespread use, the biological mechanisms underlying the efficacy of psychotropic

drugs are still incompletely known; improved understanding of these is essential for development of novel more

effective drugs and rational design of therapy. Given the large number of psychotropic drugs available and their

differential pharmacological effects, it would be important to establish specific predictors of response to various

classes of drugs.

Results: To identify the molecular mechanisms that may initiate therapeutic effects, whole-genome expression

profiling (using 324 Illumina Mouse WG-6 microarrays) of drug-induced alterations in the mouse brain was

undertaken, with a focus on the time-course (1, 2, 4 and 8 h) of gene expression changes produced by eighteen

major psychotropic drugs: antidepressants, antipsychotics, anxiolytics, psychostimulants and opioids. The resulting

database is freely accessible at www.genes2mind.org. Bioinformatics approaches led to the identification of three

main drug-responsive genomic networks and indicated neurobiological pathways that mediate the alterations in

transcription. Each tested psychotropic drug was characterized by a unique gene network expression profile related

to its neuropharmacological properties. Functional links that connect expression of the networks to the

development of neuronal adaptations (MAPK signaling pathway), control of brain metabolism (adipocytokine

pathway), and organization of cell projections (mTOR pathway) were found.

Conclusions: The comparison of gene expression alterations between various drugs opened a new means to

classify the different psychoactive compounds and to predict their cellular targets; this is well exemplified in the

case of tianeptine, an antidepressant with unknown mechanisms of action. This work represents the first proof-of-

concept study of a molecular classification of psychoactive drugs.
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Background
The complex etiology and heterogeneity of mental disor-

ders is associated with moderate effectiveness of psycho-

active drugs, frequent recurrence of symptoms and high

cost of therapy [1]. Psychotropic drugs have diverse thera-

peutic profiles (Table 1), and even a single class drugs can

show high diversity of effectiveness and effects may be

limited to particular sub-types of a given disorder, exem-

plified by the various subclasses of antidepressants [2]. On

the other hand, drugs belonging to different therapeutic

classes may have effects that are either beneficial or adverse

in a particular disease. Therefore, the identification of com-

mon and specific neurobiological actions of psychoactive

compounds is critical to understanding therapeutic mecha-

nisms. Furthermore, comparison of drug-induced molecu-

lar profiles may provide objective criteria for a more

rational classification of psychotropic drugs.

The development of maladaptive neuroplastic changes is

suggested to underlie the progression of neuropsychiatric

disorders [3]. The pattern of structural alterations in the

brain is determined by the process of synaptic plasticity and
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is influenced by genetic, neurodevelopmental and environ-

mental factors [4]. It is thought that therapeutic agents re-

verse disease-related alterations by reconstruction and

normalization of neuronal connections in targeted brain

areas [5,6]. This view is supported by the fact that the

therapeutic effects of psychotropic drugs usually have de-

layed onset and gradually increase with time. Establishment

of these long-lasting changes requires gene expression and

synthesis of new proteins [7-9] in a time-dependent and

region-specific manner; such changes may serve as early

markers of drug-activated biological processes.

Impaired control over drive and motivation is a fre-

quent symptom in psychiatric disorders, including de-

pression, mania and addiction [10,11]. Since these

conditions are characterized by disturbed monoaminer-

gic function, most current pharmacotherapies target re-

ceptors and transporters for dopamine, serotonin and

noradrenaline as well as other transmitters such as

GABA and acetylcholine [12,13]. All of these transmitter

systems are represented in the striatum, a brain region

responsible for control of motivation, reward-based

learning and decision-making [14,15]. The striatum as

an evolutionarily ancient brain region reveals compar-

able functions and gene expression profiles between ro-

dents and humans [16]. Thus, despite the limitations of

an animal model [17], the comparison of drug-induced

dynamic alterations in the rodent striatal gene expres-

sion profile provides insights into molecular mechanisms

of psychotropic drug actions.

In this study, using whole-genome gene expression

microarrays we identified main drug-responsive genomic

networks that are regulated by 18 individual psychoactive

drugs known to impact on one or more pharmacological

targets within the striatum. This work introduces a novel

approach for the classification of psychotropic drugs on

the basis of gene expression profiling. To encourage fur-

ther discoveries along these lines, we made freely available

the entire interactive database which contains the results

of the present study (www.genes2mind.org).

Results
Drug-induced transcriptional alterations in the striatum

Using whole-genome microarrays (Illumina MouseWG-6),

we compared striatal gene expression profiles (magnitude

and dynamics of ~30,000 genes) produced by 18 major psy-

choactive drugs at 1, 2, 4 and 8 hours after acute adminis-

tration (Table 1). Obtained data were subjected to two-way

analysis of variance (ANOVA) with drug and time as factors

(Additional file 1). We found 317 drug-responsive tran-

scripts in the striatum at the most conservative statistical

Table 1 A list of psychotropic drugs selected for the comparison

Drug Dose [mg/kg, i.p.] (control)1 Pharmacological targets Clinical group7

1 Mianserin (MIA)3 20 (sal) HRH1 / HTR2C, 2A, 3A / ADRA2C, 2A, 1A / NET / CHRM Antidepressant (NaSSa)

2 Imipramine (IMI)3 10 (sal) SERT / HRH1 / NET / ADRA1A / HTR2C / CHRM Antidepressant (TCA)

3 Fluoxetine (FLU)3 20 (sal) SERT / NET / HTR2C Antidepressant (SSRI)

4 Bupropion (BUP)3 20 (sal) DAT Antidepressant (DRI)

5 Tianeptine (TIA)2 20 (sal) Unknown targets Antidepressant (SSRE)

6 Tranylcypromine (TRA)2 20 (sal) MAO Antidepressant (MAOI)

7 Methamphetamine (MET)2 2 (sal) NET / DAT Psychostimulant

8 Cocaine (COC)2 25 (sal) DAT / NET / SERT Psychostimulant

9 Nicotine (NIC)2 1 (sal) n-AChR Psychostimulant

10 Heroin (HER)6 10 (sal) OPRM1, OPRK1, OPRD1 Analgesic

11 Morphine (MOR)4 20 (sal) OPRM1, OPRK1, OPRD1 Analgesic

12 Ethanol (ETO)2 2000 (sal) GABAA Anxiolytic/Analgesic

13 Diazepam (DIA)2 5 (twe) GABAA Anxiolytic

14 Buspirone (BUS)3 10 (sal) 5HT1A Anxiolytic

15 Hydroxizine (HYD)2 10 (sal) HRH1 Anxiolytic

16 Clozapine (CLO)3 3 (twe) DRD4, 2 / HRH1 / HTR2A, 2C / DRD1 / CHRM / ADRA1A Antipsychotic

17 Risperidone (RIS)3 0.5 (twe) HTR2A, 2C / DRD1 / DRD2, 3, 4 / ADRA1A, 2C / HRH1 Antipsychotic

18 Haloperidol (HAL)3 1 (twe) DRD2, 3, 4 / 5HT2 Antipsychotic

19 Tween 802 vol. 10 ml/kg (naïve) No targets Vehicle

20 Saline (SAL)5 vol. 10 ml/kg (naïve) No targets Vehicle

1the effective drug doses were based on the literature; the drugs were purchased from 2Sigma-Aldrich, 3Biotrend, 4Teva, 5Polpharma or 6synthesized from

morphine, 7class of antidepressant (NaSSa, noradrenergic and specific serotonergic antidepressant, TCA tricyclic antidepressant, SSRI selective serotonin reuptake

inhibitor, DRI dopamine reuptake inhibitor, SSRE selective serotonin reuptake enhancer, MAOI monoamine oxidase inhibitor).
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threshold (P < 0.05 after Bonferroni correction, nominal

P = 1.36 × 10-06). After removal of genes represented more

than once on the microarrays, this list contains 278 unique

genes. For down-stream analyses we selected top 300 tran-

scripts ordered by genes2mind score, which takes into ac-

count fold of change and direction of drug-induce gene

expression alterations (please see Methods for details). This

method was implemented in the genes2mind selection

module (www.genes2mind.org). Furthermore, we estimated

total number of genes regulated by psychotropic drugs by

calculation of true positives over a wide range of false dis-

covery rates (FDR). This estimation indicated that the total

number of regulated transcripts slightly exceeds one thou-

sand (Additional file 2). Therefore, with the restrictive stat-

istical approach we identified about 30% of drug-responsive

genes in the striatum. For canonical pathway analysis we

used 5% FDR threshold at which we identified most of

drug-regulated transcripts (872 microarray probes). The

number of genes regulated by each drugs in the time-

course (genes2mind score > 10) is presented in Additional

file 3. All the additional analyses and comparisons (includ-

ing selection of drugs, genes and time-points) are available

at the genes2mind resource.

Molecular classification of psychotropic drugs

We used hierarchical clustering and principal com-

ponent analysis (PCA) of the 300 drug-responsive

transcripts (defined by genes2mind score using all the

time-points) to classify psychotropic drugs. Drug-

induced transcriptional signatures were distinguished

between the various therapeutic groups: anxiolytics

(buspirone, diazepam and hydroxyzine), atypical antipsy-

chotics (clozapine and risperidone), opioids (morphine

and heroin) and psychostimulants (methamphetamine

and cocaine) (Figure 1A). However, the expression

profile of the antipsychotic drug - haloperidol was simi-

lar to that of psychostimulants and tranylcypromine.

Also, the effects of nicotine resembled those of addictive

drugs, ethanol and opioids, more closely than other

psychostimulants. Antidepressants proved to be the

most heterogeneous group of drugs in terms of their im-

pact on gene expression, with mianserin, imipramine,

tranylcypromine and fluoxetine displaying very diverse

profiles. The gene expression profile of mianserin was

most similar to those elicited by atypical neuroleptics;

the profiles obtained in response to imipramine were

similar to those produced by anxiolytics; and tranylcypromine

generated a profile that resembled that obtained with

psychostimulants. Nevertheless, antidepressants that target

monoamine transporters (fluoxetine and bupropion) fell into

one cluster.

Three main PCA components explained 56% of the

variance in gene expression and mapped the test drugs

in three-dimensional space according to their molecular

profiles (Figure 1B). The first PCA component repre-

sented the strong effects of opioids, ethanol and

tranylcypromine; there were no detectable effects of di-

azepam and hydroxyzine. The second principal compo-

nent included the full spectrum of drug-induced effects

in the striatum - from substantial inhibition of gene

A B

Figure 1 A comparison of psychotropic drugs based on pattern of gene expression alterations in the striatum. Cluster dendrogram (A)

and PCA plot (B) were generated based on expression profile of top 300 drug-responsive genes. Distance between drugs corresponds to a

divergence in the profile of drug-induced transcriptional alterations. Therapeutic classes of drugs are coded by colors presented on the clustering

(green for antidepressants, red for psychostimulants, blue for anxiolytics, brown for antipsychotics and light blue for opioids). First and second

components of PCA are shown on x and y axis, while third component is coded by color and size of the circles as presented on the right.
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expression by diazepam or clozapine to strong activation

by cocaine and methamphetamine. The third PCA com-

ponent showed, on one hand, a common effect of anti-

psychotic drugs and mianserin, and on the other, a

common effect of all three anxiolytics.

Drug-induced gene expression networks

To connect effects of psychotropic drugs to inducible

gene expression patterns in the striatum, we determined

the correlation between loadings of the first three PCA

components and the level of transcriptional alterations.

Hierarchical clustering was used to search for drug-

inducible groups of co-expressed genes (Figure 2A).

Three main drug-responsive gene clusters, representing

network α (containing 105 transcripts), β (43 transcripts)

and γ (27 transcripts) became evident. The clusters re-

vealed diverse drug- and time-dependent patterns of up-

and down-regulation of gene expression (see Figure 3

for examples of typical genes). Next, a map of the

complete striatal transcriptome, based on the level of

correlation between profiles of all transcripts measured

using microarrays, was developed in order to depict

drug-induced alterations in expression. All three drug-

responsive gene clusters are located on the same branch

of a tree (Additional file 4). The clusters were clearly

separated and organized in drug-regulated genomic net-

works (Figure 2B). We found no other networks with

distinct gene expression patterns. However, it is possible

to identify subclusters of genes with moderately different

profiles of expression within the three main networks

(Additional file 5).

Expression of gene network α correlated with the sec-

ond PCA component. Drug-induced changes in network

α genes were bidirectional, e.g. methamphetamine

A

B

Figure 2 Drug-induced gene expression networks in the striatum. Gene networks α, β, γ were identified by hierarchical clustering of top

drug-regulated transcripts (A). Map of the striatal transcriptome represented as minimal spanning tree (B). Each node represents one transcript.

The inter-node distance is proportional to the Spearman correlation of the expression levels of two genes. The node color of drug-responsive

transcripts indicates the level of correlation between gene expression and PCA components (see Figure 1b), according to a triangle scale.
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induced expression of Npas4 and Egr1, while diazepam

inhibited it. Buspirone, mianserin and risperidone in-

duced some activity-dependent genes but down-

regulated others, e.g. mianserin inhibited expression of

Homer1 by 0.6-fold and induced Fos by 2.3-fold. The

gene expression network β correlated with the first PCA

factor. The expression of this network was regulated to a

different degree by drugs from various pharmacological

groups, e.g. Cdkn1a or Fkbp5 after opioids and

tranylcypromine, except that diazepam, hydroxyzine and

imipramine had no effects. The expression of gene net-

work γ correlated with the third PCA component. All

network γ genes were regulated by risperidone,

mianserin and clozapine, in a bidirectional manner, e.g.

Cirbp and Mtor were strongly up-regulated by atypical

neuroleptics and mianserin, but down-regulated by

tranylcypromine or methamphetamine.

Functional description of drug-regulated gene networks

Cell-type enrichment of drug-responsive genes

Identification of the types of neural cells expressing

genes from the α, β and γ networks was carried out by

reference to publicly available data that represents cellu-

lar enrichment of individual transcripts in neurons, as-

trocytes or oligodendrocytes (Figure 4) [18]. Significant

enrichment of transcripts from the expression network α

Figure 3 Psychotropic drug-induced transcriptional alterations of example genes. Four genes with typical expression profiles for the

networks α (Areg and Npas4), β (Cdkn1a) and γ (Cirbp) were selected from drug-responsive transcripts. The microarray results are presented as

time-course (1, 2, 4 and 8 hours) of fold-changes vs. saline control (as described in the legend). Results from drug-naïve group of animals are

presented as an additional control.

Figure 4 Functional analysis of drug-induced gene networks α, β and γ. The networks were described by gene enrichment in neurons,

astrocytes and oligodendrocytes, overrepresentation of transcription factor binding sites (TFBS) and median mRNA half-life (median for whole-

transcriptome = 5.6 h); significance of enrichment: *P < 0.05, **P < 0.01, ***P < 0.001.
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was found in neurons (e.g. neuron-specific Npas4, Scg2

or Baiap2) and under-representation in oligodendro-

cytes. Gene network β was characterized by very strong

over-representation of genes expressed in astrocytes, in-

cluding the cell-type specific markers Gjb6 and Ppp1r3g.

Network γ genes did not show enrichment in any par-

ticular cell type although individual genes that were

highly expressed in either neurons (Amn and Lst1) or ol-

igodendrocytes (Cnp) were identified.

Over-representation of transcription factor binding sites

The cREMaG database [19] was used for in silico identi-

fication of molecular factors involved in the transcrip-

tional control of the gene expression networks revealed

in the present study. We found significant over-

representation of SRE (serum-response elements, 4-fold

enrichment; P < 0.01) and CRE (cAMP response ele-

ments, 3.8-fold enrichment, P < 0.05) in the promoter re-

gions of genes from network α. These elements are

potential binding sites for the transcriptional factors SRF

(e.g. in Egr1 and Arc) and CREB1 (e.g. in Dusp1

and Fosl2). Significant over-representation of GRE

(glucocorticoid-response elements, 4.3-fold enrichment,

P < 0.01) on promoter regions of genes from network β

(e.g. in Tsc22d3 and Pdk4) was observed. Gene network

γ showed significant enrichment of binding sites for tran-

scriptional factor NFYA (5.8-fold enrichment, P < 0.01).

Two examples of genes with conserved binding sites for

NFYA (regulatory subunit for NF-Y complex) are Per1

and Mtor.

Transcript stability of drug-responsive genes

Transcript stability is related to function of the tran-

scribed protein [20]. Our analysis reveals substantial dif-

ferences in the half-lives of mRNAs belonging to the α

and β networks. Gene expression network α contains

genes with a short mRNA half-life (median = 2.9 h), in-

cluding very short-lived transcripts (< 2 h half-life:

Gadd45g, Fos and Egr2). In contrast, network β includes

transcripts with significantly longer (median: 8.7 h) half-

lives (> 20 h in the case of Sult1a1 and Itgad). Whole-

genome screening indicated that genes with low mRNA

stability are frequently involved in regulation of intracel-

lular signaling, while long-lived transcripts have a role in

cell metabolism [20]. The median half-life of transcripts

from network γ was 6.9 h, i.e. not significantly different

from the median of 5.6 h for the whole transcriptome.

Functional classification of drug-responsive genes

To characterize the transcriptional representation of bio-

logical processes, a list of genes from each gene expres-

sion network was analyzed using GO (Gene Ontology).

Functional clusters of transcripts connected with protein

MAP kinase phosphatase activity (81-fold enrichment,

P = 2.4 × 10-9; e.g., Dusp1 and Dusp4), rhythmic pro-

cesses (7.2-fold, P = 2.3 × 10-3; e.g., Egr2 and Per2) and

transcriptional regulator activity (2.8-fold, P = 6.7 × 10-5;

e.g., Sertad1 and Atf3) were over-represented among

genes from network α. The group of genes from net-

work β was enriched in transcripts involved in lipid

metabolism (11.5-fold, P = 2.2 × 10-3; e.g., Adipor2 and

Pnpla2) and formation of adherens junctions (13.6-fold,

P = 1.3 × 10-3; e.g., Dlg5 and Synm), whereas, analysis of the

novel network γ revealed the enrichment of genes connected

to cell projection organization (4.7-fold, P = 8.5 × 10-3; e.g.,

Lst1 and Cnp). A detailed description of the results of GO

classification is included in Additional file 6.

We did not find transcriptional regulation of genes

coding main targets for psychotropic drugs, as for ex-

ample dopamine receptors Drd2 and Drd1a or serotonin

transporter Slc6a4. It is possible that promoters of these

genes are not directly activated in response to the ligand

binding.

Canonical pathways analysis

A canonical pathways analysis was performed to investi-

gate the functional characteristics between drug-

regulated genes. To increase resolution of the analysis

an extended list of transcripts was used (872 transcripts

at <5% FDR). Genes were assigned to the networks

according to drug-induced profiles of alterations in ex-

pression (Additional files 1 and 5). The canonical path-

ways analysis using the Pathways-Express identified

significant biological functions altered differentially by

the psychotropic drugs at the statistical threshold of

P < 0.05. The Additional file 7 contains a list of biological

pathways for each drug-regulated transcriptional network.

The list of pathways for gene expression network α in-

cludes neuroplasticity-related signaling cascades MAPK

and ErbB. The network β contains genes involved in the

control of cellular metabolism via glucose regulation by

adipocytokine and PPARG molecular pathways. The γ

network proved to be enriched in genes involved in regu-

lation of circadian rhythm and mTOR signaling path-

ways. Additional file 8: Figure S8 shows examples of

canonical pathways enriched between drug-responsive

genes (Additional file 8).

The examples of drug-regulated transcriptional profiles

We selected genes with expression patterns representative

for the identified drug-responsive transcriptional networks

(Figure 3). In general, transcripts from network α reveal re-

markable correlation in expression profile, but we also

found drug-dependent diversity between particular genes.

The expression of Areg is induced by psychostimulants

and tranylcypromine administration. The profile of Areg

expression suggests that an increase in dopaminergic

transmission may be directly involved in drug-induced
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regulation of this gene. Moreover, the time-course of al-

terations in Areg expression corresponds to pharmacoki-

netic properties of the drugs: we observed a strong

increase in the mRNA abundance of Areg 1 h after injec-

tion of cocaine, 2 h after methamphetamine and 4 h

after tranylcypromine. Npas4 is induced by these three

drugs in the same direction as Areg, but unlike Areg,

Npas4 expression is also induced by opioids and

inhibited by diazepam, atypical neuroleptics as well as

antidepressants that antagonize 5-HT2 receptors. Other

examples of genes with slightly different profiles are

Egr2 and Arc, with expression induced by haloperidol

and buspirone as well as Dusp1 and Fos, induced by

haloperidol and mianserin (www.genes2mind.org).

Drug-induced network β reveals more homogenous

pattern of transcriptional alterations. Genes from this

network showed the largest alterations (up to 6-fold vs.

saline control group) in expression 4 h after administra-

tion of mianserin and tranylcypromine. Example gene

Cdkn1a is activated to a different degree by all the psy-

chotropic drugs, except for imipramine, diazepam and

hydroxyzine.

Network γ exhibits a pattern of gene expression changes

that is connected to pharmacological properties of the

drugs. Transcriptional activation of Cirbp is limited to

mianserin, risperidone and clozapine treatment while opi-

oids and psychostimulants seem to inhibit the expression of

this gene and other network γ genes (e.g., Trove2 and

Mrpl15).

Prediction of drug-target interactions from gene

expression profiling

The comparison of gene expression profiles has been re-

cently used as a tool for prediction of therapeutic prop-

erties of drugs [21-23]. Our molecular classification of

psychotropic drugs indicated an interesting profile of

tianeptine. Tianeptine is a tricyclic antidepressant whose

mechanism of action is still not clear [24]. Here, a linear

model, based on the level of gene expression alterations

induced in the striatum by drugs with well-known

pharmacological properties (Figure 5A), was used in an

attempt to predict tianeptine’s molecular mechanism(s)

of action. The matrix of interactions between 14 psycho-

tropic drugs and 13 neuropharmacological mechanisms

was constructed on the basis of data in the PDSP Ki

database [25]. Levels of modulation by tianeptine were

predicted for each of the mechanisms. This analysis re-

vealed that the transcriptional effects of tianeptine may

involve increased activity of noradrenaline, serotonin

and dopamine neurotransmission (Figure 5B).

Monoaminergic action of tianeptine

Further, in situ hybridization was used to examine the

anatomical distribution of drug-induced alterations in

the expression of two neuroplasticity-related genes fol-

lowing exposure of mice to tianeptine and two other an-

tidepressants, tranylcypromine and mianserin. Patterns

of tianeptine-induced expression of Arc and Egr1 in

the forebrain proved similar to those produced by

tranylcypromine, an inhibitor of monoamine oxidase

that increases the concentrations of all monoamine neu-

rotransmitters; both drugs induced Arc and Egr1 tran-

scription in the striatum and neocortex (Figure 5C). In

contrast, mianserin, which affects levels of noradren-

aline, but not of dopamine or serotonin, produced differ-

ent effects; these included downregulation of Arc and

Egr1 transcripts in the striatum. According to these pro-

files, we predicted that tianeptine, like other monoamine

stimulants, may have a positive reinforcing effect in ani-

mals. This prediction was confirmed in the conditioned

place preference test in which we observed a significant

increase in time spent in the environmental context as-

sociated with tianeptine administration (P < 0.01, t-test)

(Figure 5D). Thus, both the patterns of drug-induced

gene expression and the behavioral data support the

conclusion that tianeptine acts as a positive modulator

of monoaminergic neurotransmission.

Discussion
The profile of drug-induced gene expression in the brain

is determined by activity of different neurotransmiter

systems and response of various types of cells. To un-

ravel complexity of this profile we designed a detailed

time-course gene expression study for eighteen psycho-

tropic drugs belonging to all the major clinical classes.

The previously published large-scale gene expression

analyses were focused on a single drug [26,27], drugs

from one clinical class [28,29] or marker genes [30,31].

Transcriptome alterations induced in the brain by

buspirone, bupropione, hydroxyzine or tianeptine were

not analyzed so far. The study involved extraction of a

pool of approximately 1000 transcripts that are regulated

by psychotropic drugs. Differential transcription of dif-

ferent subsets of genes from this pool was observed dur-

ing the first few hours after drug administration; 90% of

the affected transcripts were up-regulated and the

remaining were inhibited. Interestingly, the majority of

drug-induced transcriptional alterations dissipated within

8 hours of treatment, indicating that drug-induced

changes of mRNA abundance are transient. We suppose

that they are then rapidly followed by protein expression

and these proteomic alterations translate short-lived

transcriptional drug effects into lasting structural modifi-

cations of the brain; further, we suggest that chronic

drug treatment leads to accumulation of drug-induced

plastic alterations that eventually become manifest as

therapeutic effects.
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This study was limited to transcriptional mechanisms

activated in response to acute drug administration. The

effects of psychoactive drugs such as anti-psychotic ac-

tion, mood normalization, tolerance or addiction require

repeated treatment. We have recently investigated gene

expression changes at several time-points after chronic

administration of heroin or methamphetamine to associ-

ate drug-induced molecular changes with long-term be-

havioral adaptations e [32]. In that work we found that

effects of chronic treatment share transcriptional alter-

ations with single administration, as for example regula-

tion of glucocorticoid-dependent (Plin4 and Fkbp5) or

circadian rhythm-regulated genes (Per1 or Per2). How-

ever, there were no direct correlations between tran-

scriptional and behavioral effects of the drugs as well as

no significant changes in gene expression profile after a

period of withdrawal. We conclude that psychoactive

drugs induce transient transcriptional program that may

initiate neuroplastic alterations, but does not trigger

long-term alteration in mRNA abundance levels in ma-

ture differentiated brain cells.

Bioinformatic analysis revealed that the transcriptional

response to the psychotropic drugs tested fall into three

major groups of co-regulated genes. The largest gene

network, α, contains genes previously defined as being

activity-dependent. The observed alterations in expres-

sion of genes belonging to the network α correspond

well to drug effects on neuronal activity (e.g. activation

by cocaine and inhibition by diazepam); expression of

genes in this network is known to depend on an inter-

play between the transcriptional factors CREB and SRF

[33-35]. The gene network α includes a number of

neuroplasticity-related transcriptional factors (e.g. Npas4,

Egr1 and Fosb) as well as other regulators of brain

A B

DC

Figure 5 Prediction of tianeptine targets by gene expression profiling. A matrix of drug-target binding interactions from the PDSP Ki

database (A). The mechanisms of tianeptine action predicted from expression profiles of the transcripts most sensitive to the analyzed

pharmacological mechanisms (B). Brain distribution of tianeptine-induced gene expression alterations of Arc and Egr1 and (C). Rewarding

properties of tianeptine in the conditioned place preference test. Scores are expressed as means + standard error of the mean (t-test, **P < 0.01) (D).
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plasticity (e.g. Arc and Homer1) [36-39]. Moreover, some

network α genes are involved in MAP kinase signal trans-

duction pathway (e.g. Dusp1 and Dusp6) which plays a

pivotal role in various forms of long-lasting neuroplasticity

[40,41]. The network α also contains novel genes (e.g.

transcripts related to ErbB receptors signaling pathway

Ddit4, developmental neuronal death Sertad1 or a modu-

lator of Wnt and Fgf signaling pathways Shisa2) [42,43].

These genes deserve further functional characterization

with respect to drug effects. All network α genes were

shown to be expressed in neurons and their mRNAs

were found to have relatively short half-lives. Several

lines of evidence indicate that the expression of genes be-

longing to network α is involved in the initiation of plas-

tic alterations and long-term modulation of neuronal

signaling and the diverse functions of these genes indi-

cate that psychotropic drugs activate control points for

multiple intracellular pathways [44]. Accordingly, we sug-

gest that, at the transcriptional level, brain plasticity is

regulated through expression of molecular switches ra-

ther than of all components of neuroplasticity-related

pathways.

Another network identified (β) is strongly enriched in

genes that are expressed predominantly in astrocytes

and glucocorticoid response elements (GRE) in their

promoter regions are overrepresented. However, while

the collective function of network β genes in astrocytes

remains unknown, genes from this group are implicated

in glucose metabolism e.g. Pdk4 and glucose transport e.

g. Slc2a1 as well as other metabolic processes; in

addition, Sult1a1 is involved in sulfate conjugation of

neurotransmitters and certain xenobiotics and Xdh plays

a role in the oxidative metabolism of purines [45-48].

The network β is enriched for genes related to

adipocytokine signaling pathway. This molecular cascade

is an important regulator of energy intake and metabolic

rate [49]. It thus appears that glial cells use expression of

network β genes to activate a set of metabolic control

points and therefore, to support the functional responses

of neurons to psychotropic drugs. The relatively long

half-lives of the mRNAs generated from these genes

most likely contribute to the regulation of neural cell

metabolism [20]; interestingly, patients with affective

disorders often display altered brain metabolism [50].

Glucocorticoids are key regulators of cellular metabol-

ism and their dysregulated secretion is found in several

psychiatric disorders [51]; in major depression, anti-

depressant actions are usually first seen only after gluco-

corticoid secretion has been normalized [52]. Thus,

activation of glucocorticoid-dependent genes following

psychotropic drug treatment may represent restoration

of homeostatic control of brain metabolism.

The third psychotropic drug-inducible network, γ, that

emerged from this study includes genes involved in the

organization of cell projections (e.g. Lst1, Cnp) and the

mTOR pathway (e.g. Mtor, Tsc1) [53-55]. Evolving evi-

dence implicates the mTOR pathway in dendrite

arborization and spine morphology [56]. Network γ may

therefore serve to switch on multiple control points for

morphological alterations in nerve cells. Our results in-

dicate that expression of this network in the striatum

may depend on serotonin signaling, specifically the 5-

HT2 receptor. Thus, gene network γ may be involved in

the mediation of the long-lasting effects of 5-HT2 antag-

onist antipsychotic drugs on the cellular level. Moreover,

the 5-HT2 blockade-dependent expression of network γ

in the striatum that separates haloperidol from risperi-

done may be useful as a transcriptional marker for atyp-

ical neuroleptics.

The current Anatomical Therapeutic Chemical (ATC)

and World Health Organization (WHO) classification of

psychotropic drugs is based on their clinical effectiveness.

As shown by the present work, comparison of gene expres-

sion profiles can clearly distinguish between atypical anti-

psychotics, opioids and psychostimulants. Moreover, the

three anxiolytic drugs studied here show relatively similar

genomic profiles despite the different mechanisms associ-

ated with their actions. Interestingly, these anxiolytics and

the antidepressant imipramine share a common expression

profile and imipramine can act efficiently to reduce anxiety

[57]. On the other hand, the molecular profile of mianserin

differs markedly from that of imipramine while being simi-

lar to that of the atypical antipsychotics clozapine and ris-

peridone; this may reflect the fact that all of these drugs

can modulate serotonergic activity. The potential utility of

the presently-described approach to distinguish between

the two classes of antipsychotics is further illustrated by the

finding that the typical antipsychotic haloperidol has a

similar molecular profile to that of psychostimulant drugs.

This most likely results from the propensity of all these

drugs to upregulate activity-dependent genes in the stri-

atum. It is important to note, however, that haloperidol and

psychostimulants induce these genes in different neuronal

populations and via different pharmacological mechanisms

[58]. Another observation from the present analysis is that

drugs which trigger large increases in striatal dopamine and

norepinephrine levels induce similar expression profiles

(cocaine and methamphetamine, tranylcypromine).

In general, antidepressants proved to be highly heteroge-

neous with respect to activation of molecular networks.

This diversity reflects their diverse pharmacological and

neurobiological mechanisms of action [12], as well as sig-

nificant differences in the efficacy of individual compounds

in the treatment of different forms of depression [2,59].

Based on the present analysis of transcriptional profiles, it

would appear that mianserin would be a highly effective

treatment for psychotic depression, imipramine for anxiety-

depressive disorders, and tranylcypromine for depression
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associated with anhedonia. The broad gene expression pro-

file of fluoxetine indicates that it would be a suitable first-

line treatment [60].

The prediction of drug properties based on the pattern

of gene expression alterations need not exactly corres-

pond to the therapeutic profile. To form multidimen-

sional profile of a drug or novel psychoactive compound

the results of molecular analysis should be combined

with binding profile and behavioral response [61,62].

The pharmacological mechanisms of action of the tricyc-

lic drug tianeptine, indicated for depression, are not fully

understood. The present genomic profiling approach ap-

pears to have the potential to identify neuronal targets

for drugs with unknown mechanisms of action as well

as for experimental compounds [63-65]. Until now,

tianeptine has been thought to act by either enhancing

serotonin reuptake, modulating glutamatergic transmis-

sion and/or counteracting maladaptive stress-induced

neuroplasticity [24,66]; however, none of these mecha-

nisms has been fully validated. The present study re-

vealed that the transcriptional effects of tianeptine may

result from a blockade of norepinephrine, serotonin and

dopamine transporters; in this respect, tianpetine shares

some of the dopaminergic and noradrenergic properties

with its predecessor amineptine [67]. Supporting the

view that tianeptine acts primarily by modulating

monoaminergic function are clinical findings that the

tianeptine, has moderate addictive potential comparable

to diazepam [68] as well as the presently observed

pattern of tianeptine-induced expression of activity-

dependent genes. Importantly, the lack of tianeptine-

binding molecular targets suggests that the drug indirectly

influences monoamine levels [69]. The transcriptional pro-

file of tianeptine is not necessarily in conflict with the pre-

viously proposed mechanisms of its action as positive

effects of tianeptine on both glutamatergic transmission

and neuroplasticity might be indirect. However, our results

suggest a change in tianeptine status from a drug acting

through unknown mechanisms to an antidepressant with

remarkable ability to modulate all three monoamine sys-

tems. Compounds with such activity profile have been re-

cently proposed as likely to form the basis for the

development of the next generation of antidepressant

drugs [70].

Conclusions
Psychotropic drugs conventionally classified as antidepres-

sants, antipsychotics, anxiolytics, psychostimulants and opi-

oids regulate expression of three major gene expression

networks implicated in the control of neuronal signaling,

brain metabolism and organization of cell projections. The

patterns of drug-induced gene networks revealed here offer

new valuable markers of pharmacological activation of di-

verse neurobiological processes and systems. In particular,

the present study provides novel insights into the mecha-

nisms through which tianeptine might exert its antidepres-

sant action.

Methods
Animals

Adult male (8 to 10 weeks old) C57BL/6 J inbred mice

(Jackson Laboratory, Bar Harbor, ME, USA) were

housed 6 to 10 per cage under a 12-h dark/light cycle

with free access to food and water. Animals weighing 20

to 30 g were used throughout the experiments. The ani-

mal protocols were approved by the local Bioethics

Commission at the Institute of Pharmacology PAS.

Drug treatment

Mice were injected i.p. (vol. 10 ml/kg) with drugs listed

in Table 1. Then animals were sacrificed by decapitation

1, 2, 4 or 8 h after a single injection along with the ap-

propriate vehicle and naïve control groups (6 animals

per each drug-treated and control group). Risperidone,

haloperidol, clozapine and diazepam were suspended in

1% Tween 80 solution (Sigma-Aldrich, St. Louis, MO,

USA); other drugs were dissolved in saline. The effective

doses of psychotropic drugs were based on the literature,

particular attention being payed to their pharmacological

effects in C57BL/6 J mice [71-79]. The doses were se-

lected to provide reasonable comparison of drugs effects

on the molecular level.

Tissue collection and RNA isolation

Samples containing the rostral part of the caudate puta-

men and the nucleus accumbens, referred to hereafter as

the striatum, were collected. The dissection procedure

was performed as previously described [80]. In addition,

tissue samples containing frontal cortex, amygdalae and

hippocampus were frozen in order to allow future exper-

iments. Tissue samples were placed in RNAlater reagent

(Qiagen Inc., Valencia, CA, USA) and preserved at −70°C.

Samples were homogenized in 1 ml Trizol reagent

(Invitrogen, Carlsbad, CA, USA). RNA was isolated fol-

lowing the manufacturer’s protocol and further purified

using the RNeasy Mini Kit (Qiagen Inc.). The total RNA

concentration was measured using a ND-1000 Spectrom-

eter (NanoDrop Technologies Inc., Montchanin, DE,

USA). RNA quality was determined using an Agilent

Bioanalyzer 2100 (Agilent, Palo Alto, CA, USA).

Microarray hybridization

A starting amount of 200 ng high-quality total RNA

(pooled 1:1 from two animals) was used to generate

cDNA and cRNA with the Illumina TotalPrep RNA

Amplification Kit (Illumina Inc., San Diego, CA, USA).

The obtained cDNA served as a template for in vitro

transcription with T7 RNA polymerase and biotin UTP
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to generate multiple copies of biotinylated cRNA. Each

cRNA sample (1.5 μg) was hybridized overnight to

MouseWG-6 BeadChip array (Illumina); subsequently,

chips were washed, dried and scanned with the

BeadArray Reader (Illumina). Raw microarray data were

generated using BeadStudio v3.0 (Illumina). A total of

108 Illumina MouseWG-6 v1.1 and 216 Illumina

MouseWG-6 v2 microarrays were used (three independ-

ent arrays per group). Samples from 2 mice were pooled

per microarray, 3 biological replicates were used per

time-point and 12 arrays per each drug. To provide an

overall appropriately balanced dataset, treatment group

samples were distributed between array plates and

hybridization batches.

Microarray data analysis

Analysis and quality control of 324 microarrays were

performed using BeadArray R package v1.10.0. After

background subtraction, data was normalized using

quantile normalization and then log2-transformed. Re-

sults were standardized to reduce the effect of hybridiza-

tion batches using z-score transformation. All the

experiments were planned and performed to allow direct

comparison of a relatively large number of psychoactive

drugs. Gene cross-annotation between the two versions

of Illumina microarrays was performed automatically.

All statistical analyses were performed in R software ver-

sion 2.11.1 [81]. There were no significant differences in

mRNA abundance levels between the batches of vehicle-

treated animals (saline as well as Tween 80) after correc-

tion for multiple testing. Therefore, for drug comparison

all control groups were combined together. Two-way

ANOVA with fixed effects for drug factor (df = 19), time

factor (df = 3) and interaction (df = 57) was followed by

appropriate correction for multiple testing (using the

Bonferroni or Benjamini-Hochberg procedures).

The genes2mind gene selection score (implemented

on www.genes2mind.org) was computed as follows:

score ¼
10 � ‐log2pij

� �

� log2 foldij þ 1
� �

� foldmeani
� �

foldsdi

The variables described: i - drug, j – time-point, p - P

value obtained from Student’s t test, fold - fold of change

compared to saline control, foldmean - mean fold

change from the four experimental time-points and

foldsd - standard deviation of fold values from the four

time-points. The data integration system was based on

MySQL in the data layer, Java in the logic layer and

AJAX (GWT) in the presentation layer. Published

databases [18,19,82] were used to check cell-type

enrichment, mRNA half-life and to control for over-

representation of TFBSs of genes [18,19,82]. The func-

tional annotation analysis tool DAVID 2008 was used to

identify over-represented ontologic groups among the

gene expression patterns [83]. The list of transcripts rep-

resented on the Illumina Mouse WG-6 microarray was

used as a background list. Over-represented GO terms

were defined as having at least three transcripts and

P < 0.05 under Fisher’s exact test. The automated func-

tional profiling of drug-regulated genes was performed

using the Pathways-Express online tool with default pa-

rameters [84].

Identification of co-expressed gene networks

Spearman correlations were calculated for all pairs of gene

expression profiles. A co-expression tree that grouped

transcripts with the most similar expression profiles was

built using correlation coefficients and a minimal span-

ning tree algorithm. Visual representation of the data was

obtained using the sfdp algorithm from the graphviz R li-

brary. Clusters of co-expressed genes were identified using

the single-linkage clustering method. Walk-length on the

co-expression tree (number of edges separating corre-

sponding transcripts) was used as the distance metric for

clustering. The top 300 drug-regulated transcripts were

selected (at genes2mind score > 1.8) for clustering. An ar-

bitrary cutoff value (internode distance = 4) was selected

to dissect major drug-inducible gene expression networks.

Model-based inference of pharmacological mechanisms

The pharmacological mechanisms underlying the ob-

served gene expression alterations were transformed into

a linear model. Transcriptional effects were modeled as

a product of two factors, as follows:

Etranscript ¼

X

mech

A
transcript
mech ⋅Bmech

drug

Variable A described the sensitivity of transcript abun-

dance to activation levels of a given pharmacological

mechanism. The strength of drug-target interaction was

represented by the binding parameter B. Its values were

based on binding constants found in the PDSP Ki data-

base [25]. The binding matrix contained data on 14

drugs that act through at least one of the 13 pharmaco-

logical targets. Together with experimental expression

levels, the binding data allowed for the estimation of

sensitivity parameters A through a least squares fit. The

theoretical model was used to infer the possible mecha-

nisms of tianeptine action. The response matrix A was

reduced by finding the 50 most sensitive transcripts for

each tested pharmacological mechanism. After removal

of duplicates, 350 transcripts were selected for further

analysis and their responses to tianeptine were repre-

sented by expression vector E'. Together with reduced

response matrix A', E' was used in a least squares fit to

theoretically predicted tianeptine-induced activation of
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pharmacological targets. The accuracy of the model was

tested by prediction of tranylcypromine mechanism of

action (Additional file 9).

In situ hybridization

The frozen brains were cut into 12 μm-thick coronal

sections on a cryostat microtome CM 3050S (Leica

Microsystems, Germany), and the sections were thaw-

mounted on gelatin-chrome alum-coated slides and

processed for in situ hybridization. The hybridization

procedure was performed as previously described [85].

Briefly, the sections were fixed with 4% paraformalde-

hyde, washed in PBS and acetylated by incubation with

0.25% acetic anhydrite (in 0.1 M triethanolamine and

0.9% sodium chloride). The sections were dehydrated

using increasing concentrations of ethanol (70 to 100%),

treated with chloroform for 5 minutes and rehydrated

with decreasing concentrations of ethanol. The sections

were hybridized for 15 h at 37°C with oligonucleotide

probes complementary to Arc and Egr1 cDNA. The

probes were labeled with 35S-dATP by the 3'-tailing re-

action using terminal transferase (MBI Fermentas,

Vilnius, Lithuania). After hybridization, the slices were

washed three times for 20 minutes with 1 × SSC/50%

formamide at 40°C and twice for 50 minutes with

1 × SSC at room temperature. Then, the slices were

dried and exposed to phosphorimager plates (Fujifilm,

Tokyo, Japan) for 5 days. The hybridization signal was

digitized using a Fujifilm BAS-5000 phosphorimager and

Image Reader software (Fujifilm).

Conditioned place preference

CPP tests were performed using an unbiased procedure

in a three-arm apparatus. The experiment consisted of

the following phases separated by 24 h: pre-conditioning

test (day 0), conditioning with a tianeptine dose of

20 mg/kg (days 1, 3, 5), conditioning with saline (days 2,

4, 6) and post-conditioning test (day 7). The CPP score

was defined as the time spent in the drug-paired com-

partment on day 7 minus the time spent in the same

compartment in the preconditioning phase on day 0.

The scores were expressed as means with the standard

error of the mean.

URLs

Bioinformatic platforms: genes2mind, http://genes2mind.

org; cREMaG database, http://cremag.org; PDSP Ki data-

base, http://pdsp.med.unc.edu.

Accession codes

Microarray data are available in the NCBI Gene Expres-

sion Omnibus (GEO) under accession numbers GEO:

GSE15774, GSE48951 and GSE48954.

Additional files

Additional file 1: A table listing the results of the two-way ANOVA

for drug treatment factor (followed by Bonferroni or FDR

corrections for multiple tests). For drug-regulated transcripts

genes2mind scores and gene network associations are provided. The

second sheet contains lists of the genes from the three major gene

expression networks α, β and γ.

Additional file 2: ANOVA results of gene expression profiling of

drug effects in mouse striatum. A figure presenting the relationship

between the number of true positive results and the proportion of false

positives for drug factor in ANOVA.

Additional file 3: A table listing the comparison of transcriptional

effects of the tested psychotropic drugs. The table contains the

number of regulated transcripts (genes2mind score >10) at each time-

point of the experiment (obtained using the genes2mind gene selection

module).

Additional file 4: A figure showing a minimal spanning tree of the

whole-transcriptome, based on correlation of gene expression

profiles. Each node represents one transcript (an example branch with 4

transcripts was presented on the right). The internode distance is

proportional to the Spearman correlation of the expression levels of two

transcripts. The top 300 drug-responsive genes are depicted by red color

(defined by genes2mind score using the four time-points).

Additional file 5: A figure showing hierarchical clustering of drug-

induced gene expression alterations in the mouse striatum.

Microarray results are shown as a heat map and include 872 transcripts

with a significance (FDR < 5%) obtained from two-way analysis of

variance of the drug factor. Colored rectangles represent transcript

abundance 1, 2, 4 and 8 h after injection of the drug indicated above.

The intensity of the color is proportional to the standardized values from

each microarray. Drug-responsive gene networks were denoted on the

right.

Additional file 6: A table listing the complete results of the GO

analysis presented in the manuscript. The analyses were performed

on lists of genes that correspond to networks α, β and γ (results are

presented in separate sheets). The analyzed genes are listed in Additional

file 1.

Additional file 7: A table listing the complete results of the

canonical pathways analysis presented in the manuscript. The

analyses were performed on extended (FDR < 5%) lists of genes that

correspond to networks α, β and γ (results are presented in separate

sheets). The analyzed genes are listed in Additional file 1.

Additional file 8: A figure showing examples of canonical biological

pathways regulated by psychotropic drugs. The analyses were

performed on extended (FDR < 5%) lists of genes that correspond to

networks patterns α, β and γ. The pathways were created based on KEGG

database using the Pathways-Express online tool. Drug-responsive genes

were indicated using yellow color.

Additional file 9: The mechanisms of tranylcypromine action

predicted from expression profiles of the transcripts most sensitive

to the analyzed pharmacological mechanisms (for details please

see Methods section).
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PCA: Principal component analysis; SRE: Serum-response element; CRE: cAMP
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