
Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2012, Article ID 135926, 15 pages
doi:10.1155/2012/135926

Research Article

Novel Dynamic Partial Reconfiguration
Implementation of K-Means Clustering on FPGAs:
Comparative Results with GPPs and GPUs

Hanaa M. Hussain,1 Khaled Benkrid,1 Ali Ebrahim,1 Ahmet T. Erdogan,1 and Huseyin Seker2

1 School of Engineering, University of Edinburgh, King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
2 Bio-Health Informatics Research Group, Centre for Computational Intelligence, De Montfort University, Leicester LE1 9BH, UK

Correspondence should be addressed to Hanaa M. Hussain, h.hussain@ed.ac.uk

Received 3 May 2012; Revised 17 September 2012; Accepted 3 October 2012

Academic Editor: René Cumplido

Copyright © 2012 Hanaa M. Hussain et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

K-means clustering has been widely used in processing large datasets in many fields of studies. Advancement in many data
collection techniques has been generating enormous amounts of data, leaving scientists with the challenging task of processing
them. Using General Purpose Processors (GPPs) to process large datasets may take a long time; therefore many acceleration
methods have been proposed in the literature to speed up the processing of such large datasets. In this work, a parameterized
implementation of the K-means clustering algorithm in Field Programmable Gate Array (FPGA) is presented and compared
with previous FPGA implementation as well as recent implementations on Graphics Processing Units (GPUs) and GPPs. The
proposed FPGA has higher performance in terms of speedup over previous GPP and GPU implementations (two orders and one
order of magnitude, resp.). In addition, the FPGA implementation is more energy efficient than GPP and GPU (615x and 31x,
resp.). Furthermore, three novel implementations of the K-means clustering based on dynamic partial reconfiguration (DPR) are
presented offering high degree of flexibility to dynamically reconfigure the FPGA. The DPR implementations achieved speedups
in reconfiguration time between 4x to 15x.

1. Introduction

Current technologies in many fields of studies have been
utilizing advanced data collection techniques which output
enormous amount of data. Such data may not be useful in
their collected form unless they are computationally pro-
cessed to extract meaningful results. Current computational
power of General Purpose Processors (GPPs) has not been
able to keep up with the pace at which data are growing [1].
Therefore, researchers have been searching for methods to
accelerate data analysis to overcome the limitation of GPPs,
one of which is the use of hardware in the form of Field
Programmable Gate Arrays (FPGAs).

K-means clustering is one of the widely used data
mining techniques to analyze large datasets and extract useful
information from them. Previously, we have implemented
the K-means clustering on FPGA to target Microarray gene

expression profiles and reported encouraging speedups over
GPPs [2]. However, the implementation was limited to
single dimension and eight clusters only. An extended work
on FPGA implementation of the K-means algorithm is
presented in this work which includes a highly parameter-
ized architecture, a novel single, and a multicore dynamic
partial reconfiguration of the K-means algorithm. Although
the proposed design is meant to target Microarray gene
expression profiles, it can be adopted for use in other
applications such as image segmentation. In this work
we also compare our parameterized implementation with
other FPGA implementation of the K-means algorithms.
Furthermore, we will compare the performance of our
design with one that has been recently implemented on
Graphics Processing Units (GPUs), a technology that has
been gathering a lot of interest in the computing community
because of its high performance and relatively low cost.

2 International Journal of Reconfigurable Computing

The remainder of this paper is organized as follows. In
Section 2 an overview about the K-means clustering algo-
rithm is given. In Section 3, related works on K-means clus-
tering acceleration are summarized which include both
FPGA and GPU methods. In Section 4 the hardware imple-
mentation of the parameterized K-means clustering is pre-
sented. Then in Section 5 three novel implementations of
the K-means clustering based on dynamic partial reconfig-
uration are given: the first is based on reconfiguring the
distance kernel within the algorithm with different distance
metrics, the second is based on reconfiguring the K-means
core using Internal Configuration Access Port (ICAP), and
the last one is based on reconfiguring multiple K-means cores
also using ICAP. In Section 6 implementations results are
presented and analyzed. Finally, in Section 7 summary of
findings, discussion and conclusion are presented along with
some remarks on future work.

2. K-Means Clustering

K-means clustering is one of the unsupervised data mining
techniques used in processing large datasets by grouping
objects into smaller partitions called clusters, where objects
in one cluster are believed to share some degree of similarity.
Clustering methods help scientists in many fields of studies
in extracting relevant information from large datasets. To
arrange the data into partitions, at first one needs to
determine the number of clusters beforehand and initialize
centers for each cluster from the dataset. There are several
ways for doing this initialization, one way is by randomly
assigning all points in the overall dataset to one of these
clusters, then calculate the mean of each cluster and use
the results as the new centers. Another way is to randomly
select cluster centers from the whole dataset. The distance
between each point in the dataset and every cluster center
is then calculated using a distance metric (e.g., Euclidean,
Manhattan). Then, for every data point, the minimum
distance to all cluster’s centers is determined and the point
gets assigned to the closest cluster. This step is called cluster
assignment and is repeated until all of the data points have
been assigned to one of the clusters. Finally, the mean of each
cluster is calculated based on the accumulated points and
the number of points in that cluster. Those means become
the new cluster’s centers, and the process iterates for a fixed
number of times, or until points in each cluster stop moving
across to different clusters; Figure 1 illustrates the steps of the
K-means algorithm.

The Euclidean metric given in (1) is widely used with K-
means clustering and one that results in better solutions [3]:

D(P,C) =

√

√

√

√

√

M
∑

i

(Pi − Ci)
2, (1)

where P is the data point, C is the cluster center, and M is
the number of features or dimensions. On the other hand,
Euclidean distance consumes a lot of logic resources when
implemented in hardware due to the multiplication oper-
ation used for obtaining the square operation. Therefore,

Initialize cluster centroids

Find minimum distance

Assign point to closest cluster

Compute new cluster centroids

Exit

No

Yes

Yes

No

Compute distances to each cluster

Is converged?

Last data vector?

Figure 1: The K-means algorithm.

previous groups working on hardware implementation of
the K-means clustering for image segmentation have used
the Manhattan distance shown in (2) as an alternative to the
Euclidean distance:

D(P,C) =
M
∑

i

|Pi − Ci|, (2)

where P is again the data point, C is the cluster center,
and M is the number of features. Their results showed that
it performed twice as fast as that obtained by Euclidean
distance [3–9].

Distance computation is the most computationally de-
manding part and where most of the K-means processing
time occurs. Therefore, accelerating K-means algorithm can
be achieved by mainly accelerating the distance computation
part, which is achieved using hardware.

3. Related Works on the Acceleration of
K-Means Clustering

K-means has already been implemented in hardware by sev-
eral groups; most were to target applications in hyperspectral
imaging, or image segmentation. The following review will
cover some of the work done on K-means clustering accel-
eration using FPGA and GPUs.

International Journal of Reconfigurable Computing 3

3.1. K-Means Clustering Acceleration on FPGAs. In 2000,
Lavenier implemented systolic array architecture for K-
means clustering [6]. He moved the distance calculation part
to FPGA while keeping the rest of the K-means tasks on
GPP. The distance computation involved streaming the input
through an array of Manhattan distance calculation units
of numbers equal to the number of clusters and obtaining
the cluster index at the end of the array. The disadvantage
of this approach was the communication overhead between
the host and the FPGA. Lavenier tested his design on several
processing boards, and one of the relevant speedups obtained
compared to GPP was 15x [6, 7]. In addition, he found that
the speedup of the systolic array was the function of the
number of clusters and transfer rated between the host and
the FPGA.

Between 2000 and 2003, Leeser et al. reported several
works related to K-means implementation on FPGA, based
on a software/hardware codesign approach [3–5]. Their
design was partitioned between FPGA hardware and a host
microprocessor, where distance calculation and data accu-
mulation were done in hardware in purely fixed point while
new means were calculated in the host to avoid consuming
large hardware resources. They achieved a speedup of 50x
over pure GPP implementation. Their design benefited from
two things: the first was using Manhattan distance metric
instead of the commonly used Euclidean metric to reduce the
amount of hardware resources needed, and the second was
truncating the bit width of the input data without sacrificing
accuracy [8].

In 2003, Bhaskaran [9] implemented a parameterized
design of the K-means algorithm on FPGA where all the K-
means tasks were done in hardware, except the initialization
of cluster centers which was done on a host. This design
implemented the division operation within FPGA hardware
to obtain the new means, using dividers from Xilinx Core
Generator. However, this design was tested only on three
clusters and achieved a speedup of 500x over Matlab
implementation including I/O overhead [9].

3.2. K-Means Clustering Acceleration on GPUs. Several im-
plementations of K-means clustering using Graphics Pro-
cessing Units (GPUs) have been reported in the literature. In
2008, Fairvar implemented K-means on GPU and achieved
speedup of 13.57x. (The GPU implementation took 0.724 s
compared to 9.830 s on GPP) when clustering 1 million
points into 4000 clusters using Nvidia’s GeForce 8600 GT
and a 2-GHz GPP host [10]. Another group [11] presented
good results when implementing K-means using two types
of GPUs. The speedups they achieved when clustering 200 K
to 1 M on the Nvidia’s GeForce 5900 were between 4x to 12x
more than a Pentium 4, 1.5 GHz CPU, and up to 30x when
using Nvidia’s GeForce 8500 and Pentium 4, 3 GHz CPU.
They also found that GPU performance was less affected
by the size of the dataset as compared to GPPs. Another
result reported by this group was related to the effect of the
number of clusters on speedup, where achieved speedups
were between 10x and 20x for clusters less than 20 using the
Nvidia’s GeForce 5900 GPU and more than 50x when there

Data

queuing

Accumulation

kernel

C
o

n
tr

o
ll

er

Distance

kernel

Minimum distance

finder kernel

Sequential divider

kernel

Final results

Figure 2: The main blocks of the K-means hardware design.

were more than 20 clusters. For 32 clusters, they reported a
speedup of 130x on the Nvidia’s GeForce 8500 GPU.

In 2010, Karch reported a GPU implementation of K-
means clustering for accelerating color image segmentation
in RGB space [12]. We compared the results published in
[12] with our FPGA implementation and shall present this
comparison in the results section. Furthermore, Choudhary
et al. reported another GPU implementation using Nvidia’s
GeForce 8800 GT, which achieved speedups between 9x and
40x for datasets ranging from 10,000 to one million points
when they were clustered into 20 partitions [13]. The group
also reported that speedups of GPUs over GPPs increase as
datasets grow largely in depth. From the above studies, it can
be stated that GPUs outperform GPPs when datasets are large
or when the number of clusters is large.

4. FPGA Hardware Design of
the K-Means Clustering

In this work, a highly parameterized hardware design of
the K-means algorithm is presented, which aims to carry
all K-means tasks in hardware. The architecture of the
whole design consists of a number of blocks which execute
kernels within the K-means algorithm. The design generates
the required hardware resources and logics based on the
parameters entered by the user at compile time. These
parameters are the wordlength of the input (B), number of
clusters (C), number of data points (N), and dimensions
of the input data (M). The design was captured in Verilog
HDL language. Figure 2 summarizes the main kernels of the
K-means clustering, which will be used to form a modular
architecture. The design intends to perform all the K-means
steps within the FPGA, including the division operation, and
avoids directing any task to an offchip resource although this
capability can be exploited when needed. In the following
sections an overview about each block will be presented
along with the timing of each block.

4 International Journal of Reconfigurable Computing

4.1. Distance Kernel Block. This block receives streaming in-
put data stored in onchip Block RAMs or from an off-
chip memory, along with the initialized or updated cluster’s
centers, and computes the distances between each data
point and all clusters simultaneously. The hardware resources
inferred by the synthesis tool to generate multiple distance
processors (DPs) are based on the number of clusters and the
number of dimensions of the dataset. Each DP is responsible
for the computation of the distance between all the input
dimensions and one of the cluster centers. Thus one DP
is required for each cluster. The DPs work simultaneously
such that the distances between every point to all clusters
are computed in a few clock cycles, hence fully exploiting the
parallelism associated with the distance calculation kernel. In
this work, both the Euclidean and the Manhattan distance
metrics were implemented; however, the Manhattan distance
is chosen often times to simplify the computation and save
logic resources; thus, the reported results are based on the
Manhattan distance implementation. The datapath of this
block depends on the number of dimensions (M) in the
dataset as given by

datapath of distance kernel = ceil
[

log2(M)
]

, (3)

which corresponds to the stages needed to compute the
distances between all the dimensions of the input and the
clusters’ centroids. Accordingly, the computation time for a
single pass through the whole dataset is a function of the
number of data points (N) in the set and the datapath, as
shown in

distance computation time = ceil
[

log2(M)
]

+ N. (4)

This kernel has a throughput of 1 data point per clock cycle
and a latency of ceil[log2(M)] clock cycles, which is the same
as the datapath of the distance kernel, this latency is one clock
cycle only for the case of single dimension. Since there are C
DPs working simultaneously, the total outputs of this block
are C distances, each corresponding to the sum of distances
between all the dimensions of one point vector and one
cluster center resulting from a single DP.

4.2. Minimum Distance Finder Kernel Block. This block has
the role of comparing the C distances received from the
previous block to determine the minimum distance and the
associated index which correspond to the ID of the closest
cluster to the data point. The block consists mainly of a
comparator tree as shown in Figure 3, which has number of
stages dependent on the number of clusters (C) as given by

datapath of min. dist. finder kernel = ceil
[

log2(C)
]

. (5)

This block is pipelined to have throughput of one result per
clock cycle, with latency equivalent to (5). The combined
execution time of the above two blocks consisting of the
distance computation and the minimum distance finder can
be summarized in (6):

min. distance computation time

= ceil
[

log2(M)
]

+ ceil
[

log2(C)
]

+ N.
(6)

4.3. Accumulation Kernel Block. This block is responsible
for accumulating the data points in the accumulator cor-
responding to a specific cluster index and incrementing
the corresponding counter, keeping track of the number of
points in each cluster along with the values of these points.
The block receives the data point under processing along
with the index of the cluster having the minimum distance,
which was obtained from the previous block, and performs
the accumulation and counting accordingly. The number of
accumulators inferred by the HDL code is as shown in (7):

accumulator numbers = C ×M, (7)

such that each cluster has M number of accumulators
associated with it. As for the inferred number of counters,
it is equal to the number of clusters only, so that each cluster
has a counter associated with it. Since a fixed point arithmetic
is used in this work, extra care was taken in choosing the
appropriate wordlength (B) for the distance, accumulator,
and counter results to minimize hardware resources and
avoid data overflow. The latter is achieved through error and
range analysis of data in all blocks. Based on the B of the
input selected initially to represent the data and the number
of points in the dataset to be processed, the accumulator and
counter B’s were calculated as follows, respectively:

BAccumulator = log2

[(

Max. range of BInput

)

×N
]

, (8)

counter size = log2[N]. (9)

In the case of Microarray datasets for instance, data usually
do not exceed 25,000 points for Human. Hence, 15 bits are
found to be sufficient for each counter and 32 bits for each
accumulator given that the input point is represented by 13
bits. In general, a program was written in Matlab to automate
the range and error analysis to make the process of selecting
the best wordlengths easy and efficient.

4.4. Sequential Divider Kernel Block. The divider kernel block
is responsible for receiving results from the accumulation
kernel and calculating the new cluster centers. The divider
itself was generated using Xilinx Core Generator tool, which
was found to be faster due to high pipelining when compared
to other dividers. In the case of Microarray data, for instance,
the generated divider uses 32 bits for the dividend and 15 bits
for the divisor. These values were chosen based on the results
of the accumulator/counter blocks as the role of the divider
is to divide each accumulator result over the corresponding
counter to obtain the new cluster centers. Once signaled to
start, this block starts scheduling the data received to be
serviced by the divider core serially as illustrated in Figure 4.
The number of divisions that needs to be performed is
the same as the number of clusters specified in the design
parameters. After all the divisions are completed, results are
packed to the output port of the divider block. The number
of clock cycles taken by the divider to complete its work is a

International Journal of Reconfigurable Computing 5

Min.
distance

DP

DP

DP

DP

DP

DP

DP

DP

Initial centroidsGene expression
profile vectors Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5

Cluster 6

Cluster 7

Cluster 8

Comp 1

Comp 2

Comp 3

Comp 4

Comp 5

Comp 6

Comp 7

In1

In2

In3

In4

In5

In6

In7

Indepth

·

·

·

·

Figure 3: Block diagram of the minimum distance finder.

Accumulator
1

Accumulator
2

Accumulator
3

Accumulator
4

Accumulator
5

Accumulator
6

Accumulator
7

Accumulator
8

Divider

core

N
ew

ce
n

tr
o

id
s

Address
selector

Centroid 1

Centroid 2

Centroid 3

Centroid 4

Centroid 5

Centroid 6

Centroid 7

Centroid 8

Fraction X

Quotient X

Counter X
16 × 2

multiplexer

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Counter 6

Counter 7

Counter 8

C1

C2

C3

C4

C5

C6

C7

C8

Accum. X

Figure 4: Sequential Divider Pipeline.

6 International Journal of Reconfigurable Computing

function of the divider latency and the number of clusters (C)
as well as the number of dimensions (M) as shown in (10):

divider time =
(

core latency
)

+ (C ×M), (10)

where the core latency was 84 clock cycles based on the
selected sizes of the dividend and divisor; however the
remaining part will be subject to change as per the initial
parameters entered by the user for C and M.

The choice of using the pipelined divider from the
core generator as opposed to a serial divider is that when
comparing the performance of both in terms of area and
timing, the serial divider was found to process one bit of
the information at a time; thus, for a 32 bit dividend and
8 clusters the number of clock cycles needed was 256 as
compared to 92 for the pipelined divider, based on single
dimensional data only. This timing difference amplifies when
the dimensions increase; for example, using 10 dimensions
and 8 clusters causes the serial divider to take 2560 clock
cycles while the pipelined divider takes only 164 clock cycles.
On the other hand, the number of slices consumed by the
serial divider is a lot less than the pipelined divider, where
the latter consumed 1389 slices compared to 91 slices for
the serial divider, when using Xilinx Virtex 4 FPGA. Since
one of the project’s aims was to accelerate the K-means
algorithm, the pipelined divider was favored. However,
other implementations based on multiple serial dividers are
possible when FPGAs area is limited.

5. Novel Dynamic Partial Reconfiguration
of the K-Means Clustering

The dynamic partial reconfiguration capability (DPR) of
modern Xilinx FPGAs allows for better exploitation of FPGA
resources over time and space. DPR allows for changing the
device’s configuration (i.e., functionality) partially and on
the fly, leading to the possibility of fully autonomous FPGA-
based systems. Therefore, DPR allows for the alteration of
specific parts of the FPGA dynamically without affecting
the configuration of other tasks placed onto the FPGA.
This capability offers wider spectrum of applications for
the K-means clustering serving different purposes which
are explored here for the first time. For instance, DPR is
useful in cases where users want to have the option to
select specific distance metric when performing the K-means
clustering or want to look at clustering results performed
with different distance metrics since the choice of the
distance metric affects the clustering performance. Another
useful application of DPR with K-means is to use it for the
implementation of server solution, where multiple K-means
cores are configured on demand to work on different data
as required by multiple users. A server solution is defined
here as an application which allows a large FPGA to cater
for the requirements of multiple users in a network whereby
each user owns specific K-means core receiving streaming
data and set with different parameters, for example, number
of clusters. However, introducing changes to any of the K-
means cores allocated onto the chip by a single user requires
interrupting the operation of other K-means cores to

Static region

Distance

block

(RP)

Manhattan

Euclidean

RM

Figure 5: Illustrative diagram of the DPR implementation of the
K-means core based on a reconfigurable distance kernel.

reconfigure the FPGA. As such, the use of DPR to reconfigure
specific K-means core within a multicore server solution
system is investigated here to overcome the limitation of
having to reconfigure the full chip and discover other advan-
tages of DPR such as effect of the DPR on reconfiguration
time. In addition, the multicore application of the K-means
clustering can also be used in ensemble clustering. The latter
is based on combing the results of repeated clustering using
the same distance metric or alternative distances. Combing
clustering results from repeated runs was found to improve
the clustering accuracy when performed in GPP according
to the work reported in [14]. However, running K-means
several times is time consuming when done in GPP especially
for large datasets. Consequently, implementing ensemble
clustering on FPGA using multicore DPR approach will
benefit from fast execution. In the following subsections,
three different implementations of the K-means clustering
algorithm based on DPR are presented.

5.1. DPR Based on Reconfigurable Distance Kernel. To provide
a solution to a user who wants to alter the distance metric
kernel only without changing other blocks in the design or
interrupting other running tasks on the FPGA, a DPR imple-
mentation of the K-means clustering based on setting the
distance kernel as reconfigurable partition (RP) is proposed
in this work. The RP can be configured with one of two
possible Reconfigurable Modules (RMs), which correspond
to the variations of the logic within the RP region. The
two RMs correspond to the logic resources required to
implement the distance kernel with either the Manhattan
distance or the Euclidian as illustrated in Figure 5. More RMs
could be created corresponding to other distance metrics
such as the Hamming, Cosine, Canberra, Pearson, or Rank
correlation coefficients; however, only the Manhattan and
Euclidean distances are considered in this work due to their
popularity with K-means clustering and to demonstrate a
proof of concept.

The logic resources of the two distance metrics imple-
mented in this work were found to be comparable in terms
of the number of CLB slices and LUTs when synthesized,
with the exception that the Euclidean metric required DSP48
blocks to implement the multiplication operation, which

International Journal of Reconfigurable Computing 7

were not required for the Manhattan distance. However,
this additional requirement was possible to cater for in
this implementation and is not expected to impose serious
shortage in resources as most modern FPGAs nowadays
come with heterogeneous hardware resources that usually
include DSP blocks. Furthermore, for the case when DSPs
are not abundantly available or not available at all, the
multiplication operation could still be performed using more
of the CLB slices and LUTs, but this will increase the size
of the RP region when compared with the case of using
dedicated DSP blocks. The proposed DPR implementation
is based on the case when the multiplication operation of the
Euclidean distance metric is performed with DSP48 blocks.

To estimate the area requirement for the proposed DPR
implementation, a non-DPR implementation based on using
eight clusters, 13 bits wordlength (B), 2905 points (N), and
single dimension (M) was first run using the two distance
metrics. The place and route results showed that the CLB
slices utilized for the Manhattan distance block were 277 as
compared to 246 for the Euclidean distance both occupying
only 4% of the total Xilinx XC4VFX12 floor area, with the
Euclidean distance requiring eight DSP48 blocks only. The
location of the RP region may be different depending on the
FPGA used as different FPGAs have different number of DSP
blocks and arrangements; consequently, one must make sure
that enough of those blocks are included inside the RP region
in order for the implementation to be successful. The above
analysis of the area requirement for each of the two distances
was necessary to evaluate the candidacy of this application
for DPR implementation. In the case of the two areas being
completely different, the DPR implementation would not
have been feasible due to the significant loss of CLB slices
within the RP regions causing the cost of the implementation
to be considerable. In addition, if the RP is made so big,
the partial reconfiguration time would be close to the full
configuration losing the advantage of time saving when using
DPR.

5.2. DPR Implementation Based on Reconfigurable Single K-
Means Core Using ICAP. In this implementation, the K-
means clustering core presented in Section 4 was modified to
decrease the size of the core for simplicity; the modification
was based on removing the divider since it was the kernel
occupying the largest area while needed for short time
during the clustering. This step is not expected to affect the
remaining kernels, and future implementations would utilize
larger FPGAs that can accommodate the complete core
including the divider, or to perform the division operation
using embedded processors. In the mean time, the new K-
means implementation which excludes the divider is used
and referred to as the K-means core.

This implementation is based on setting the aforemen-
tioned K-means core as a reconfigurable partition (RP)
and reconfiguring it internally using Internal Configuration
Access Port (ICAP). The latter has been used to access the
FPGA configuration memory quickly with a bandwidth of
3.2 Gbps. To experimentally perform the DPR, an Internal
Reconfiguration Engine (IRE) has been designed and tested
by a colleague at the SLIg group in Edinburgh University.

Processor

Dual port

BRAM FSM

ICAP

M
em

o
ry

in
te

rf
ac

e

E
xt

er
n

al
 m

em
o

ry

Figure 6: The architectural block diagram of the Internal Reconfig-
uration Engine (IRE) used to dynamically reconfigure the K-means
core.

The block diagram of the IRE system used to dynamically
reconfigure the K-means core is illustrated in Figure 6. The
processor used in the IRE was based on Picoblaze soft-core
processor and an external ZBT SRAM memory module.

Once the ICAP controller is enabled, the IRE starts the
reconfiguration process of the K-means core using the partial
bitstream. The processor passes the address of K-means
partial bitstream in the external memory to the FSM which
controls the ICAP signals and the flow of the partial bit-
stream data to the ICAP through a high speed dual port
BRAM primitive used as a buffer. The main advantage
of using this IRE is the fast reconfiguration time of the
FPGA, which allows the variations of the K-means core to
be implemented dynamically, those variations correspond
to different internal memory contents, different parameters
such as number of clusters or data wordlength. In addition,
the IRE has an advantage of making the K-means core re-
locatable, which allows the system to maintain the operation
of the K-means core when a fault occurs in the original
location of the FPGA fabric hence providing small degree of
fault tolerance; or when other processes need to be added to
the FPGA hence providing a degree of flexibility in allocating
the K-means core with respect to the newly introduced
tasks. The latter is a particularly applicable in server solution
applications.

5.3. DPR Implementation Based on Reconfigurable Multiple K-
Means Cores Using ICAP. Based on the previous implemen-
tation, three K-means’ cores were used to form a multicore
DPR implementation, which can be reconfigured using the
IRE. The IRE is capable of quickly reconfiguring each one
of the cores at a time, and of relocating any of them within
the same FPGA. In addition to the advantages mentioned in

8 International Journal of Reconfigurable Computing

Table 1: Performance results.

GPP (ms) Hardware (ms) Speedup

27.47 0.523 ∼53x

the previous subsection, this implementation is particularly
useful for server solution where cores are configured on
demand upon request from multiple users. This feature
allows the K-means cores allocated onto the FPGA to
remain in operation while another core is being reconfigured
elsewhere on the chip. Furthermore, DPR allows each user
to exercise full control on the configuration of the owned
task; thus, access to full chip reconfiguration can be granted
to system administrator only to avoid frequent interruptions
of operations. In this implementation, three cores were used
only as proof of concept; additional cores could be added
depending on the available resources and the application
requirement.

6. Implementation Results

Each block in the design was implemented and tested
on the Xilinx ML403 platform board, which houses the
XC4VFX12 FPGA chip. The K-means design was captured
in Verilog, simulated, synthesized, placed, and routed using
Xilinx ISE 12.2 tool. Finally, a bitstream file was generated
and downloaded to the board for testing. In the following
subsections, performance results of our design, as well as
comparison with GPP, FPGA, and GPU implementations are
presented. Then results of the three DPR implementations of
the K-means clustering will be presented.

6.1. Comparison with GPP. Implementation results when
clustering a dataset of 2905 points and one dimension
with input wordlength of 13 bits to 8 clusters showed that
the complete design consumed 2985 slices (740 CLBs) and
achieved a maximum clock frequency of 142.8 MHz. When
comparing the runtime of this hardware implementation
with an equivalent GPP implementation based on Matlab
(R2008a) Statistical Toolbox running on 3 GHz Intel Core
Duo E8400 GPP with 3 GB RAM, running Windows XP
Professional operating system, the speedup results obtained
are as shown in Table 1. Note that the Matlab Toolbox was
chosen because it contains an optimized K-means function,
and that it allows for converting data to fixed point easily
before running the clustering using Matlab’s Fixed-point
Toolbox. The GPP time shown in Table 1 is the average time
of 10,000 runs, with the initial clusters’ centroids given as
inputs to the algorithm; thus, the GPP implementation was
made as close as possible to the FPGA implementation to
ensure fair comparison. Note that the GPP implementation
converged at 27 iterations while the hardware at 25.

6.2. Comparison with Other FPGA Implementation. In gen-
eral, it is difficult to compare similar FPGA implementations
because of the use of different FPGA families and chips,
as well as different design parameters. Nonetheless, we
have attempted a comparison here with the closest FPGA

Table 2: Implementation results.

Compare Xilinx XCV1000 [4] Xilinx XC4VFX12

Slices 8884/12288 5107/5549

LUTs 17768 10216

Max. clock frequency 63.07 MHz 100 MHz

Single loop processing
time

0.17 s ∼0.07 s

implementation to ours, namely, the one reported in [4].
Here, we compare our parameterized core design excluding
the divider to make it compatible with the FPGA imple-
mentation reported in [4] which performed the division
operation on a host. Both implementations were based on
data size of 1024 × 1024 with 10 dimensions, 12 bits data,
and 8 clusters. In both cases, data were stored offchip and
streamed on to the FPGA. Comparative results are shown
in Table 2. Obviously, our implementation is faster because
it is based on a more recent FPGA technology, but it is
also more compact using normalized slice/LUT count. More
importantly, it is more flexible as it has a higher degree of
parameterization compared to the implementation reported
in [4].

6.3. Comparison with GPUs. When comparing the perfor-
mance of our FPGA K-means clustering implementation to
a recent GPU implementation presented in [12] for an image
processing application, the FPGA solution was found to
outperform the GPU in terms of speed as shown in Table 3.
The results shown were based on two different datasets,
one was 0.4 Mega Pixel (MPx) in size and the other was
6.0 MPx. Both datasets were processed for 16, 32, and 64
clusters, and both were for a single dimension. The GPP
and GPU results were based on 2.2 GHz Intel Core 2 Duo,
with 4 GB memory and Nvidia GeForces 9600 M GT graphics
card, running Microsoft Windows 7 Professional 64 bits.
On the other hand, the targeted FPGA device was Xilinx
XC4VSX35; the design used 13 bits to represent the dataset
and could run at a maximum clock frequency of 141 MHz.
The Virtex device used in this comparison is not a high end
FPGAs, the latter can achieve higher speeds but we tried to
limit the choice to a reasonable size that can accommodate
the design and be reasonable for comparing with the above
GPU. Both of images were too large to be stored within the
FPGA, therefore, offchip memory was needed to store data
which were streamed onto the FPGA pixel by pixel, and one
data point was read every clock cycle. The processing times
reported in [12] do not include the initialization of cluster’s
centers and the input/output stage, and similarly with the
FPGA times reported in Table 3.

The speedup results of our FPGA implementation over
the GPP and GPU results reported in [12] are shown in
Figure 7. From the FPGA/GPP curve shown in Figure 7(a),
it is clear that there is a linear relationship between the
number of clusters and the attained acceleration. Similar
observation was found when comparing GPU with GPP.
Both observations confirm that FPGA and GPU outperform
GPP as the number of clusters is increased. On the other

International Journal of Reconfigurable Computing 9

Table 3: Execution result of K-means in GPP, FPGA, and GPU, for single dimension data.

Clusters
GPP avg. time per

iteration (sec.) [12]
GPP avg. time for complete

execution (sec.) [12]
GPU avg. time per
iteration (sec.) [12]

GPU avg. time for
complete execution

(sec.) [12]

FPGA per
iteration (sec.)

FPGA complete
execution (sec.)

0.4 MPx

16 0.269 4.314 0.021 0.443 0.0028 0.0392

32 0.516 7.637 0.020 0.421 0.0028 0.042

64 1.004 12.78 0.023 0.508 0.0028 0.0454

6 MPx

16 4.279 67.07 0.256 5.176 0.0425 0.723

32 8.144 110.7 0.247 4.439 0.0425 0.638

64 15.86 208.2 0.270 5.220 0.0425 0.723

0

100

200

300

400

500

600

16 32 64

Number of clusters

S
p

ee
d

u
p

FPGA/GPP-0.4 MPx

FPGA/GPP-6 MPx

(a)

0
2
4
6
8

10
12
14
16
18
20

16 32 64

Number of clusters

FPGA/GPU-0.4 MPx

FPGA/GPU-6 MPx

S
p

ee
d

u
p

(b)

Figure 7: Speedup results of the FPGA implementation of K-means over both: (a) GPP and (b) GPU implementations.

hand, the FPGA/GPU curve shown in Figure 7(b) indicates
that FPGA outperforms GPU in terms of execution time;
this is due to higher exploitation of parallelism in FPGA. On
the other hand, the FPGA/GPU acceleration is not greatly
affected by the number of clusters (up to 64 clusters in
our experiments) as found with GPP. As for the device
utilization, the XC4VSX35 FPGA used in this comparison
has 15,360 slices, which were enough to implement the
logic required to accommodate the number of clusters
shown in Table 3. With the 16 clusters, the implementation
occupied 5,177 slices (33%), and with 32 and 64 clusters,
the implementation occupied 8,055 slices (52%) and 13,859
(98%), respectively.

In addition, the effect of data dimensionality on perfor-
mance of GPP, FPGA, and GPU implementations was inves-
tigated in this work based on GPP and GPU performance
results reported in [15]. In [15], the authors reported the
results of clustering Microarray Yeast expression profiles as
shown in Table 4 where GPU achieved speedup of 7x to
8x over GPP for four and nine dimensions, respectively,
while FPGA achieved 15x to 31x for the same dimensions
based on dataset of 65,500 vectors, as illustrated in Figure 8
for the case of three and four clusters. When comparing
the timing performance of single iteration of the K-means
clustering for GPP, GPU, and FPGA implementations based

on multidimensional data, GPU and FPGA were found
to outperform GPP as shown in Figure 9(a). When the
performance of our FPGA implementation was specifically
compared with the GPU implementation in [15], the FPGA
achieved speedup between 2x to 7x over GPU [16]. Note
that the results reported in Table 4, Figures 8 and 9 are all
based on XC4VSX35 FPGA and Nvidia 8600 GT GPU. In
addition, FPGA outperformed GPU when the dimensions
of data increased (only four and nine dimensions were
studied) as shown in Figure 9(b), which indicates that FPGA
maintained its performance as dimensions were increased
while GPU experienced a drop in performance. The drop
in performance in GPU as the dimensions increased is due
to the way the implementation utilizes resources within the
GPU when computing specific kernels, particularly with
regards to memory bottlenecks associated with GPUs as data
increase in size.

Furthermore, Figure 8 also highlights the performance
of five-core implementation for three and four clusters
with respect to GPU, which was first reported in [2]. The
five-core implementation is clearly superior to the GPUs
for problems requiring small or reasonable number of
clusters and dimensions that can be mapped easily onto
commercially available FPGA devices [16]. This illustrates
the high potentials of FPGA in parallelizing tasks.

10 International Journal of Reconfigurable Computing

0

10

20

30

40

50

60

4 9

Number of dimensions

FPGA/GPU (3 clusters)

5 cores FPGA/GPU (3 clusters)

FPGA/GPP (3 clusters)

FPGA/GPU (4 clusters)

5 cores FPGA/GPU (4 clusters)

FPGA/GPP (4 clusters)

S
p

ee
d

u
p

Figure 8: Effect of data dimensionality on the speedup of the FPGA
implementation of the K-means over GPP and GPU. In addition,
the performance of five-core FPGA implementation reported in [2,
16] is compared with the GPU implementation of [15].

0.02

0.04

0.06

0.08

0.1

0.12

0.14

4 9

Number of dimensions

FPGA

GPU

GPP

0

T
im

e
p

er
 i

te
ra

ti
o

n

(a)

0

0.005

0.01

0.015

0.02

4 9

Number of dimensions

FPGA

GPU

T
im

e
p

er
 i

te
ra

ti
o

n

(b)

Figure 9: Effect of data dimensionality on the timing per iteration
of the K-means clustering for (a) GPP, GPU and FPGA, and (b)
GPU and FPGA only. All are based on four clusters; the GPP and
GPU results are based on [15] whereby FPGA results are based on
[16].

Table 4: Execution result of K-means in GPP, FPGA, GPU, for
multidimension data.

GPP time per
iteration

(sec.) [15]

GPU time
per iteration
(sec.) [15]

FPGA time
per iteration

(sec.)

Dimensions = 4

3 clusters 0.0495 0.00623 0.0019

4 clusters 0.0652 0.00902 0.0042

Dimensions = 9

3 clusters 0.1031 0.0125 0.0019

4 clusters 0.1333 0.01589 0.0042

Table 5: Comparison of power and energy of different K-means
implementations.

Platform
Power
(watt)

Execution time for the 0.4 MPx
image, with 16 clusters (sec.)

Energy
(joule)

GPP 120 4.314 517

GPU 59 0.443 26

FPGA 15 0.056 0.84

6.4. Comparison in Power and Energy Consumption. The
power and energy consumption of the three K-means
implementations were compared and reported in Table 5
based on the 0.4 Mpx image shown in Table 3. Both GPP
and FPGA power figures were actually measured, while the
GPU power was obtained from the Nvidia GeForce 9600 GT
datasheet, reflecting the power rating of the device [17]. The
results in Table 5 are based on using 13 bits to represent
the 0.4 MPx image, 16 clusters and targeting the XC4VFX12
FPGA available on the ML 403 board with the image being
stored in offchip memory. The FPGA is ∼8x more power
efficient than GPP and ∼4x more power efficient than GPU.
Consequently, the FPGA implementation is ∼615x more
energy efficient than the GPP and∼31x more energy efficient
than the GPU as obtained from (11). Note that the FPGA
implementation utilized 4909 slices (89%) of the targeted
device as reported in [16].

In addition, when comparing the power consumption of
the FPGA implementation of the single core K-means shown
in Section 6.1 with the GPP implementation, the FPGA
consumed 15 W only when actually measured as compared
to 90 W in GPP; thus, the FPGA is six times more power
efficient than the GPP while being 53 times faster. This has
resulted in the FPGA implementation being 318 times more
energy efficient than the equivalent GPP implementation as
computed from (11). Note that the GPP power was measured
while running the algorithm in Matlab in a loop, and GPP
power was 70 W when idle

energy efficiency = power efficiency× speedup. (11)

6.5. Comparison in Cost of the K-Means Implementation.
The cost of any computing platform depends on several
factors, that is, purchasing cost, development cost, operating
cost, and perhaps maintenance/upgrading cost. At first,
purchasing any technology is associated with its technical

International Journal of Reconfigurable Computing 11

Table 6: Purchase cost of the three computing platforms
with/without host.

Platform
Purchasing cost
W/O host (£)

Purchasing cost
with host (£)

Normalised cost
with host (£)

GPP 747.55 747.55 1

FPGA 511 1260 1.69

GPU 127 874 1.17

specifications and available resources, for example, logic
resources, peripherals, hardened IP blocks, and external
memory. Computing platforms are offered within a wide
range of device families allowing a user to select the device
having the right combination of resources for the application
in hand. Table 6 reports the cost of the computing platforms
used in the K-means clustering implementations which were
reported in Table 5 based on using the following computing
platforms:

(i) GPP-3.0 GHz Intel Core 2 Due E8400 processor and
3 GB memory;

(ii) GPU-Nvidia GeForce 9600 M GT;

(iii) FPGA-Xilinx ML403 board.

Table 6 reveals that the GPP solution was the most cost
effective in terms of purchasing cost when compared with
FPGA and GPU followed by the GPU solution and last
by the FPGA solution. Although Table 6 implies that GPP
is the most cost effective in terms of purchasing cost,
followed by GPU and last by FPGA, this does not mean
that GPP or GPU is more economic solutions than FPGA
given that performance per dollar and performance per
watt are more realistic measures for the economic viability
of the technology [18]. Although it was not feasible to
measure all factors leading to performance per dollar and
performance per watt, the power and energy consumptions
shown in Table 5 leads to estimate FPGA to have the largest
performance per watt. Consequently, FPGA is the most
economically viable solution.

6.6. DPR Implementation Based on Reconfigurable Distance
Kernel. The DPR implementation was created using Xilinx
PlanAhead 12.2 tool following Xilinx hierarchical methodol-
ogy and partial reconfiguration flow [19, 20], the distance
block was set as RP as explained earlier. The actual DPR
implementation shows that Euclidean distance occupied 238
slices within the RP region as opposed to 208 for the
Manhattan distance; the resources were slightly different
from those obtained using normal flow implementation.

Two main configurations were generated based on the
two RMs and the associated full and partial bitstreams for
each configuration were also generated. The full bitstream
was 582 KB in size while the partial bitstream was 61 KB. In
this work, JTAG cable was used to configure the FPGA, which
has a bandwidth (BW) of 66 Mbps. Therefore, when fully
configuring the FPGA, the configuration time was 70.55 ms
as computed from (12). On the other hand, when the
FPGA was partially reconfigured, the configuration time was

(a) Manhattan (b) Euclidean

Figure 10: The floorplan image of the DPR implementation of the
K-means clustering based on reconfigurable distance metric: (a)
Manhattan, and (b) Euclidean.

7.39 ms. Therefore, DPR offers significant time saving when
needing to change the distance metric only leading to 10x
speedup in configuration time over full device configuration.
Therefore, in addition to being able to reconfigure specific
part of the device without interrupting the operation of other
tasks, DPR offers time saving

configuration time =
size of bitstream

BW of configuration mode
. (12)

Using Internal Configuration Access Port (ICAP) as a
configuration mode will offer larger bandwidth than JTAG,
since ICAP have a bandwidth equivalent to 3.2 Gbps leading
to small configuration time in the range of microseconds
as compared to milliseconds when using JTAG. However,
the speedup ratios between full and partial reconfigurations
remain the same for the two configuration modes. The
validity of such estimation as opposed to actual measurement
will be investigated in the following subsection. Figure 10
illustrates the floorplan of the two implementations high-
lighting the area occupied by the RP. The image also
highlights a disadvantage of the implementation which is
associated with wasting some of the CLB slices within the
RP region due to having to enclose enough DSP48 blocks;
this issue is clearly device specific as the arrangement of
DSP48 blocks affects the size of the RP region. The image
shows that ∼72% of the RP CLB slices are unused in the
Manhattan distance case and ∼69.5% for the case of the
Euclidean distance.

6.7. DPR Implementation Based on Single K-Means Core and
ICAP. The design containing both the K-means core and the
Internal Reconfiguration Engine (IRE) was first synthesized
using Xilinx ISE 12.2 to generate the .ngc file required
for creating the DPR implementation in Xilinx PlanAhead

12 International Journal of Reconfigurable Computing

Internal

Reconfiguration

Engine
K-means

core

Figure 11: The floorplan image of the DPR implementation of
the reconfigurable K-means core based on Internal Reconfiguration
Engine (IRE).

12.2; in addition another .ngc file corresponding to the K-
means core without I/O buffers was created to describe the
Reconfigurable Module (RM), which corresponds to the K-
means core (excluding the divider). Next, PlanAhead was
used to construct the DPR implementation based on Xilinx
ML 403 platform board and on setting the K-means core as a
reconfigurable partition (RP).

The design was implemented, placed, and routed target-
ing Xilinx XC4VFX12 FPGA available in the ML403 board.
The place and route results of the implementation showed
that the K-means core occupied 1,178 CLB slices (∼22%) of
the FPGA floor area while the IRE occupied 955 CLB slices
(∼18%); the design was constrained to work at a 100 MHz
clock speed. The implementation was run and verified, and
bitstreams were created. Figure 11 illustrates the location and
size of the implementation within the FPGA. The partial
bitstream of the K-means core was found to be 140 KB while
the full bitstream was 582 KB.

To test the DPR implementation, the partial bitstream
was written to the ZBT SRAM available on board the ML403;
note that the file was stored initially in a Compact Flash (CF)
card which was also available on board the ML403, and that
Microblaze was used to read the partial bitstream from the
CF and write it to the ZBT SRAM. Second, the FPGA was
fully configured using the full bitstream associated with our
DPR implementation, this has invoked the K-means core
and the IRE. The device by then was running the K-means
clustering and was ready to be partially reconfigured upon
enabling the ICAP controller in the IRE. A counter was used
to measure the configuration time, which corresponds to the
time in which the enable signal was asserted in the ICAP
controller. Upon enabling the IRE, the partial bitstream was
read from the ZBT SRAM and written to the configuration
memory of the FPGA; as soon as the partial reconfiguration
was finished, the IRE deasserted the enable signal, and

time was measured. The measured partial reconfiguration
time was 360 µs, as compared to ∼1455 µs for the full
configuration. This shows that the DPR implementation
of the single core K-means is ∼4x faster than full chip
configuration.

In Section 6.6, the partial configuration time was esti-
mated from (12) based on using JTAG, while the partial
configuration time in this section was actually measured. To
justify the validity of the results obtained in the previous
subsection, the partial configuration time of the K-mean core
presented in this section was obtained using (12) based on
ICAP and checked against actual measurement to see how
significant the overheads are. The partial reconfiguration
time was found to be 350 µs when applying (12), which
is different from the measured time by only 10 µs leading
to same speedup in reconfiguration time (∼4x). This small
difference could be attributed to the time needed to read the
partial bitstream from the ZBT SRAM, time overheads result
from delays in asserting or deasserting the enable signal.
Therefore, estimating the configuration time gives relatively
similar results to actual measurements, and one could rely
on estimated results in predicting the performance of the
implementation. Furthermore, the fact that the performance
of the IRE was very high has led to small overhead times.

The IRE is also capable of relocating the K-means core
to another location in the chip by modifying the partial
bitstream to reflect the new desired location given that the
new location is compatible with the original core in terms
of resources, that is, Block RAMs, CLB slices, and so forth.
However, due to limited resources in the available device,
relocatability could not be tested on the FPGA. On the
other hand, other smaller designs were successfully relocated
within the FPGA using the same IRE to validate its capability
in re-allocating tasks [21].

6.8. DPR Implementation Based on Multiple K-Means Cores
and ICAP. The three-core DPR implementation was imple-
mented with Xilinx XCVLX60 FPGA which has 26,624 CLB
slices; thus, it was able to accommodate the three K-
means’ cores and the IRE as illustrated in Figure 12. The
performance of this implementation was estimated based
on the performance of the single core implementation, due
to the unavailability of a large FPGA to actually test the
implementation. The IRE system allows for one of the three
cores to be partially configured at a time; thus, the partial
reconfiguration time for each K-means core is the same as
that of the single core being 360 µs as compared to 5407.5 µs
for the full configuration. The former was measured in
Section 6.6, while the latter was estimated from (12) based
on a full bitstream of 2,163 KB in size and ICAP bandwidth of
3.2 Gbps. Consequently, DPR is 15x faster in reconfiguration
time than full configuration when one of the K-means’
cores need to be reconfigured. As for the case when the
whole three cores need to be reconfigured, 1080 µs would be
required reducing the reconfiguration speedup of this DPR
implementation to 5x only. This is mainly because the ICAP
has to reconfigure each core sequentially.

An important observation was made regarding the
speedup in reconfiguration time relative to the size of the

International Journal of Reconfigurable Computing 13

K-means
core

Internal

Reconfiguration

Engine

Figure 12: The floorplan image of the DPR implementation of
the three K-means’ cores based on Internal Reconfiguration Engine
(IRE).

FPGA device. It was found that when the FPGA was large,
the full bitstream would normally be large leading to longer
configuration time, while the partial bitstream would be the
same for the single K-means core in both the small and large
FPGAs. Therefore, when the size of the FPGA is large, the
speedup in configuration time is expected to be higher than
that of a small device given that the size of the RP in the
two devices is identical. This is particularly important for
server solution as such an application is usually expected
to utilize large FPGA. For instance, when XC4VFX12 FPGA
was used, the speedup in reconfiguration time was 4x as
compared to 15x for the XCVLX60, both based on the same
PR implementation.

7. Summary and Discussion

The design and implementation of a highly parameterized
FPGA core of K-means clustering were presented in this
paper. This outperformed equivalent GPP and GPU imple-
mentations in terms of speed (two orders and one order of
magnitude, resp.). In addition, the FPGA implementation
was more energy efficient than both GPP (615x) and GPU
(31x). This makes the FPGA implementation highly desirable
although FPGAs still suffer from a relatively higher cost of
purchase and development compared to GPPs and GPUs.
The lack of standard API tools and hardware boards is a big
contributor in this.

In addition, the performance of both FPGA and GPU was
found to be superior to GPP when increasing the number
of clusters. This is mainly attributed to the fact that FPGA
and GPU scale better with the number of clusters, whereas
GPPs do this computation sequentially. On the other hand,
when comparing the timing performance of FPGA and GPU,
the FPGA excelled the GPU’s performance for the particular
devices used in the comparison reported in Table 3. This

is attributed to the higher level of parallelism exploited in
FPGA than in the GPU.

As for the dimensionality effect, when the number of
clusters were increased for different data dimensions, the
speedup of FPGA as compared to GPU was almost constant
as shown in Figure 7(b), which emphasizes the fact stated
earlier that the two technologies scale well as the number of
clusters was increased. However, FPGA outperformed the
GPU implementation when the dimensions (M) of the data
were increased as reported in Table 4; this is attributed to
memory bottlenecks in GPUs when the size of the data is
large.

However, the above findings are device specific and could
not be generalized unless fair comparison is made using
higher end GPUs and FPGAs. Even then, the large variation
in the size of FPGAs within the same family range makes it
difficult to assess the performance of the two technologies,
especially that variations in GPUs within the same family
range are much smaller. Furthermore, other issues arise when
high end devices are used such as the cost of purchasing
the high end device, with FPGAs being more expensive than
GPUs and power consumption issue where GPUs and GPPs
consume more power than FPGAs [18]. Nevertheless, our
comparative study was an attempt to highlight main perfor-
mance bottlenecks such as memory limitations in GPUs, and
issues surrounding the implementation of K-means in GPPs,
GPUs, and FPGAs when number of clusters or data dimen-
sions change, and to provide some guidelines for appropriate
device selection based on the application in hand.

Another aim of the work was to investigate the benefits
from using dynamic partial reconfiguration to set a specific
kernel within the K-means algorithm as reconfigurable
partition (RP) to serve specific applications. When setting
the distance kernel as RP, the reconfiguration time was found
to be 10x faster than reconfiguring the full device. The
purpose of such implementation was to be able to change the
type of the distance metric at run time without interrupting
the operation of tasks in other parts of the FPGA and to
achieve this as quickly as possible. Two distance metrics were
considered in this work to demonstrate the feasibility of the
concept, one was the Manhattan distance and the other was
the Euclidian; however, the concept could be easily expanded
to include a library of distance metrics if the application in
hand requires such variability in distance metrics.

Furthermore, the results of reconfiguring a single K-
means core and three K-means cores using an Internal
Reconfiguration Engine (IRE) were presented; the latter was
based on using ICAP to dynamically reconfigure the FPGA.
The IRE illustrated true dynamic reconfiguration capability
at high performance with negligible overheads. In terms
of reconfiguration speedup, the single core implementation
was four times fast when using small chip and 15 times
fast when large chip was used. As for the three-core
implementation, the speedup in reconfiguration time varies
according to the number of cores to be configured at a
time, for partially reconfiguring single core, two cores, and
three cores the speedups were 15x, ∼8x, and 5x, respectively.
Consequently, it can be stated that multicore DPR has best
performance in terms of configuration time when used to

14 International Journal of Reconfigurable Computing

reconfigure one core at a time due to having short partial
reconfiguration time, and this advantage becomes less or
even lost as more cores get reconfigured simultaneously
leading to the same performance in configuration time as
non-DPR implementation (normal flow).

8. Conclusion and Future Work

A highly adaptive FPGA implementation of K-means clus-
tering has been presented in this work which outperformed
GPP and GPU in terms of speed and energy efficiency as
well as scalability with increased number of clusters and data
dimensions. Furthermore, the FPGA implementation was
the most economically viable solution. Additionally, three
novel DPR implementations of the K-means clustering were
presented which allowed for dynamic partial reconfiguration
of FPGA offering the advantage of reconfiguration flexibility,
short partial reconfiguration time of selective tasks on chip
while ensuring continuous operation of other tasks.

Future work will be centered on improving the division
operation in the K-means clustering with the aim to reduce
sizing and making the divider shared among multi K-means’
cores by harnessing the dynamic partial reconfiguration
capability to time-multiplex the divider. Additionally, con-
siderations will be given to harnessing embedded processors
to implement the division operation in conjunction with
dynamic partial reconfiguration. Furthermore, applying K-
means ensemble clustering in FPGA based on multicore
dynamic partial reconfiguration to target Microarray data
that will be implemented. Moreover, comparison with
optimized multicore processor will be carried out.

Acknowledgments

The authors would like to thank the “Public Authority of
Applied Education and Training” in Kuwait for sponsoring
this study and to also thank “Kuwait Foundation for the
Advancement in Sciences” for its contribution to this study.

References

[1] P. Kumar, B. Ozisikyilmaz, W.-K. Liao, G. Memik, and A.
Choudhary, “High performance data mining using R on
heterogeneous platforms,” in Proceedings of the 25th IEEE
International Parallel and Distributed Processing Symposium,
Workshops and Phd Forum (IPDPSW ’11), pp. 1720–1729,
2011.

[2] H. M. Hussain, K. Benkrid, H. Seker, and A. T. Erdogan,
“FPGA implementation of K-means algorithm for bioin-
formatics application: an accelerated approach to clustering
Microarray data,” in Proceedings of the NASA/ESA Conference
on Adaptive Hardware and Systems (AHS ’11), pp. 248–255,
2011.

[3] M. Estlick, M. Leeser, J. Theiler, and J. J. Szymanski, “Algo-
rithmic transformations in the implementation of K-means
clustering on reconfigurable hardware,” in Proceedings of the
ACM/SIGDA 9th International Sysmposium on Field Program-
mable Gate Arrays (FPGA ’01), pp. 103–110, February 2001.

[4] M. Leeser, P. Belanovic, M. Estlick, M. Gokhale, J. J. Szy-
manski, and J. Theiler, “Applying reconfigurable hardware to

the analysis of multispectral and hyperspectral imagery,” in
Imaging Spectrometry VII, vol. 4480 of Proceedings of SPIE, pp.
100–107, August 2001.

[5] M. D. Estlick, An FPGA implementation of the K-means algo-
rithm for image processing [M.S. thesis], Department of Elec-
trical and Computer Engineering, Northeastern University,
Boston, Mass, USA, 2002.

[6] D. Lavenier, FPGA Implementation of the K-Means Clustering
Algorithm For Hyperspectral Images, Los Alamos National
Laboratory, LAUR, Los Alamos, Ill, USA, 2000.

[7] M. Gokhale, J. Frigo, K. Mccabe, J. Theiler, C. Wolinski, and
D. Lavenier, “Experience with a hybrid processor: K-means
clustering,” Journal of Supercomputing, vol. 26, no. 2, pp. 131–
148, 2003.

[8] J. Theiler, M. Leeser, M. Estlick, and J. J. Szymanski, “Design
issues for hardware implementation of an algorithm for
segmenting hyperspectral imagery,” in Imaging Spectrometry
VI, vol. 4132 of Proceedings of SPIE, pp. 99–106, August 2000.

[9] V. Bhaskaran, Parametrized implementation of K-means clus-
tering on reconfigurable systems [M.S. thesis], Department of
Electrical Engineering, University of Tennessee, Knoxville,
Ten, USA, 2003.

[10] R. Farivar, D. Rebolledo, E. Chan, and R. Campbell, “A
parallel implementation of K-means clustering on GPUs,” in
Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications (PDPTA
’08), pp. 340–345, Las Vegas, Nev, USA, July 2008.

[11] S. A. A. Shalom, M. Dash, and M. Tue, “Efficient K-means
clustering using accelerated graphics processors,” in Proceed-
ings of the 10th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK ’08), vol. 5182 of Lecture
Notes in Computer Science, pp. 166–175, 2008.

[12] G. Karch, GPU based acceleration of selected clustering tech-
niques [M.S. thesis], Department of Electrical and Computer
Engineering and Computer Sciences, Silesian University of
Technology in Gliwice, Silesia, Poland, 2010.

[13] A. Choudhary, D. Honbo, P. Kumar, B. Ozisikyilmaz, S. Misra,
and G. Memik, “Accelerating Data Mining Workloads: current
approaches and future challenges in system architecture
design,” Wiley Interdisciplinary Reviews, vol. 1, pp. 41–54,
2011.

[14] M. C. P. De Souto, S. C. M. Silva, V. G. Bittencourt, and D. S. A.
De Araujo, “Cluster ensemble for gene expression microarray
data,” in Proceedings of the International Joint Conference on
Neural Networks (IJCNN ’05), vol. 1, pp. 487–492, August
2005.

[15] S. A. Shalom, M. Dash, and M. Tue, “GPU-based fast k-
means clustering of gene expression profiles,” in Proceedings
of the 12th Annual International Conference on Research in
Computational Molecular Biology (RECOMB ’08), Singaphore,
2008.

[16] H. Hussain, K. Benkrid, H. Seker, and A. Erdogan, “Highly
parametrized K-means clustering on FPGAs: comparative
results with GPPs and GPUs,” in Proceedings of the Interna-
tional Conference on ReConFigurable Computing and FPGAs
(ReConFig ’11), pp. 475–480, 2011.

[17] Nvidia Corp., GEForce 9600 GT datasheet, 2012, http://www
.nvidia.com/object/product geforce 9600gt us.html.

[18] K. Benkrid, A. Akoglu, C. Ling, Y. Song, X. Tian, and Y. Lue,
“High perfomance biological pairwise sequence alignment:
FPGA vs. GPU vs. CellBE vs. GPP,” International Journal of
Reconfigurable Computing, vol. 2012, Article ID 752910, 15
pages, 2012.

International Journal of Reconfigurable Computing 15

[19] Xilinx Corp., Hierarchical Design Methodology guide, ug748,
v13.3, 2011, http://www.xilinx.com/support/documentation/
sw manuals/xilinx13 1/Hierarchical Design Methodology
Guide.pdf.

[20] Xilinx Corp., Partial Reconfiguration guide, ug702, v12.3,
p. 103, 2010, http://www.xilinx.com/support/documentation/
sw manuals/xilinx12 3/ug702.pdf.

[21] X. Iturbe, K. Benkrid, T. Arslan, C. Hong, and I. Mar-
tinez, “Empty resource compaction algorithms for real-time
hardware tasks placement on partially reconfigurable FPGAs
subject to fault ocurrence,” in Proceedings of the International
Conference on ReConFigurable Computing and FPGAs (ReCon-
Fig ’11), pp. 475–480, November 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

