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ABSTRACT 

In next-generation EUV imaging for foundry N5 dimensions and beyond, inherent pitch- and orientation-dependent 

effects on wafer level will consume a significant part of the lithography budget using the current Ta-based mask. Mask 

absorber optimization can mitigate these so-called mask 3D effects. Thin metal absorbers like Ni and Co have been 

experimentally investigated due to their high EUV absorption, but they pose challenges on the current technology of 

subtractive mask patterning [1]. A simulation study of attenuated EUV phase shift masks has identified through multi-

objective optimization superior imaging solutions for specific use cases and illumination conditions [2]. 

Evaluating novel EUV mask absorbers evolves on two levels, demonstrating (1) improvements from lithographic 

perspective and (2) compatibility with the full mask supply chain including material deposition, absorber patterning, 

scanner environment compatibility and mask lifetime.  

On the lithographic level, we have identified regions based on the material optical properties and their gain in imaging 

performance compared to the reference Ta-based absorber. Within each improvement region we engineered mask 

absorber materials to achieve both the required imaging capabilities, as well as the technical requirements for an EUV 

mask absorber. We discuss the material development of Te-based alloys and Ag-based layered structures, because of 

their high EUV extinction. For the attenuated phase shift materials, we start from a Ru-base material, due to its low 

refractive index, and construct Ru-alloys. 

On the experimental level, we examined our novel mask absorber materials against an initial mask absorber requirement 

list using an experimental test flow. Candidate materials are evaluated on film morphology and stability through thermal, 

hydrogen, EUV loading, and chemical cleaning, for their EUV optical constants by EUV reflectometry, as well as 

preliminary for selective dry etch.  

The careful mask absorber evaluation, combining imaging simulations and experimental material tests, allowed us to 

narrow down to promising combinations for novel EUV mask absorbers.  

 

Keywords: EUV mask absorber, mask 3D effects, absorber characterization, rigorous mask 3D lithography simulation 

1. INTRODUCTION  

Over the recent years the knowledge has grown and spread on mask-induced imaging effects, experimentally observed in 

EUV lithography for N5 dimensions and beyond, with the current EUV mask [1-9]. More precisely, the current Ta-based 

absorber is at its limit for imaging extendibility. Thinning down below 50nm Ta-based absorber thickness will reduce the 

amount of absorbed light, reduce the NILS and increase best focus variation through pitch [10,11]. Although the current 

Ta-based mask has proven benefits from mask technology point, the imaging performance towards next technology 

nodes can benefit from mask optimization. The industry needs to reconsider the EUV mask concept as a mitigation of 

mask-induced imaging effects (by balancing the diffraction for all features and pitches simultaneously).  
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wavelength their phase close to vacuum resulting in reduced telecentricity errors and two bar CD asymmetry through 

focus. The RuRe alloy is put forward as potential attenuated phase shifting material for EUV masks expected to increase 

NILS at reduced dose-to-size with the proper mask-illumination optimization. 

We presented the experimental testing methodology geared to address several essential mask absorber requirements to 

allow for a material down-selection. Our testing flow assesses the durability of the film morphology under different 

thermal, EUV, hydrogen, and cleaning conditions, typical for mask environment. We found that the most interesting 

materials from lithographic perspective pose challenges on traditional mask etching technology. Adapting towards 

etchable materials creates a trade-off in material durability and subtractive patterning. Therefore, we introduced the 

concept of additive patterning for mask absorbers. 

Our next goal is to find solutions – through collaborative efforts – for the absorber patterning challenges of the proposed 

novel mask absorber materials. 
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