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Abstract. Soft materials such as colloidal suspensions, polymer solutions and liquid crystals are

constituted by mesoscopic entities held together by weak forces. Their mechanical moduli are

several orders of magnitude lower than those of atomic solids. The application of small to moderate

stresses to these materials results in the disruption of their microstructures. The resulting flow is

non-Newtonian and is characterized by features such as shear rate-dependent viscosities and non-

zero normal stresses. This article begins with an introduction to some unusual flow properties

displayed by soft matter. Experiments that report a spectrum of novel phenomena exhibited by

these materials, such as turbulent drag reduction, elastic turbulence, the formation of shear bands

and the existence of rheological chaos, flow-induced birefringence and the unusual rheology of soft

glassy materials, are reviewed. The focus then shifts to observations of the liquid-like response of

granular media that have been subjected to external forces. The article concludes with examples of

the patterns that emerge when certain soft materials are vibrated, or when they are displaced with

Newtonian fluids of lower viscosities.
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1. Introduction

1.1 Soft materials

The beginning of the last century saw the development of new synthetic materials such

as polymers and paint that display seemingly odd flow behaviours. The realization that

their responses to external stresses cannot be described by Hooke’s law of elasticity [1]

or Newton’s law of viscosity [2] led Eugene Bingham to coin the term rheology (derived

from the Greek verb ρǫιν meaning ‘to flow’) for the study of their flow and deformation

[3–7]. Shaving foams, shampoo, blood, ink, ketchup and soap solutions are some every-

day examples of non-Hookean and non-Newtonian materials [8,9]. The building blocks

of these materials are supramolecular aggregates. The forces that exist between these
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aggregates (typically, screened Coulomb repulsions, hydrogen bonds and van der Waals

attractions) can be overcome by small or moderate stresses. They are therefore called

soft materials. Besides having a wide range of applications, soft materials such as liquid

crystals, aqueous colloidal suspensions, polymer solutions and granular materials are also

important for fundamental research [10].

French physicist Pierre-Gilles de Gennes, often described as the founding father of soft

matter physics, began his Nobel lecture with the following sentences [11]: “What do we

mean by soft matter? Americans prefer to call it complex fluids. This is a rather ugly

name which tends to discourage the young students. But it does indeed bring in two of the

major features”. de Gennes went on to list complexity and flexibility as these two major

features.

The ‘complexity’ of soft matter arises from the elaborate organization of the

supramolecular building blocks. de Gennes illustrated the ‘flexibility’ of soft matter by

citing the example of the boots that Amerindians of the Amazon basin made to protect

their feet [11]. They extracted latex (a viscous solution of unentangled, long-chain poly-

mers) from Hevea trees, which they applied to their feet. The latex solidified quickly into

something resembling a boot. This liquid–solid transition is brought about by the oxygen

in the atmosphere that reacts with latex to form bridges between the polymeric chains

at specific points. While unconnected polymer chains exhibit viscous flow, the polymer

network that is formed when latex reacts with oxygen is elastic.

There is, however, more to the story of the boots. These boots are rather short-lived as

the oxygen, which initially bound the polymer chains, eventually ends up severing those

very bonds that it helped make. In 1839, Charles Goodyear [12] showed that if latex

is boiled with sulphur (in a process called vulcanization), the rubber that is formed is

extremely strong and resilient [13]. The Amerindians’ boots and the vulcanized rubber

both reveal the enormous flexibility of latex and are excellent examples of how a small

chemical reaction is sufficient to completely alter its flow behaviour.

This article focusses on the flexibility of soft matter. Its aim is to introduce the reader

to the intriguing dynamics of soft matter that are triggered, not by chemical reactions, but

by the application of small or moderate stresses and strains.

1.2 Elasticity, viscosity and viscoelasticity

The behaviour of solids subjected to external forces is described by Hooke’s law: σ = Gγ

[1]. Here, σ is the stress, or the force per unit area, and γ is the shear strain, or the relative

change in length. G is the elastic modulus and is an intrinsic property of the deformed

material. Most metals and ceramics show Hookean behaviour when subjected to low

strains [4]. Liquids such as water and some oils, on the other hand, are described by

Newton’s law of viscosity: σ = ηγ̇ [2] (figure 1a). Here, γ̇ is the rate at which the

applied strain changes. The proportionality constant η, another material constant, is the

viscosity of the liquid and measures its lack of ‘slipperiness’ or its resistance to flow when

an external shear stress is imposed.

Soft materials are neither perfectly elastic nor perfectly viscous. Instead, they exhibit

both elastic and viscous responses and are called ‘viscoelastic materials’ or ‘non-

Newtonian fluids’. Their flow is very sensitive to their structural organization, with

their microstructures being easily altered by external stresses. When a Hookean solid is
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Figure 1. (a) In a Newtonian liquid, the viscosity is independent of the applied shear

rate. Inset: The stress varies linearly with shear rate and the slope of this plot gives

the viscosity η. (b) The viscosity of a 35 wt% aqueous cornstarch suspension changes

dramatically with changes in shear rate [14]. As shear rate is increased, the suspen-

sion viscosity first decreases (shear-thinning) and then increases (shear-thickening).

Finally, shear-banding takes over and the suspension breaks up into coexisting bands

of high and low viscosities. (c) The schematic flow curve of a Bingham plastic is

described by its yield stress σ0 and plastic viscosity μ.

deformed, the extension is instantaneous. In contrast, the stress generated by a deformed

viscoelastic material is a nonlinear function of the history of the deformation gradient.

Viscoelastic materials are therefore also referred to as memory fluids. If a rotating shaft

that is stirring a polymeric liquid is suddenly released, the shaft will return halfway.

However, if the shaft is held stationary for some time before its release, the extent of

reformation is considerably smaller because of the fading memory of the polymeric liq-

uid. Clearly, Hooke’s law and Newton’s law of viscosity are inadequate to describe this

experiment. For a video of this experiment and also of several other demonstrations of

the intriguing flow properties of soft materials, the reader is referred to [15].

1.3 The stress tensor

The stress tensor [16,17] provides a complete description of the stresses within a three-

dimensional object. The scalar component σi j of the stress tensor, representing the

component of the stress in the i direction on a surface whose normal is in the j direction,

is written as

σi j =





σxx σxy σxz

σyx σyy σyz

σzx σzy σzz



 . (1)

A Newtonian liquid at rest supports only a uniform normal stress, its hydrostatic pres-

sure p (σxx = σyy = σzz = −p). When this liquid is sheared, the Newtonian constitutive

relation [2] gives σxy = σyx = ηγ̇ . In viscoelastic materials, σxx �= σyy �= σzz and the

first and second normal stress differences (N1 = σxx − σyy and N2 = σyy − σzz) are

non-zero. For large deformations, the shear stress σxy is a function of the deformation

field. These features give rise to novel and counterintuitive flow phenomena and will be

discussed in the subsequent sections.
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2. The rheology of soft materials

Wilhelm Weber noticed in 1835 that loading a silk thread resulted in an initial instanta-

neous extension that was followed by a more gradual increase in the length of the thread.

When the load was removed, the thread eventually contracted to its original length [18].

Such a time-dependent response is a typical feature of viscoelastic materials and can be

described by a time-dependent modulus G(t) = σxy(t)/γ [4]. This relation holds in

the limit of small strains, which is called the linear viscoelastic regime (LVE). For large

applied strains, the shear modulus also depends on the strain. The resultant ‘nonlinear’

modulus is defined as Gnl(t, γ ) = σxy(t, γ )/γ [4].

Linear viscoelastic flow can be modelled by linear combinations of springs (perfectly

elastic elements) and dashpots (perfectly dissipative elements). The simplest models are

the Kelvin–Voigt [20] and the Maxwell [21] models which comprise one spring and

one dashpot, in parallel and series, respectively. Examples of non-Newtonian flow are

displayed in figures 1b and 1c respectively [4,14,22].

2.1 Dilatancy and shear-thickening

If the viscosity of a material increases with the rate of deformation, it is a dilatant or a

shear-thickening material [4]. The viscosity of a wide range of viscoelastic materials can

be modelled by the relation η = K γ̇ n−1, where γ̇ is the applied shear rate, and n, K are

material constants [4,5]. These materials, called ‘power-law fluids’, are usually shear-

thinning (with n < 1, as in polymer melts). In contrast, some materials, such as concen-

trated suspensions, show regimes of shear-thickening (with n > 1). A good example of a

material that can exhibit both shear-thinning and shear-thickening is a concentrated aque-

ous suspension of cornstarch (a fine, powdery starch, extracted from maize or corn) which

‘jams’ when it is stirred vigorously, but flows when stirred gently ([23,24], figure 1b).

The jamming phenomenon is triggered by the shear-driven crowding of the macro-

molecules, which imposes kinetic constraints on the macromolecular dynamics, thereby

increasing the viscosity of the suspension [25]. When a projectile impacts a cornstarch

suspension, large, positive normal stresses develop, and shear-thickening alone cannot

explain the observed solidification. A recent work shows that when concentrated sus-

pensions of cornastarch are compressed, dynamic jamming fronts that can absorb a large

amount of momentum develop, which results in the growth of solid-like columns in the

suspension [26].

Strain-induced slowing down of the dynamics of jammed aqueous foams and aging

clay suspensions have been reported in [27,28]. Dynamical slowing down leads to shear-

thickening in both these materials and can be attributed to jamming, which results in

the confinement of the foam bubbles and the electrostatically charged clay platelets. A

commonly cited example of dilatancy is the ‘wet sand effect’. When a person walks on

compacted wet sand on a beach, the sand swells (dilates) around his or her feet [29]. The

water trickles down through the pores, leaving dry sand above.

Silly PuttyTM is an easily available shear-thickening material [30]. It is marketed widely

as a toy and is composed of silicone polymers such as polydimethylsiloxane. As illus-

trated in figure 2, Silly PuttyTM can bounce like an elastic solid at short times, but can

spread or flow like a viscous liquid at long times. When pulled slowly, it behaves like a
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Figure 2. The responses of Silly PuttyTM with changing Deborah number De. (a)

At small De, Silly PuttyTM flows due to the action of gravitational stresses. (b) At

intermediate De, it stretches without breaking. (c) At large De, it bounces like a ball

and exhibits solid-like behaviour. This figure is reproduced with permission [19].

liquid and stretches without breaking. For sudden pulls, it snaps like a solid. A useful

dimensionless number to introduce here is the Deborah number De = τ/τflow, where τ is

the characteristic relaxation time of the material and τflow is the time-scale of the externally

imposed flow. When De is large (τflow ≪ τ ), Silly PuttyTM retains the memory of its size

and shape and behaves like an elastic solid. If De is small (τflow ≫ τ ), it flows like a liq-

uid due to its fading memory. While the viscosity of a shear-thickening material increases

with an increase in the rate of shear, the viscosity of a rheopectic material, such as printers

ink or gypsum, increases with time due to the application of a constant shear stress.

2.2 Shear-thinning

In 1923, Schalek and Szevgari showed that aqueous iron oxide gels, when shaken, lique-

fied to exhibit sol-like properties [31,32]. The sample solidified again when the shaking

was stopped. The term ‘thixotropy’, derived from the Greek words ‘thixis’ (to touch)

and ‘trepo’ (to change), describes the reversible behaviour of materials that are solid-

like under normal circumstance, but that flow when sheared or stirred. Their viscosities

depend on the time duration, and not on the rate, of the applied shear. Thixotropic mate-

rials do not attain steady-state flow instaneously when a constant shear stress is applied.

They also typically require some time to return to a steady state after the cessation of

shear. An excellent review on this aspect of non-Newtonian flow can be found in [33].

Paints and adhesives are two common materials that exhibit thixotropic flow.

Shear-thinning or pseudoplasticity refers to the decrease in a material’s viscosity with

increasing rate of shear (figures 1b, 3 [34]). All thixotropic materials are therefore shear-

thinning, although the converse is not necessarily true. When a highly viscous solution

of entangled polymers flows in a pipe, shear forces disentangle the polymer chains. If the

shear forces are high enough, the polymer chains eventually align along the flow direction.

This results in a sharp drop in the viscosity of the sample [4,35]. Melts of the polymer

acrylonitrile butadiene styrene (ABS) show power-law shear-thinning [36]. For low γ̇ ,

the viscosity has a constant magnitude η0 (the zero shear viscosity). For intermediate γ̇ ,

η(γ̇ ) = mγ̇ n−1, where m and n(< 1) are constants. At higher γ̇ , Newtonian behaviour is

sometimes recovered.
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Figure 3. The structure of a thixotropic material can be broken down by external

shears and can reform spontaneously when the shear is withdrawn. (a) When a

very small shear is applied, the network structure of a gel is retained and the sample

responds like an elastic solid. (b) Partial structural breakdown occurs with increase in

shearing resulting in a viscoelastic reponse. (c) When even higher shears are applied,

the structural breakdown is complete and shear-thinning flow is seen. This figure is

adapted from [34].

Aqueous foam, which is constituted by closely-packed polydisperse gas bubbles dis-

persed in a small volume of surfactant solution, can exhibit shear-thinning. Shaving

foam, when sprayed on a surface, retains its shape and behaves like a solid, but can flow

by the stick-slip motion of the bubbles when gently tapped with a finger [37]. Simi-

larly, marmalade on a piece of toast retains its shape when left unperturbed, but flows

easily under the shearing action of a knife. Suspensions, which are mixtures of two sub-

stances, one of which is finely divided and dispersed in the other (for example, colloidal

particles in water), and emulsions which are tiny droplets of one material suspended in

another immiscible material (for example, milk, mayonnaise and paint) exhibit power-law

shear-thinning due to flow-induced microstructural rearrangements [34].

An interesting consequence of shear-thinning is the Kaye effect [38]. When a stream of

shampoo hits a surface, a heap is created at the point of impact. The shampoo shear-thins

as it flows down the heap under gravity. As more shampoo falls on this shear-thinned

layer, it slips and occasionally flies off a dimple in the underlying heap. This results in

secondary lasso-shaped jets of shampoo that hit the primary stream of shampoo before

finally collapsing. This is called the Kaye effect and usually lasts less than a few hundred

milliseconds [22,39,40].

2.3 Yielding and plastic flow

A material exhibits plastic behaviour if it does not flow when a stress lying below a certain

threshold (called the yield stress) is applied. If it flows like a Newtonian liquid when the

yield stress is exceeded, it is called a Bingham plastic [41]. Such a flow can be described

as follows: γ̇ = 0 for σ < σ0 and σ − σ0 = μγ̇ for σ ≥ σ0 (figure 1c). Here, σ0, the

yield stress [4], is a measure of the stress required to break the structure of the sample.

Toothpaste, mayonnaise, tomato ketchup and aqueous foam are examples of materi-

als with non-zero yield stresses. Toothpaste, for instance, cannot flow out of its tube
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spontaneously, but oozes out when the tube is squeezed hard enough that the yield stress

is exceeded. Similarly, tomato ketchup has a non-zero yield stress and flows out of the

bottle only after vigorous tapping. When subjected to stresses that exceed the yielding

value, emulsions flow due to the cooperative motion of the rearranging droplets [42,43].

The extent of the spatial cooperativity can be described in terms of a correlation length

that diverges close to the yielding threshold. The solid–liquid transition in normal emul-

sions is continuous, and the static (solid–liquid) and the dynamic (liquid–solid) yield

stresses are identical. When thixotropic emulsions (composed of clay platelets forming

links between the emulsion droplets) are sheared, the transition from rest (solid) to flow

(liquid) is discontinuous. Localized shear zones (shear bands) exist in the no-flow regime

and flow occurs only above a sample history-dependent shear rate γ̇c [44]. For normal

emulsions, γ̇c → 0.

The viscosity of an ideal yield stress fluid is expected to diverge continuously as the

yield stress is approached. The viscosity of a real yield stress fluid such as a clay sus-

pension, in contrast, diverges abruptly at the yield point [45]. The second observation is

explained in terms of bifurcation in the rheology of the clay suspension. For very low

stresses, the clay sample ages, its viscosity increases with time and the flow soon stops.

For large applied stresses, the sample shear-thins (in a phenomenon called ‘rejuvena-

tion’) and the sample flows like a liquid. Very close to the yielding threshold, the flow is

characterized by the presence of avalanches.

2.4 Non-zero normal stresses and extensional thickening

The non-linearities inherent in the stress–deformation relation of sheared viscoelastic

materials give rise to non-zero normal stress differences. When a viscoelastic material

is subjected to moderately large values of γ̇ , the first and second normal stress differences

are given by N1 = σxx − σyy = −ψ1γ̇
2 and N2 = σyy − σzz = −ψ2γ̇

2. Here, ψ1 and ψ2,

the first and second normal stress coefficients, are positive and negative, respectively [4].

The viscosities of melts of ABS and PS (polystyrene) decrease with increasing rates

of shear deformation, but increase in elongational flow [36]. This phenomenon, called

extensional thickening, arises due to the non-zero value of N1. The corresponding time-

dependent uniaxial extensional viscosity, η+
u (t, γ̇ ) = [σxx (t, γ̇ ) − σyy(t, γ̇ )]/γ̇ , cannot

be inferred from the shear viscosity η. A small change in the composition of polymer

solutions can cause an appreciable change in η+
u and almost no change in η [46,47]. In

the low γ̇ regime, however, Trouton’s law (η+
u = 3η0) works quite well [48].

3. Some novel consequences of non-Newtonian flow

Due to their shear rate-dependent viscosities, the existence of yield stresses and non-zero

normal stresses, soft materials exhibit novel, non-intuitive dynamics, a select few of which

will be highlighted in this section.

3.1 The unusual flow of polymer solutions

If a rotating disk is placed on the surface of a beaker filled with a Newtonian liquid, the

liquid is pushed outward towards the walls of the beaker. It then descends along the walls
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and eventually rises at the centre. When a similar experiment is repeated with a beaker

containing a polymer solution, the currents are in the opposite directions. In another

experiment, a disk rotating at the bottom of a beaker filled with a Newtonian liquid causes

a depression in the liquid level at the surface. A disk rotating at the bottom of a beaker

filled with a polymeric solution, in contrast, causes the solution surface to rise at the

centre [49]. These observations arise due to the positive value of the first normal stress

coefficient ψ1. It is well-known that the surface of a Newtonian liquid flowing down

a tilted trough of semi-circular cross-section is flat, apart from some curvature due to

meniscus effects. A non-Newtonian liquid flowing down the same trough, however, has

a convex surface. This is a consequence of the negative value of its second normal stress

coefficient ψ2 [49].

The remainder of this subsection discusses three examples of the unusual flow of poly-

mer solutions. The reader is refered to [49–51] for detailed discussions of these and

related phenomena.

(a) Weissenberg effect: When a Newtonian liquid is stirred with a rod, the inertial forces

that are generated throw the liquid outward. This causes a depression in the liquid

level near the rod and an elevation at the walls. In contrast,when a polymer solution

is stirred, it climbs the rotating rod. This phenomenon, also referrred to as the rod-

climbing effect [54–56], is illustrated in figure 4a. When the viscoelastic polymer

solution is stirred, a tension develops along the circular lines of flow. This results

in a pressure that is directed towards the centre of the beaker. A finite, positive N1

develops, which drives the polymer solution up the rotating rod.

(b) Barus effect: When a polymer solution is extruded through an orifice, it swells (figure

4b). The swelling can be upto three or four times of the orifice diameter. This phe-

nomenon is also referred to as the Merrington effect, die swell or extrudate swell. As

the sample is squeezed out through the orifice, the stretching of the polymer chains

Figure 4. (a) Weissenberg effect: When an elastic polymer solution kept in a beaker

is stirred, the solution climbs the stirring rod. (b) Barus effect: The polymer solution

swells when squeezed through an orifice. (c) Fano flow: The polymer solution can

be sucked out of a beaker with a syringe that is not in contact with the surface of

the sample. All the experiments are performed with a dyed, 2 wt% polyacrylamide

(PAM) solution [52]. Videos of these experiments have been uploaded as supporting

information [53].

10 Pramana – J. Phys., Vol. 81, No. 1, July 2013



Novel experimentally observed phenomena in soft matter

results in a non-zero value of N1. Immediately after leaving the orifice, the poly-

mer chains relax back to their original globular structures. This gives rise to the

observed swelling. As N1 increases with shear rate γ̇ , extrudate swelling increases

with increasing rate of extrusion [49,51,57,58]. This example demonstrates that the

polymer chains retain memory of their deformation history during the extrusion pro-

cess. Delayed die swell of elongated macromolecules has been reported in worm-like

micellar solutions [59].

(c) Fano flow: This is a common example of extensional thickening [60]. If a nozzle

dipped into a bath containing a Newtonian liquid is raised above the liquid surface, the

liquid column breaks immediately. To siphon out a Newtonian liquid, the nozzle must

be dipped below the surface. Non-Newtonian fluids, in contrast, can be pulled up to a

considerable height above the fluid surface without rupturing the fluid column [4,51].

This phenomenon, also referred to as a ‘ductless’ or a ‘tubeless’ siphon, is illustrated

in figure 4c. When a highly viscoelastic material is sucked out, large normal stresses

that balance the weight of the fluid column develop. This results in Fano flow [61].

3.2 Turbulent drag reduction

In 1948, Toms noticed that if a very minute quantity (ten parts per million by weight)

of the polymer poly(methyl methacrylate) (PMMA) was added to a Newtonian liquid

(monochlorobenzene) flowing through a pipe at high Reynolds numbers, the turbulent

motion of the latter could be suppressed considerably [62]. It is now understood that the

addition of PMMA reduces the pressure drop across the pipe and results in a significant

reduction in skin friction. A reduction in turbulent flow is also observed when the polymer

polyisobutylene (PIB) is dispersed in benzene or cyclohexane, and when PEO or PAM are

dispersed in turbulent water [63]. When the concentration of polymer additives is grad-

ually increased, drag reduction (DR) increases upto a saturation value, before eventually

decreasing [64]. This phenomenon is widely utilized in irrigation networks, sewerage

systems, oil pipelines and for extending the range of fire-fighting equipment. Flexible

polymers of very high molecular weights, typically composed of 104–105 monomeric

units, are the most effective as drag reducing agents [65].

For a closed turbulent flow with zero mean velocity, two types of forcings were used in

[66]: a smooth forcing in which the fluid motion was driven by the viscous boundary lay-

ers, and a rough forcing in which the fluid was stirred with baffles. When a minute quan-

tity of a polymer (30 parts per million by weight) is added, there is a significant reduction

in the turbulent energy dissipation in the smooth forcing experiment. In the rough stirring

experiment, no such reduction is seen. Although the understanding of this phenomenon is

still far from complete, DR is generally believed to originate from boundary layer effects

[66]. It should be noted here that some experiments reported in the literature imply the

existence of very different mechanisms driving DR. For example, another study has shown

that when the polymer is injected at the centre of the pipe, fluid turbulence is reduced even

before the injected polymer reaches the boundary walls [67].

The introduction of a polymer additive results in significant changes in the cascade of

eddies generated in a Newtonian liquid. This alters its dissipation behaviour [68]. DR is

observed when the wall shear stress is larger than a threshold value, as the flow must first
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stretch the polymers out from their initial globular configurations [68]. It has already been

pointed out that while the addition of a small amount of polymer does not change the shear

viscosity of a fluid significantly, its elongational viscosity can increase by many orders

of magnitude [47]. In [69], common salt was added to increase the flexibility of poly-

electrolyte chains (λ-DNA and hydrolysed polyacrilamide). This makes the chains more

resistant to stretching out in elongational flows and increases the elongational viscosity

of the solution. When small amounts of these polyelectrolytes are added to a turbulent

Newtonian fluid, DR increases almost linearly with increase in the solution’s elongational

viscosity. DR also increases with increase in the Reynolds number Re = ρ�Rd/η. Here,

ρ and η are respectively the density and shear viscosity of the fluid, � is the speed of

the rotational motion imposed to generate turbulence, and R and d are the radius of the

inner cylinder and the gap of the Couette geometry, respectively. In [70], NaCl was again

added to tune the persistence lengths of λ-DNA chains in an aqueous solution. These

experiments demonstrate that turbulent energy dissipation reduces with chain flexibility,

and a minimum chain flexibility is essential for DR. In a λ-DNA solution with no added

NaCl, a significant enhancement in drag is observed.

Surfactants present in water during turbulent pipe flow can reduce drag effectively when

they self-assemble into rod-like micelles. The extent of DR is a strong function of the

micellar size, number density and surface charge [71]. For every micellar system inves-

tigated, there exists an absolute temperature Tl , which depends on the hydrophobic chain

length of the surfactant and the concentration of counterions in solution, above which

there is no DR. It is now believed that DR in these systems is facilitated by the formation

of shear-induced structures that increase wall-slip [72,73].

3.3 Elastic turbulence

Fluid turbulence, which occurs when inertial driving forces are much larger than viscous

damping forces [74], is accompanied by an enhancement in drag and in spatial and tem-

poral velocity fluctuations. It was shown in [75,76] that these features can exist even in

the low Reynolds number flow (Re ≈ 1) of highly elastic polymer solutions. In contrast,

the critical Reynolds number for the onset of turbulence in Newtonian liquids, Recrit ≈

105 [77].

Clearly, inertia is negligible in the turbulent flow of polymer solutions. The role of iner-

tia is played by elastic stresses and the flow is described in terms of an elasticity parameter

Wi/Re = τν/L2, where Wi = γ̇ τ is the Weissenberg number, ν is the kinematic viscos-

ity and L is a characteristic length scale. This phenomenon, called elastic turbulence,

occurs at high Wi and low Re and is driven by the nonlinearities that are inherent in the

mechanical response of the polymer solution [75]. Polymer molecules, when stretched by

flow, become unstable and give rise to irregular secondary flows. These secondary flows,

through a feedback mechanism, stretch the polymers even further and fully developed tur-

bulence eventually sets in. Elastic turbulence is characterized by a large increase in flow

resistance and, in sharp contrast to inertial turbulence, increases with increase in solution

viscosity. It was shown in [75] that when polymers are suspended in highly viscous sugar

solutions, turbulence could be generated at even lower Re (≈ 10−3).

When a melt of linear, low-density PE of viscosity η = 5000 Pa·s flows out of a capil-

lary tube above a critical flow rate, extrudate distortions are observed at low Re [78]. The
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minimum flow rate for the onset of these distortions decreases when the melt viscosity is

increased by increasing the chain length of the polymer. Elastic vortices were observed in

the Taylor–Couette flow of highly viscoelastic PIB solutions above a critical Re [79].

For a review on the instabilities observed in viscoelastic flows, the reader is referred

to [80].

A complete understanding of these instabilities is still lacking and experiments need

to be performed in different geometries and with other non-Newtonian materials [76].

Turbulence and tumbling have been observed in liquid crystals [81,82]. Elastic turbulence

and Taylor-like vortices were reported in the Coutte flow of worm-like micellar solutions

undergoing shear banding [83,84], and in the curvilinear flow of polymer solutions [85]. It

was demonstrated that two very viscous liquids flowing in a curved channel can be mixed

very efficiently at low Re if very small quantities of polymers are added to the former

[86]. Elastic turbulence can therefore have very important consequences in the industry.

3.4 Shear bands and rheological chaos in giant worm-like micellar solutions

The previous sections demonstrated how polymer solutions and melts, gel networks and

colloidal suspensions respond to shear and elongational flows. In this section, we turn our

attention to structure–flow correlations in sheared surfactant aggregates.

When surfactants, which are amphiphilic macromolecules consisting of a hydrophilic

(water-loving) ‘head’ and a hydrophobic (water-hating) ‘tail’, are dissolved in water at

certain concentrations and temperatures, they self-assemble to form spherical micelles,

long chain-like supramolecular structures called giant worm-like micelles (GWMs),

lamellar phases, onions etc. [89]. When aqueous solutions of GWMs are subjected to high

shear rates, the worm-like chains disentangle, break and eventually stretch in the direction

of flow [90]. A spontaneous retraction accompanies this stretching which gives rise to a

stress peak in the flow (stress vs. strain) curves of these samples. Such a flow curve was

first proposed in [87] and is shown in figure 5A.

If a shear rate lying in the non-monotonic region of the flow curve is applied, stable

shear flow cannot be sustained. The sample splits up into coexisting bands supporting dif-

ferent shear rates (or viscosities) and different microstructures [90–92]. This phenomenon

is called ‘shear banding’. The critical value of the shear rate at which shear bands form is

typically the inverse of the micellar relaxation time. It can be seen that if a reduced stress

σred, denoted by the short, dashed line in figure 5A, is applied to the sample, homogeneous

flow cannot be sustained and the sample breaks up into bands that support shear rates γ̇1

and γ̇2, respectively. Experimentally, this metastability shows up as a stress plateau in the

flow curve. The existence of shear bands was confirmed experimentally with a velocity

profiling technique using nuclear magnetic resonance (NMR) [93], birefringence mea-

surements, rheology and small angle neutron scattering (SANS) [94,95]. When a constant

shear rate is imposed in the metastable region of the flow curve, the sample splits up into

bands that form layers along the direction of the flow gradient. This is called gradient

banding and has been studied in detail in solutions of GWMs [87,90,96,97]. If a constant

shear stress is applied, the sample breaks up into bands with layer normals in the vorticity

direction. This phenomenon is known as vorticity banding [98]. When salt is added to

the sample, the metastable region of the flow curve develops a non-zero slope α (σ ∼ γ̇ α)

[88,99] due to the enhanced concentration difference between the shear bands [100].
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Figure 5. (A) The theoretical flow curve of a sheared GWM solution is reproduced

with permission from [87]. (B) The flow–concentration coupling in a GWM-salt

sample results in a positive slope in the metastable region of the flow curve and is

shown for an aqueous sample of 2 wt% cetyltrimethylammonium tosylate (CTAT) +

100 mM NaCl by hollow circles. Solid circles represent the flow curve of a 2 wt%

CTAT sample without salt. The inset shows the power-law fit to the metastable region

of the flow curve acquired for the sample containing salt. (C) Temporal stress fluc-

tuations for applied shear rates γ̇ = (a) 23, (b) 25 and (c) 27.5/s are displayed. (d)

The Fourier transform of the time-series data acquired at γ̇ = 23/s shows 2-frequency

quasiperiodicity. The data in (B) and (C) are reproduced with permission from [88].

It was shown in [101] that when an aqueous, semi-dilute solution of GWMs is sheared

at a constant rate that lies in the metastable region of the flow curve, the time-series of the

stress relaxation fluctuates deterministically and is characterized by a finite correlation

dimension and a positive Lyapunov exponent. This phenomenon is called ‘rheological

chaos’. A modified version of the Johnson–Segalman model [102], incorporating terms

accounting for the coupling between the mean micellar length and the shear rate, the

dynamics of the mechanical interfaces and the flow-concentration coupling, was proposed

to model this phenomenon. Subsequent experiments have also demostrated that chaotic

flows can be supported by semi-dilute solutions of giant worm-like micelles [88,101,

103], dilute, shear-thickening solutions of cylindrical micelles [104], lamellar phases of

surfactant solutions [105,106], concentrated colloidal suspensions [107], granular matter

[108,109] and foam [110].

The effect of a strong coupling between flow and concentration on the development

of chaos was investigated in [88]. The flow curve of a salt-free GWM solution (an

aqueous solution of the cationic surfactant, cetyltrimethylammonium tosylate (CTAT))
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shows a stress plateau which is represented by solid circles in figure 5B. The flow curve,

obtained after salt is added to the CTAT solution, is represented by hollow circles in the

same plot. In the experiment with salt, the stress varies strongly with shear rate in the

metastable region (the flow curve plotted in the inset of figure 5B shows a slope α ∼

0.32) [88,100,111]. Stress relaxation data, acquired by imposing fixed shear rates in the

metastable region of the flow curve, are displayed in figure 5C and exhibit rapid temporal

fluctuations. In simultaneous SALS experiments for VV and VH polarizations, the strong

flow–concentration coupling results in characteristic butterfly patterns, stretched along

the direction of flow [88]. Interestingly, the temporal oscillations observed in the inten-

sity data acquired in the VH polarization experiments exhibit the same trends as those

observed for stress fluctuations at the same shear rate. The Fourier analysis of the stress

relaxation data acquired at γ̇ = 23 s−1 and 25 s−1 (panels (a) and (b) of figure 5C) shows

two-frequency quasiperiodicity [112], with further analysis pointing to Type-II intermit-

tency. The stress relaxation data acquired at γ̇ = 27 s−1 (panel (c) in figure 5C) is chaotic

with a positive Lyapunov exponent (λ = 0.14) and an exponential Fourier spectrum. For

a review on recent efforts in the theoretical modelling of the complex dynamics of shear

banded flows, the reader is referred to [91] and the references therein.

3.5 Flow-induced birefringence

Rheo-optic techniques, like the simultaneous SALS imaging and mechanical rheom-

etry experiments of the micellar samples discussed in §3.4, connect the microscopic

structures of these materials with their macroscopic rheology [4]. Most soft materials

have anisotropic chemical structures and therefore anisotropic polarizabilities. When

anisotropic molecules orient in a particular direction (by the imposition of a flow, for

example), the refractive index n is seen to depend on the polarization of light. This is

called birefringence. When a beam of light containing two orthogonal polarizations is

incident on a birefringent material, the birefringence �n is defined as n1 − n2, where n1

and n2 are the two refractive indices of the material measured along two orthogonal axes.

In 1813, Brewster observed birefringence in glasses and gels that were subjected to

flow [113]. The stress-optical relation (SOR), which arises from the sensitive dependence

of the microscopic structure of soft materials on the externally imposed flow, postulates

that birefringence varies linearly and isotropically with the applied stress [114–116].

For a shear flow, the SOR is written as σxy = (1/2C)�n sin(2χ) and σxx − σyy =

(1/C)�n cos(2χ), where σxy and σxx − σyy denote the shear stress and the first normal

stress difference respectively, χ is the extinction angle and C is the stress-optic coeffi-

cient [4]. The validity of the SOR was verified by shearing concentrated solutions of

polyisoprene [117] and polymeric melts of polyethylene (PE) and PS [4,118,119]. FIB

in a thermotropic polymer undergoing the isotropic–nematic transition was studied in

[120]. Above a critical elongational flow rate, an aqueous solution of the polyelectrolyte

poly(acrylamide-co-sodium acrylate) (PAA) with externally added salt shows a nega-

tive birefringence value. PAM solutions, in contrast, show positive birefriengence values

[121]. FIB has been reported in a mixture of lyotropic liquid crystals in the isotropic

phase [122] and in shear banded GWM solutions [94,123]. In dilute aqueous surfactant

solutions with strongly binding counterions, shear-thickening occurs above an induction

time τi, which is essentially the time required to form optically birefringent shear-induced
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structures (SIS) [124,125]. A detailed review of the optical effects generated by flow

can be found in [116].

3.6 Soft glassy rheology

The glass transition in supercooled liquids is characterized by an increase in the sample

viscosity by several orders of magnitude as the temperature is lowered towards the glass

transition temperature Tg [126]. Tg is accepted widely to be the temperature at which

the viscosity of the supercooled liquid is 1013 Poise [127] or its relaxation time is 100 s

[128]. An increase in the volume fraction φ of a colloidal suspension results in a dramatic

enhancement of the sample’s viscosity [129] and is reminiscent of the glass transition phe-

nomenon observed in supercooled liquids. Even though the viscosity increase in colloidal

suspensions is weaker than that in supercooled liquids, increasing the volume fraction of

the former is equivalent to decreasing the temperature of the latter. It was demonstrated

by Marshall and Zukoski that the measured zero shear viscosity η of concentrated sus-

pensions of sterically stabilized silica colloids diverges at φg → 0.638 and obeys the

Doolittle equation for glassy flow: η ∼ C exp[Dφ/(φg − φ)] [130].

The rate at which η (or τ ) approaches Tg defines the fragility of a material [126,131].

Most soft glassy materials (SGMs) show non-Arrhenius dependences of η and τ upon

φ and are called fragile glasses [126,132–134]. SGMS are characterized by spatially

correlated dynamics or ‘dynamic heterogeneity’ which is associated with a breakdown

of the Stokes–Einstein relation between diffusion coefficient and viscosity. Confocal

microscopy experiments have established the presence of spatial regions of increased

cooperativity that grow as the sample approaches the glass transition [135]. This pro-

cess is accompanied by a dramatic slowing down of τ . Similar to supercooled and glassy

materials, temporal relaxations in SGMs are characterized by two-step response functions

[28,136–138]. The short-time dynamics is identified with a ‘beta’ relaxation process and

represents the jostling of a particle trapped in a cage formed by its neighbours. The long-

term dynamics is identified with the ‘alpha’ relaxation process. The alpha dynamics slows

down considerably as the material evolves or ‘ages’ and owes its origin to cooperative

rearrangement events.

Foams, emulsions, concentrated colloidal suspensions and slurries are some examples

of SGMs. All these materials are characterized by structural disorder and metastability

[139] and their rheology displays certain peculiar properties. Their elastic and viscous

moduli, G ′(ω) and G ′′(ω) respectively, show weak power-law dependences on the applied

angular frequency ω. This behaviour, which persists down to the smallest accessible fre-

quencies, violates linear response theory [140,141]. As the glass transition is approached,

both moduli become flatter. Starting from a trap model [142] in which the interactions

are described in terms of a mean-field ‘noise temperature’ x , it is shown in [139] that

G ′ ∼ ωx−1 for 1 < x < 3 and G ′′ ∼ ωx−1 for 1 < x < 2 in the limit of small ω. For

larger x , Boltzmann behaviour is recovered. These features are illustrated in figure 6a. In

this model, steady shear behaviour can be described as follows: for x < 1, a non-zero

yield stress σ0 appears when γ̇ → 0, while for γ̇ ≫ 1, σ − σ0 ∼ γ̇ x−1. Power-law fluid

behaviour (σ ∼ γ̇ x−1) is seen for 1 < x < 2. Newtonian flow is recovered for x > 2.

When a thermotropic liquid crystal 8CB is confined to the pores of an aerosil gel, its mod-

uli show power-law variations with frequency [143]. Increasing the aerosil concentration
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Figure 6. (a) G ′ (solid lines) and G ′′ (dashed lines) for different noise temperatures x

are reproduced with permission from [139]. (b) G ′ (top panel) and G ′′ (bottom panel)

of the thermotropic liquid crystal octylcyanobiphenyl (8CB), confined within the pores

of an aerosil gel of density ρs = 0.10 g/cc, are shown for several temperatures. The

isotropic to nematic transition temperature TNI of 8CB is 313.98 K and the nematic to

smectic transition temperature TNA is 306.97 K. The G ′ curves acquired for 8CB sam-

ples in the smectic phase fit the relation G ′(ω) = Gg + Gs + βsω
α (fits are shown by

solid lines). Gg and Gs are the contributions from the aerosil gel and the 8CB smectic

respectively and α = x − 1. The fit of G ′′(ω) to the SGR prediction after subtraction

of the nematic contribution is shown in the bottom panel of (b). (c) The decrease in

α with increase in aerosil concentration ρs. (b) and (c) are adapted from [143]. (d)

G ′(ω) (squares) and G ′′(ω) (circles), acquired from a 5 wt% montmorillonite clay

(Bentonite) suspension [153], display the features predicted in [154].

decreases the noise temperature of the system. These results are displayed in figures 6b

and 6c. In [144], qualitative agreement of the linear rheology data acquired from aging

clay suspensions with the predictions of SGR was reported.

Amorphous materials are not in thermodynamic equilibrium below Tg [145]. Instead,

these materials exhibit an extremely slow approach to equilibrium through a very gradual

reduction in their free volumes and mobilities. A consequence of this aging behaviour is

a slow evolution of the physical properties of these materials. Struik [146] pointed out
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that aging continues well below Tg. The mechanical properties of the glass are, therefore,

functions of its aging time. Furthermore, it is seen that all polymers age similarly when

small strains are applied. Since mobility is inversely proportional to the relaxation time

of a material, creep and stress relaxation curves shift to lower waiting times as the sample

ages. A simple horizontal shifting along the waiting time axis can be used to superpose all

the curves [146]. The relaxation time increases as a linear function of tw (τ ∼ t
μ
w , where

μ = 1) in a process called ‘simple aging’. Interestingly, the stress relaxation curves of

linear polymer melts, acquired at several temperatures, can be shifted horizontally on a

logarithmic time axis to yield a master curve spanning several decades in time. This is

called time–temperature superposition [147].

SGMs, being inherently out-of-equilibrium, also display aging. An aqueous foam ages

by a combination of three processes: bubble coarsening (which arises from the diffusion

of gas from smaller to larger bubbles), bubble collapse (which leads to a reduction of the

surface energy of the bubbles) and drainage (the settling of water under gravity) [148].

In the coarsening process, the average bubble radius 〈R〉 evolves with waiting time tw
according to the relation: 〈R〉 ∼ t0.5

w [149]. tw is sometimes also referred to as the idle

time of the sample, and is a measure of the time elapsed since sample preparation. When

approximately 1–3% of Laponite clay is stirred in water, the sample evolves gradually

and spontaneously from a liquid-like to a solid-like (soft glassy) consistency [150] due

to the gradual evolution of the electrostatic interactions in the system [151] that causes

random, localized, stress relaxation events in the sample [152]. When aqueous foams

coarsen, strains are induced in the system. If the local yield strain is exceeded, the bub-

bles rearrange with a relaxation time τ . Diffusive wave spectroscopy (DWS) data for

aqueous shaving foams shows τ ∼ t
μ
w , with μ ≈ 1 [156]. Although the aging mechanism

of clay suspensions is very different from that of aqueous foams, τ for an aging clay sus-

pension, estimated using multispeckle dynamic light scattering (MDLS), also follows the

relaxation τ ∼ t
μ
w , with μ ≈ 1 [157]. For smaller waiting times, hyperaging dynamics

(μ > 1) has been observed in aging clay suspensions [158].

At low ionic concentrations, clay suspensions form repulsive Wigner glasses compris-

ing randomly oriented clay discs interacting through screened Coulombic interactions.

Addition of salt to these suspensions screens the interparticle electrostatic repulsion

resulting in the formation of gel networks. Glasses and gels that are subjected to oscil-

latory shears exhibit distinct rheological signatures [154]. At the lowest strains, both G ′

and G ′′ are independent of the applied oscillatory strain amplitude γ . As γ is increased

while keeping ω fixed, G ′′ shows a peak. This is followed by an yielding process that is

characterized by power-law decays of G ′ and G ′′ and G ′′ > G ′ [154]. These features can

be explained using mode coupling theory (MCT) arguments [155]. Representative data

for a typical SGM is displayed in figure 6d.

Metastable soft materials do not obey time translational invariance. The Boltzmann

superposition principle, which states that the strain response of a complex loading is the

sum of the strains due to each load, is not obeyed by these systems [4,5]. Recently, an

effective time approach was proposed in [159] for predicting the rheology of SGMs over

short and long time-scales. Figure 7a shows the creep data for emulsion paint at several

ages, while figure 7b shows superposition of this data when scaled using the effective time

approach. Time–temperature superposition, irreversible aging and idle time–aging time–

salt concentration superposition for aging clay suspensions were also reported [161,162].
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Figure 7. (a) shows creep data for emulsion paint at several idle times. (b) displays

the data collapse using the effective time approach [159,160]. The value of μ is very

close to 1 and was predicted in [146].

These studies are extremely important as they demonstrate that it is, in fact, possible to

successfully predict the slow dynamics of SGMs.

3.7 Granular jets, granular streams and the segregation of vibrated granular mixtures

Granular media are the most ubiquitous examples of complex systems that are inherently

out of equilibrium [163]. Sand, rice grains, glass beads and mustard seeds are some exam-

ples of this class of systems. In his book on grains and powders, Duran [164] defines a

granular medium as a conglomeration of discrete, solid, macroscopic particles that inter-

act through dissipative mechanisms such as static friction and inelastic collisions. As

a result, granular media display unusual features that are unexpected in regular solids,

liquids and gases [165]. Unlike in traditional media, not all contacts in granular media

carry forces. Instead, forces are transmitted through networks of particle contacts called

force chains. As a consequence, the weight of granular materials can be supported by

the walls of the container and the rate of flow of grains through an orifice is independent

of the pressure head [166]. The distribution of contact forces in a granular solid was

investigated in [167] and the network of force chains was directly visualized using elasto-

birefringent disks in [168]. The velocity and position distribution functions of granular

media in the very dilute limit (‘granular gases’) can display Maxwell–Boltzmann statis-

tics [169]. However, unlike in conventional gases, they exhibit clustering and collapse.

The Maxwell’s demon has been demonstrated in [170].

The gravitational potential energy of a grain in a pile is several orders of magnitude

larger than its thermal energy. Granular packings are therefore metastable. The redun-

dancy of thermal energy sets a lower grain size limit of one micron [163]. The dynamics

are driven, not by entropy, but by the imposition of external forces. Granular pack-

ings exhibit a logarithmically slow approach to the steady state upon external forcing

[171]. In contrast to colloidal suspensions, solvent-mediated interactions are not impor-

tant in these systems. The repulsive inter-grain interactions that exist in dry, non-cohesive
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granular media are of substantially shorter range than the interparticle interactions in

charge-stabilized colloidal suspensions.

Granular materials are fragile and cannot support certain incremental loadings without

plastic rearrangements [172]. A heap of sand is stable as long as its slope is less than

the angle of repose. If the angle of repose is exceeded, avalanches of sand, only a few

grain diameters wide, flow down along the surface of the heap. These systems are excel-

lent paradigms of driven dissipative systems and form patterns when excited. There are

numerous demonstrations of the complex dynamical behaviour of granular media in the

literature.

This section discusses three novel phenomena that highlight the liquid-like response of

driven granular media. These are the formation of granular jets when a projectile impacts

a bed of sand, the breakup of a granular stream into droplets and the size segregation that

is seen when granular mixtures are vibrated.

(a) Granular jets: When a projectile hits the surface of a bed of sand, a transient, axisym-

metric crater forms. Grains of sand from the sides move in with radial velocities

vr ∼ 1/r to fill the crater. As the crater closes, a pressure spike is created and a gran-

ular jet shoots out of the bed in the vertically upward direction [173]. Granular jets

are reminiscent of the Worthington jets that form when rain drops fall on puddles in a

light rain [174]. A rain drop falling on the puddle creates a crater. The crater fills up

immediately with water that flows in from the sides and a jet of water shoots up ver-

tically [175]. An important point to note here is that in contrast to rain drops, grains

have no surface tension. Granular jets are narrower than liquid jets with maximum

heights that depend upon the grain size. Viscous, gravitational and inertial forces all

contribute to their formation. A steel ball dropped on a bed of loosely packed fine

sand (grains of size 40 μm packed at a volume fraction of 41%) creates a crown-

shaped granular splash and an impact crater [176]. As seen in [173], the collapse of

the crater is followed by the formation of a vertical jet that emerges from the centre

of the splash. The formation of clusters at the bottom of the jet is attributed to the

inelastic inter-grain collisions. The jet subsequently collapses into a granular heap at

the point of impact. This is followed by a violent granular eruption that completely

erases the granular heap that formed after the collapse of the jet.

The penetration of a ball in a loosely packed bed of sand was studied in [177].

The ball sinks to a depth of many ball diameters in this laboratory version of ‘dry

quicksand’. The penetration depth of the ball scales with its mass and sand jets are

seen to emerge only when the mass of the ball is higher than a threshold value.

The importance of the role of interstitial air in the formation of granular jets was

established by high speed X-ray radiography and digital video imaging in [178,179].

These experiments report the presence of two jets when a projectile hits a bed of

loosely packed sand: a thin, wispy jet whose size does not depend on the air pressure,

and an air pressure-dependent thick jet. The thin jet forms from the gravity-driven

collapse of the crater. The collapse of this jet is accompanied by the trapping of air

bubbles in the sand. These air pockets, compressed by the collapsing grains of sand,

drive the upward propulsion of the thick granular jet. Pressure gradients keep the jet

collimated, giving rise to an ‘effective surface tension’. Figure 8 shows the emer-

gence of granular jets following the impact of a projectile on a sand bed under two
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Figure 8. (a)–(c) Images of the formation of granular jets under atmospheric pressure

conditions (101 kPa). (a) The projectile drop is followed by (b) an initial splash 0.06

s after the projectile impacts. (c) A jet that emerges 0.31 s after impact. (d)–(f) are

captured under reduced pressure conditions (2.7 kPa). (d) shows the projectile drop,

which is followed by (e) a splash whose shape is different from that seen in (b). (f)

The jet that emerges in this experiment is smaller and thinner. The figure is reprinted

from [178] with permission from Macmillan Publishers Ltd.

different air pressure conditions. The complex interplay between interstitial gas, bed

particles and the impacting sphere has been studied in detail in [179,180]. Videos of

granular jets can be viewed at [181] and a review on sand jets can be found in [182].

(b) Granular streams: A thin stream of Newtonian liquid breaks up into droplets. This

phenomenon is called the Rayleigh Plateau instability and owes its origin to molecu-

lar surface tension [183]. A recent high speed imaging experiment of a thin granular

stream emerging from a hopper orifice, peformed in the co-moving frame, confirms

that granular streams can also break up into droplets [184]. It must be noted here that

the liquid-like behaviour of granular media falling under gravity was first reported in

1890 [185].

Glass beads of sizes 107 ± 19 μm are dropped through a nozzle of 4 mm diame-

ter [184]. The granular stream, first stretched by gravity, eventually develops density

inhomogeneities. The stream subsequently breaks up into droplets that are connected

by narrow bridges. These bridges rupture as the clusters continued to separate. The

formation of granular droplets is particularly intriguing as sand is made up of dry,

non-cohesive grains and is not expected to have a surface tension.

The nature of the granular clusters do not change when the air pressure conditions

are changed [186]. Grain–gas interactions are therefore not responsible for droplet

formation. The compactness of the clusters decreases when the grain inelasticity is

increased. This observation rules out dissipation due to the inelastic collisions of

grains as the mechanism driving cluster formation. The intergrain cohesive forces

were controlled by modifying the surface roughness of the grains, the humidity

and by using different materials. Atomic force microscopy (AFM) experiments

show that the formation of granular droplets is driven by extremely weak inter-grain

cohesive forces that arise due to attractive van der Waals interactions and result in

the formation of inter-grain capillary bridges. These cohesive forces give rise to

a force similar to surface tension whose magnitude (∼10−1μN/m) is four to five
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orders of magnitude lower than the surface tension of common liquids. As these

cohesive forces are extremely weak, the droplets stretch under gravity and eventu-

ally rupture. Unlike in liquids, where the breakup of droplets is driven by thermal

fluctuations, granular clustering is driven by collisional cooling. These observations

are presented in figure 9 and are extremely important for understanding ultralow sur-

face tension processes [187].

It should be noted here that ‘granular surface tension’ was also proposed in

[188]. By drawing analogies between the small-scale interface fluctuations of granu-

lar streams flowing under gravity and thermally-induced capillary waves, the authors

estimate a granular surface tension of ∼100 μN/m magnitude.

(c) Granular size segregation: When a bowl of mixed nuts is shaken, the largest nut, the

‘intruder’, always rises to the top. This phenomenon is called the Brazil nut effect

(BNE) or the muesli effect (figure 10a). The segregation of granular mixtures by

shaking is a phenomenon that has been exploited by mankind for centuries. Food-

grains are often separated from chaff by shaking in the wind. It was also noted a long

time ago that when coal was transported in a wagon, the bigger pieces of coal were

more likely to come out on top. In this context, it was reported that the act of shak-

ing a granular bed generates voids that are more easily filled up by the smaller bed

particles. The larger particle therefore rise to the top [189]. In addition to void-filling

mechanisms [190,191], granular size segregation can be driven by granular convec-

tion [192]. The phenomenon is also quite sensitive to the presence of interstitial air

[193].

For a comprehensive review of granular size segregation, the reader is referred to

[196]. When a bed of small beads is vertically shaken at a fixed acceleration, three

Figure 9. (a) A stream of 107 ± 19 μm glass balls dropping through a nozzle of 4 mm

diameter. The granular stream, (b) 20 cm, (c) 55 cm and (d) 97 cm below the nozzle

are shown. The formation of droplets and their breakup are clearly visible in (c) and

(d). The figure is reprinted from [184] with permission from Macmillan Publishers

Ltd.
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distinct regimes are observed for the rise of an intruder [197]. In the first convec-

tive regime, heaping is observed. In this regime, Trise f ∼ e f , where Trise is the time

that the intruder takes to rise to the top of the bed from the bottom (the ‘rise time’)

and f is the frequency of the sinusoidal vibration. For larger f , a second convective

regime, where Trise f ∼ e f 2

, is observed. As f is increased further, there is a third

regime where Trise depends on the size ratio of the intruder and the bed particles. In

this non-convective regime, the upward rise of the intruder is driven by the struc-

tural defects that form due to the presence of the intruder. The rise of a large, heavy

intruder through a bed of small intruders has been explained as a reverse buoyancy

effect in [198]. In this work, the dominant force driving segregation is void-filling. A

large but light intruder, in comparison, exhibits large fluctuations in its motion. This

discourages void-filling and the intruder is seen to sink to the bottom of the container.

Large, heavy intruders, embedded in a bed of smaller particles, can sink to the

bottom of the vibrated container. This is the reverse Brazil nut effect (RBNE) [199].

The masses, densities and inelasticities of the bed and intruder particles, the shape of

the container and the dimensionless acceleration Ŵ (= aω2/g, where a and ω = 2π f

are respectively the amplitude and the angular frequency of the oscillatory vibration

and g is the acceleration due to gravity) are major factors that drive BNE and RBNE

[198,200,201]. Trise of an intruder in a vibrated bed of glass beads is reported to be

non-monotonic with intruder density in [201] under atmospheric pressure conditions.

The non-monotonicity disappears as the pressure is reduced, thereby highlighting the

importance of the role of interstitial air in driving BNE. In a quasi-two-dimensional

experiment, it is seen that Trise ∼ (ρ/ρm)−1/2, where ρ/ρm is the ratio of the densities

of the intruder and the bed particles [202].

The segregation process can be reversed (BNE can change to RBNE) if the walls

of the container are changed from vertical to inclined (for example, from a rectangular

box to a funnel). The roughness of the side walls is also very important. The friction

of the grains with the walls can produce convection rolls that drop down the walls

and rise up the centre. An intruder that is larger than the thin, downward granular

stream can be carried by the convection roll to the top of the container where it stays

trapped, thus producing the BNE [203]. When a binary granular mixture is vibrated

vertically at different a values while keeping f fixed, the small particles accumulate

at the bottom of the container for low values of a (when 1 < Ŵ < 3.5). For larger a

(when Ŵ > 3.5), the small particles rise to the top (RBNE) [200].

For a quasi-two-dimensional bed of small particles vertically vibrated at a small

Ŵ, the rise of the intruder is driven by the successive formation and destruction of

granular arches [204]. For large Ŵ, the rise of the intruder is driven by granular

convection. The transition between these two regimes depends on the size ratio of

the intruder and the bed particles. High speed imaging for a quasi-two-dimensional

geometry shows that convective motion can exist at low Ŵ [205]. In these experi-

ments, the intruder and the bed particles are seen to move up with the same velocity.

The upward movement is facilitated by the existence of slip planes and the block

movements of particles slipping past each other. For small Ŵ and size ratios, the rise

is intermittent, while for large Ŵ and size ratios, the rise is continuous. The effects

of drag forces on granular segregation was investigated by inducing gas flow through

the perforated base of a granular bed [206]. More recently, purely convection-driven
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segregation was uncovered in the rise of a large intruder through a vibrated granular

bed packed with tiny seeds [195]. This work reports that Trise ∼ (v − vc)
−α , where vc

is the minimum shaking velocity required for the onset of bulk convection rolls in the

granular bed and the constant α depends on the aspect ratio of the bed. The scaling

holds for different sizes and densities of the intruders, for different shapes of the small

bed particles and for different side-wall roughnesses. Figure 10b shows that Trise data

for many intruder densities can be scaled with the velocity of shaking v as long as

v > vc. The inset shows the bulk convective rolls that push the intruder to the top of

the bed. The intruder therefore behaves like an approximately massless particle that

tracks the flow of the convecting seeds. The role of particle-scale rearrangements was

investigated in [207]. It is reported in this work that bidisperse granular mixtures in a

three-dimensional geometry segregate under steady, but not under cyclical, shear.

Figure 10. (a) The Brazil nut effect (BNE), reproduced from [194] under a Cre-

ative Commons License. (b) Trise of an intruder through a vertically vibrated bed

of small seeds scales with the bed velocity. The solid line shows a fit to the form

Trise ∼ (v − vc)
α , where vc is the shaking velocity of the bed that is required for the

onset of bulk convective rolls and α = 2. Different symbols denote different angular

frequencies ω and different colours denote intruders of different densities. The inset

shows the convection rolls (the lines with arrows are guides to the eye) that are gener-

ated in the system by vertical vibrations. This image is obtained by overlaying several

consecutive high-speed images of the vibrated granular bed of small seeds. The white

mustard seeds, distributed randomly in a bed of dark mustard seeds, act as tracers. The

figure is reproduced from [195].
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The segregation of granular mixtures subjected to swirling horizontal excitations was

reported in [208]. Increased humidity is not conducive to granular size segregation

[190,202]. The addition of a small amount of liquid to a granular medium results

in the formation of bridges at the granular contacts [209] and completely destroys

BNE [210]. Viscous and capillary forces are very important in the segregation of

wet granular media. When the grains are immersed in a liquid of low viscosity, a

transition back to segregation is observed.

3.8 Pattern formation

Patterns such as arrays, cracks, fractals, spirals and ripples are common in nature and are

characterized by a regularity in form [211,212]. Mathematicians, physicists and biologists

have always taken a keen interest in the emergence of patterns. Joseph Plateau studied

the topology and geometry of soap films using the concept of minimal surfaces [213] and

Alan Turing worked extensively on Fibonacci phyllotaxis, morphogenesis and oscillatory

chemical reactions [214] (such as the Belousov–Zhabotinsky reaction [215,216]). For

a detailed review of the formation of spatiotemporal patterns in hydrodynamic systems

(such as in Taylor–Couette and Rayleigh–Benard flows), parametric-wave instabilities,

excitable biological media etc., the reader is referred to [217].

Granular media, excited by vertical and horizontal vibrations, can exhibit a wealth of

patterns [218]. Bulk convection rolls in vibrated granular media have been demonstrated

in [192]. Convection, heaping and cracking have been observed experimentally in verti-

cally vibrated granular slurries [219]. Surface waves travelling against gravity have been

reported in non-cohesive granular media when the Couette cell containing the grains is

vibrated at large a and Ŵ [220]. Vertically oscillated granular layers in an evacuated con-

tainer show a sequence of patterns. As Ŵ is increased at a fixed f , squares, hexagons,

kinks and ultimately a disordered state are observed [221]. Two-dimensional localized

states or oscillons, which are excitations that are driven by collisions between the highly

dissipative grains of sand, are observed in a vibrating layer of sand [222]. These oscillons,

which can assemble into molecular or crystalline structures, coexist with a pattern-free

state and oscillate at a frequency f /2 between conical peaks and craters. Oscillons of

the same phases repel, while those of different phases attract. They can associate to form

dipoles, chains and lattices. Using a two-dimensional Swift–Hohenberg formalism, it was

shown in [223] that oscillons can develop and interact in any medium that has reflection

and discrete time-translational symmetry, and that can undergo large transition hysteresis

[224,225].

Both oscillons and dissipative solitary states (DSS) have been observed in vertically

vibrated clay suspensions [225]. DSS are seen in highly dissipative fluids and are large-

amplitude, highly localized propagating states with the same periodicity as that of the

driving. Blowing compressed air on the surface of these suspensions, while increasing Ŵ

at a fixed f , produces a hysteretic transition from a featureless to an oscillon state. When

f is increased, the oscillons interact to form complex localized structures like doublets

and triad patterns [225]. An increase in Ŵ results in the formation of stripes. Unlike in

granular media, the oscillons and stripe patterns that develop in vibrated colloidal suspen-

sions exist over the entire range of frequencies explored. A further increase in Ŵ, however,

leads to the destabilization of the stripes and the formation of large finger-like protrusions.
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If Ŵ is now decreased, by decreasing f below a threshold value at which the amplitude of

the oscillon approaches the suspension depth h, DSS is observed. In vibrated cornstarch

suspensions, persistent holes appear at high f when a finite perturbation is applied [226].

When f is increased, the rim of the hole destabilizes to form finger-like protrusions. A

further increase in Ŵ results in the delocalization of the holes. The whole surface of the

cornstarch suspension is then covered by erratic undulations. It was shown in [227] that

stress hysteresis contributes to the formation of persistent holes in particulate systems.

Several studies of the formation of patterns at the morphologically unstable interface

between two fluids in a porous medium or in a Hele Shaw geometry have been reported

[228–230]. Coloured water injected into aqueous colloidal clay suspensions form fractal

viscous fingers (VF) for low clay concentrations [231,232]. A transition to a viscoelastic

fracturing (VEF) regime is seen when clay concentration is increased [232]. The VEF

patterns reported in [232] have branching angles of 90◦ with the main crack, and are char-

acterized by fractal dimensions that are lower than those of VF patterns. The fingers that

form when a less viscous liquid percolates a viscoelastic polymer solution are much nar-

rower [233]. Viscous fingers with highly branched morphologies form when less viscous

air displaces foams and colloidal gels in a radial Hele Shaw geometry at very low rates of

flow [234].

Polydisperse glass beads, of sizes 50–100 μm and suspended in water–glycerol mix-

tures, are filled in a radial Hele Shaw cell at different filling fractions φ [235]. When the

liquid mixture is withdrawn using a syringe pump, air invades the grain–liquid mixture

and labyrinthine patterns form. The characteristic length scales of the patterns decrease

with φ and increase with the gap widths of the Hele Shaw geometry. Numerical sim-

ulations verify that the competition between frictional and capillary forces drives the

formation of the observed patterns.

It has been mentioned earlier that the surface tension of granular matter is negligible

when compared to ordinary liquids. This requires the simultaneous existence of a local

cusp structure and a global fractal structure in granular fingering patterns [236]. This

was confirmed experimenally for a radial Hele Shaw flow in [237]. The width of the

fingers formed at the interface between two Newtonian liquids were reported to decrease

with the local interface velocity v as v−1/2. The width of granular fingers, in contrast,

grows as v1/2 [237] and the fractal dimensions of the patterns lie between 2 and 1.7 (the

diffusion-limited aggregation or DLA value). When air invades a bed of water-saturated

glass beads, three different invasion regimes, driven by capillary fingering, viscous finger-

ing and capillary fracturing, are observed. These regimes depend upon the injection rate

of air, the size of the glass beads and the confining stress [238]. A review on the collec-

tive behaviour of grains and the formation of patterns can be found in [239]. In another

experiment, when air invades a frictional granular bed in which glass beads mixed with a

viscous liquid are allowed to settle, the interfacial dynamics shows a range of behaviours

from intermittent to quasi-continuous to continuous [240]. In this work, capillary fin-

gering, viscous fingering and fracturing regimes are observed as the flow rate q of the

injected air, the filling fraction φ and stiffness K of the glass beads are changed. The

results are displayed in figure 11.

The formation of patterns by highly dense assays of active filaments driven by hydro-

dynamic forces was reported in [241]. The application of a strong electric field resulted

in the formation of patterns at polymer–air–polymer thin film interfaces [242]. The
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Figure 11. (a) Phase diagram in the φ−1–q plane shows several contrasting patterns.

(b) A pictorial representation of the displacement dynamics of frictional fluids in the

φ−1–q–K plane. The figure is reproduced from [240] under a Creative Commons

license.

formation of desiccation cracks in clay–polymer films attached to a substrate was studied

in [243].

4. Conclusions

This review presents an introductory discussion of a selective list of novel phenomena

that have been observed in soft materials. The non-intuitive dynamics of soft systems is

illustrated by highlighting several experiments, many of which, such as the demonstra-

tions of shear-thinning and thickening, polymer rod climbing, die swell and the tubeless

siphoning effects, can be performed with commonly available soft materials such as cake

batter, egg yolk and cornstarch suspensions. This is followed by many more examples of

novel time-dependent phenomena that are exhibited by soft matter and are reported in the

literature. These include chaotic stress fluctuations in sheared worm-like micellar solu-

tions, flow-induced birefringence, the existence of soft glassy rheology, and the formation

of patterns. Given the space constraints, the discussions are, by no means, complete. A

comprehensive list of journal and review articles that describe each topic in much more

detail has been included for further reference wherever possible.
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