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Abstract
This paper proposes Ruddy turnstone optimization (RTO) algorithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy turnstone optimization (CRTO) algorithm, Quantum based Ruddy 
turnstone Optimization (QRTO) Algorithm, Opposition based Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone optimization (COQRTO) algorithm for genuine loss lessening. Impor-
tant goals of the paper are Power fidelity extension, power eccentricity minimization and genuine loss lessening. The leading 
stimulus is in the sculpting of Repositioning –Peripatetic and argumentative actions of Ruddy turnstone. Ruddy turnstone will 
guzzle wiretaps, young insect and it subsists in bundling style. The constellation of Ruddy turnstone, which mobile from one 
place to alternate in the sequence of repositioning and the fresh investigation agent position is to evade the smash amongst their 
contiguous Ruddy turnstone. In the proposed Extreme Learning Machine based Ruddy turnstone Optimization (ELMRTO) 
Algorithm, Ruddy turnstone Optimization Algorithm approach enhances Extreme Learning Machine features to determine an 
optimal skeleton of Extreme Learning Machine for enhanced canons. In Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm Exploration and Exploitation are augmented. In Quantum based Ruddy turnstone Optimization (QRTO) Algorithm, 
features emulate the analogous performance with the certain stage as they route in a credible powdered of median. Opposition 
based Ruddy turnstone optimization (ORTO) Algorithm employs Laplace distribution to enhance the exploration skill. Then 
examining the prospect to widen the exploration, a new method endorses stimulating capricious statistics used in formation 
stage regulator factor in Ruddy turnstone Optimization Algorithm. In the projected chaotic in-built Opposition based – Quan-
tum Ruddy turnstone optimization (COQRTO) algorithm, the transaction of erratic figures is completed with the irrational 
digits enthused by Laplace distribution to amplify the support of the probability of formation level inside the exploration zone. 
Proposed Ruddy turnstone optimization (RTO) algorithm, Extreme Learning Machine based Ruddy turnstone Optimization 
(ELMRTO) Algorithm, Chaotic based Ruddy turnstone optimization (CRTO) algorithm, Quantum based Ruddy turnstone 
Optimization (QRTO) Algorithm, Opposition based Ruddy turnstone optimization (ORTO) Algorithm and chaotic in-built 
Opposition based – Quantum Ruddy turnstone optimization (COQRTO) algorithm are corroborated in Garver’s 6-bus test 
system, IEEE 30, 57, 118, 300, 354 bus test systems and Practical system - WDN 220 KV (Unified Egyptian Transmission 
Network (UETN)). Loss lessening, voltage divergence curtailing, and voltage constancy index augmentation has been attained.

Keywords Optimization · Power · Transmission loss · Ruddy turnstone · Extreme learning machine · Chaotic · Quantum · 
Opposition

Introduction

Loss dripping problem is envisioned as one of the notewor-
thy circumstances for safe and fiscal operation of system. It 
is consummate by appropriate organization of the edifice 
apparatus used to cope up the power flow with the goal of 
diminishing the true power losses and progress the voltage 
outline of the structure. Many preceding studies solved the 
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power dispatch problem as the optimization of one or two 
objective functions calculated distinctly. Loss lessening, 
power variance curtailing, and power reliability expansion 
has been attained.

Related Study

Zhu et al. [1] solved the problem by modified interior point 
method. Quintana et al. [2] solved by successive quadratic pro-
gramming. Jan et al. [3] used Newton-Raphson. Terra et al. 
[4] did Security-constrained mode. Grudinin [5] used succes-
sive quadratic programming. Mohamed Ebeed et al. [6] used 
Marine Predators Algorithm. Zahir Sahli et al. [7] used Hybrid 
Algorithm. Davoodi et  al. [8] used semidefinite method. 
Bingane et al. [9] applied Tight-and-cheap conic relaxation 
approach. Sahli et al. [10] applied Hybridized PSO-Tabu. 
Mouassa et al. [11] applied Ant lion algorithm for solving the 
problem. Mandal et al. [12] solved by using quasi-oppositional. 
Khazali et al. [13] solved the problem by harmony search pro-
cedure. Tran et al. [14] solved by fractal search procedure. 
Polprasert et al. [15] solved the problem by using enhanced 
pseudo-gradient method. Thanh et al. [16] solved the problem 
by an Operative Metaheuristic Procedure. Raghuwanshi et al. 
[17] utilized Bagging based ELM. Yu X et al. [18] applied 
Dual-Weighted Kernel ELM. Han et al. [19] used kernel ELM. 
From Illinois Center [20] for a Smarter Electric Grid (ICSEG) 
IEEE 30 bus system data obtained. Dai et al. [21] used Seeker 
optimization procedure for solving the problem. Subbaraj 
et al. [22] used self-adaptive real coded Genetic procedure to 
solve the problem. Pandya et al. [23] applied Particle swarm 
optimization to solve the problem. Ali Nasser Hussain et al. 
[24] applied Amended Particle Swarm Optimization to solve 
the problem. Vishnu et al. [25] applied an Enhanced Particle 
Swarm Optimization to solve the problem. Vodchits Angelina 
et al. [26] did Development of a Design Algorithm for the 
Logistics. Vodchits Angelina et al. [27] did the work on organi-
zation of logistic systems of scientific productions. Vodchits 
Angelina et al. [28] solved the Problems and organizational 
and technical solutions. Khunkitti et al. [29] used Slime Mould 
Algorithm. Diab et al. [30] used Optimization Techniques. 
Reddy [31, 32] solved the problem by faster and cuckoo search 
algorithms. Sridhar et al. [33] used ALO method. Suja [34] 
used moth flame optimization procedure. Darvish [35] applied 
grasshopper optimization algorithm. Sharma, et al. [36] used 
hybrid ABC-PSO. Saravanan et al. [37] used dragonfly algo-
rithm. Bentouati, Bet al. [38] applied improved moth-swarm 
algorithm. Menon, et al. [39] applied OS–DPLL. Saxena, et al. 
[40] used STATCOM. Kazmi, et al. [41] Worked on Loop 
Configuration. Kola Sampangi, et al. [42] worked in EDN. 
Zaidan, Majeed et al. [43] worked in var. comp.optimal Loca-
tion. Lakshmi Priya et al. [44] used GWO-BSA. Ahmadnia 
Sajjad et al. [45] worked in ESR. Azimi, Mohammad et al. [46] 
worked in Thyristor-controlled Phase Shifting. Juneja Kapil 

[47] used a Fuzzy-Controlled Differential Evolution to solve 
the problem. Kien et al. [48] used Discrete Values of Capaci-
tors and Tap Changers. Souhil et al. [49] applied ant lion opti-
mization algorithm. Tudose et al. [50] applied Improved Salp 
Swarm Algorithm. Nagarajan et al. [51] applied Levy Interior 
Search Algorithm. Mei et al. [52] applied moth-flame optimi-
zation technique. Nuaekaew et al. [53] applied grey wolf opti-
mizer. Khazali et al. [13] applied harmony search algorithm. 
Gonggui et al. [54] applied enhanced PSO algorithm. From 
ee. Washington [55] IEEE 57-Bus Test System data obtained. 
From Power Systems Test Case Archive, University of Wash-
ington [56] data obtained. From ee. Washington [57] IEEE 
118-Bus Test System data obtained. Lin, et al. [58] did work 
in chaotic Lévy flight bat algorithm. Hakli et al. [59] did work 
in particle swarm optimization algorithm Nagarajan, et al. [51] 
did work in Levy Interior Search Algorithm. Davidchack et al., 
[60] did work in chaotic systems. Inoue, et al., [61] did work 
in Application of chaos. Dinkar, et al. [62] did in Opposition 
Based Laplacian. Gai-gewang et al. [63] did work in Cauchy 
mutation. Tizhoosh [64] did the work in Opposition-based 
learning. Verma et al. [65] done in Modified Artificial Bee. 
Romero et al. [66] worked in AC Model. Mahmoudabadi, 
et al., [67] worked in Deregulated Environment. Asadamong-
kol, et al. [68] worked in Generalized Benders Decomposition. 
Mohamed eta l [69] worked in binary bat algorithm. Abou 
et al. [70] worked in System Expansion Planning. Emad M. 
Ahmed et al. [77] did work in modern distribution networks. 
Almalaq et al. [78] did work towards Increasing Hosting 
Capacity of Modern Power Systems. Ismael et al. [79] applied 
Hybrid PSOGSA Optimization Algorithm. Mahmoud, et al. 
[80] worked in Real Egyptian Distribution System. Muhyaddin 
Rawa et al. [81] applied improved grey wolf algorithm.

Proposed Methodology

This paper proposes Ruddy turnstone optimization (RTO) algo-
rithm, Extreme Learning Machine based Ruddy turnstone Opti-
mization (ELMRTO) Algorithm, Chaotic based Ruddy turn-
stone optimization (CRTO) algorithm, Quantum based Ruddy 
turnstone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone opti-
mization (COQRTO) algorithm for solving the loss dripping 
problem. The leading stimulus is in the sculpting of Reposition-
ing –Peripatetic and argumentative actions of Ruddy turnstone. 
Ruddy turnstone will guzzle wiretaps, young insect and it sub-
sists in bundling style. The constellation of Ruddy turnstone, 
which mobile from one place to alternate in the sequence of 
repositioning and the fresh investigation agent position is to 
evade the smash amongst their contiguous Ruddy turnstone.

In the proposed Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Ruddy turnstone 
Optimization approach enhances Extreme Learning Machine 
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features to determine an optimal carcass of Extreme Learning 
Machine for enhanced standards. In principally all elements don’t 
own any info about the explication area. In preliminary phases 
of iteration, the Ruddy turnstone contestants are multifarious in 
milieu and exponential spare generates boundless unpremeditated 
amounts which contribute the rudiments to lodging the entire 
explication zone. Disparately, all over end stage of iterations, rudi-
ments are surrounded by Ruddy turnstone contestants and all an 
optimal situation with similar pattern.

Chaotic sequences are combined into Ruddy turnstone 
Optimization and it termed as - Chaotic based Ruddy turn-
stone optimization (CRTO) algorithm. This integration will 
augment the Exploration and Exploitation. Tinkerbell cha-
otic map engendering standards are implemented.

Quantum mechanics has been combined with Ruddy turn-
stone Optimization Algorithm and it titled as Quantum based 
Ruddy turnstone Optimization (QRTO) Algorithm. In quantum 
method, features emulate the analogous performance with the 
certain stage as they route in a credible powdered of median.

Ruddy turnstone Optimization Algorithm, even though the 
initiative of contestant explications slants to touch an optimal 
solution, yet several are get entombed and not adept of emo-
tive in the route of the dominant solution. It significances to 
snare in local optima and it accordingly enforces into primary 
and slow convergence. Subsequently Opposition based Ruddy 
turnstone optimization (ORTO) Algorithm employs Laplace 
distribution to enhance the exploration skill. Then examining 
the prospect to widen the exploration, a new method endorses 
stimulating capricious statistics used in formation stage regu-
lator factor in Ruddy turnstone Optimization Algorithm. In 
the proposed procedure, the exchanging of capricious statis-
tics is done with the illogical numbers stimulated by Laplace 
distribution to enlarge the assistance of the probability of for-
mation stage in the exploration zone.

In the projected chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) 
algorithm, the transaction of erratic figures is completed 
with the irrational digits enthused by Laplace distribution 
to amplify the support of the probability of formation level 
inside the exploration zone. Chaotic sequences will augment 
the Exploration and Exploitation. Quantum features emulate 
the analogous performance with the certain stage as they 
route in a credible powdered of median.

Important aspects of the Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic based 
Ruddy turnstone optimization (CRTO) algorithm, Quantum 
based Ruddy turnstone Optimization (QRTO) Algorithm, 
Opposition based Ruddy turnstone optimization (ORTO) 
Algorithm and chaotic in-built Opposition based – Quantum 
Ruddy turnstone optimization (COQRTO) algorithm

• In Ruddy turnstone optimization algorithm the constellation of 
Ruddy turnstone, which mobile from one place to alternate in the 
sequence of repositioning and the fresh investigation agent position 
is to evade the smash amongst their contiguous Ruddy turnstone.

• In the proposed Extreme Learning Machine based Ruddy turnstone 
Optimization Algorithm, Ruddy turnstone Optimization approach 
enhances Extreme Learning Machine features to determine an opti-
mal carcass of Extreme Learning Machine for enhanced standards.

• In Chaotic based Ruddy turnstone optimization algorithm 
Exploration and Exploitation are augmented. In Quantum 
based Ruddy turnstone Optimization Algorithm, features 
emulate the analogous performance with the certain stage 
as they route in a credible powdered of median.

• Opposition based Ruddy turnstone optimization Algo-
rithm employs Laplace distribution to enhance the explo-
ration skill. Then examining the prospect to widen the 
exploration, a new method endorses stimulating capri-
cious statistics used in formation stage regulator factor 
in Ruddy turnstone Optimization Algorithm.

• In the projected chaotic in-built Opposition based – Quantum 
Ruddy turnstone optimization algorithm, the transaction of 
erratic figures is completed with the irrational digits enthused 
by Laplace distribution to amplify the support of the prob-
ability of formation level inside the exploration zone.

Critical Outcome of the Work

Significant goals of the paper are Voltage constancy aug-
mentation, voltage deviance minimization and Actual 
power loss lessening. Proposed Ruddy turnstone optimi-
zation (RTO) algorithm, Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm, Quantum based Ruddy turnstone Optimiza-
tion (QRTO) Algorithm, Opposition based Ruddy turn-
stone optimization (ORTO) Algorithm and chaotic in-built 
Opposition based – Quantum Ruddy turnstone optimization 
(COQRTO) algorithm is corroborated in Garver’s 6-bus 
test system, IEEE 30, 57, 118, 300, 354 bus test systems 
and Practical system - WDN 220 KV (Unified Egyptian 
Transmission Network (UETN)). Loss lessening, power 
divergence curtailing, and power fidelity augmentation 
has been attained.

Problem Formulation

Loss minimization [13, 52–54] is demarcated by

(1)Min
∼

F
(
g, h

)
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And

Parity constraints

Disparity constraints

(2)M
(
g, h

)
= 0

(3)N
(
g, h

)
= 0

(4)g =
[
VLG1, ..,VLGNg;QC1, ..,QCNc;T1, ..,TNT

]

(5)h =
[
PGslack;VL1, ..,VLNLoad

;QG1, ..,QGNg;SL1, .., SLNT

]

(6)
F1 = PMin = Min

[∑NTL

m
Gm

[
V2
i
+ V2

j
− 2 ∗ ViVjcos∅ij

]]

(7)

F2 = Min

[∑NLB

i=1

|||VLk − Vdesired
Lk

|||
2

+
∑Ng

i=1

|||QGK − QLim
KG

|||
2
]

(8)F3 = Minimize LMaxImum

(9)LMax = Max
[
Lj
]
;j = 1;NLB

(10)

�
Lj = 1 −

∑NPV

i=1
Fji

Vi

Vj

Fji = −
�
Y1
�1�

Y2
�

(11)LMax = Max

[
1 −

[
Y1
]−1[

Y2
]
×
Vi

Vj

]

(12)
0 = PGi − PDi − Vi

∑
j∈NB

Vj

�
Gijcos

�
∅i − ∅j

�
+ Bijsin

�
∅i − ∅j

��

(13)
0 = QGi − QDi − Vi

∑
j∈NB

Vj

�
Gijsin

�
∅i − ∅j

�
+ Bijcos

�
∅i − ∅j

��

(14)Pmin
gsl

≤ Pgsl ≤ Pmax
gsl

(15)Qmin
gi

≤ Qgi ≤ Qmax
gi

, i ∈ Ng

(16)VLmin
i

≤ VLi ≤ VLmax
i

, i ∈ NL

(17)Tmin
i

≤ Ti ≤ Tmax
i

, i ∈ NT

(18)Qmin
c

≤ Qc ≤ Qmax
C

, i ∈ NC

Ruddy Turnstone Optimization Algorithm

In this paper Ruddy turnstone Optimization (RTO) Algo-
rithm is applied to solve the loss lessening problem. The 
leading stimulus is in the sculpting of Repositioning –Peri-
patetic and argumentative actions of Ruddy turnstone. Ruddy 
turnstone will guzzle wiretaps, young insect and it subsists in 
bundling style. The constellation of Ruddy turnstone, which 
mobile from one place to alternate in the sequence of reposi-
tioning and the fresh investigation agent position is to evade 
the smash amongst their contiguous Ruddy turnstone.

Examination mediator’s passage in the direction of the 
dominant representative,

(19)||SLi|| ≤ Smax
Li

, i ∈ NTL

(20)VGmin
i

≤ VGi ≤ VGmax
i

, i ∈ Ng

(21)

Multi objective fitness (MOF) = F
1
+ riF2

+ uF
3
= F

1

+
[∑NL

i=1
xv
[
VLi − VLmin

i

]2
+
∑NG

i=1
rg
[
QGi − QGmin

i

]2]
+ rf F3

(22)VLminimum
i

=

{
VLmax

i
,VLi > VLmax

i

VLmin
i

,VLi < VLmin
i

(23)QGminimum
i

=

{
QGmax

i
,QGi > QGmax

i

QGmin
i

,QGi < QGmin
i

(24)����⃗RtS = RtM + ����⃗QP(t)

(25)

where ����⃗RtS is position without any Hindrance between each other

RtM isMobility of the Ruddy turnstone

����⃗QP(t)is present location and t indiate the present iteraion

RtM = RtF −
(
t ×

RtF

max.iter

)

where t = 0, 1, 2, 3, .., max.iter

RtF is the regulating frequency

when RtM = 2 then RtF gradually decrease 2 to 0

(26)���⃗LS = RtR ×
(
�������⃗QBest(t) −

����⃗QP(t)
)

(27)RtR = 0.5 × R

where RtR is random parameter for controlling the exploration

�������⃗QBest(t) specify the best position

���⃗LS is location of the examination agent
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Rendering to premium position, Ruddy turnstone will 
appraise its location,

In the course of drive the Ruddy turnstone will execute 
Whorl action and the cantankerous actions of Ruddy turn-
stone is scientifically demarcated as,

(28)����⃗MS =
����⃗RtS +

���⃗LS

where ����⃗MS indicate the space between examination and excellent agent

(29)U� = B × sin(t)

(30)V � = B × cos(t)

Modernizing the Location of the Exploration agents is 
accomplished by,

Figure 1 shows the schematic diagram of Ruddy turnstone 
optimization (RTO) algorithm.

Extreme Learning Machine Based Ruddy 
Turnstone Optimization Algorithm

In the proposed Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Ruddy turn-
stone Optimization Algorithm approach enhances Extreme 

(31)W � = B × (t)

(32)
where b specify the radius of Whorl action

B = x × eny

where x and y are the constants to describe the Whorl action

n ∈ [0 ≤ n ≤ 2�]

x and y = 1

(34)����⃗QP(t) =
(
����⃗RtS ×

(
U� + V � +W �

)
× �������⃗QBest(t)

)

Fig. 1  Schematic diagram of Ruddy turnstone optimization (RTO) 
algorithm
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Learning Machine features to determine an optimal skeleton 
of Extreme Learning Machine for enhanced canons. ELM is 
applied and learning speed of feed-forward neural networks 
is composed of input, hidden and output layer [17–19].

The correlating neurons weight matrix of input to hidden 
layer is defined as,

(35)Weight (Wht) =

⎡
⎢⎢⎢⎢⎢⎣

whtT
1

whtt
2

;

whtT
l

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

wht
11

⋯ wht
1n

⋮ ⋱ ⋮

whtL1 ⋯ whtLn

⎤⎥⎥⎥⎥⎦

(36)(nwm.�) =

⎡⎢⎢⎢⎣

nwm.�T
1

nwm.� t
2

;

nwm.�T
l

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

nwm.�11 ⋯ nwm.�1n
⋮ ⋱ ⋮

nwm.�L1 ⋯ nwm.�Ln

⎤
⎥⎥⎦

For N impulsive e (Bi, Fi); Fi = [Fi1, Fi2, .., Fidn]E ∈ MNdn, 
Ci = [Ci1, Ci2, .., Cidn]E ∈ MNdn,

(37)Neurons hidden layer bias vector (bsv) =

⎡
⎢⎢⎢⎢⎣

bsv1

bsv2

∶

bsv
L

⎤
⎥⎥⎥⎥⎦
L×1

(38)(C) =

⎡⎢⎢⎢⎣

CT
1

Ct
2

;

CT
l

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎣

C11 ⋯ C1n

⋮ ⋱ ⋮

CL1 ⋯ CLn

⎤⎥⎥⎦

(39)
∑N

i=1
nwm.�i ⋅ k

(
�iFj + ai

)
= Cj, j = 1, 2, 3, ..,N

(40)(O) ⋅ (nwm.�) = C
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In the proposed Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Ruddy turnstone Optimization approach enhances Extreme 
Learning Machine features to determine an optimal carcass 
of Extreme Learning Machine for enhanced standards. In 
principally all elements don’t own any info about the expli-
cation area. In preliminary phases of iteration, the Ruddy 
turnstone contestants are multifarious in milieu and expo-
nential spare generates boundless unpremeditated amounts 

(41)O
�
F
1
, ..F

L
;�

1
, ..,�

L
;a

1
, .., a

l

�
=

⎡⎢⎢⎢⎣

k
�
�
1
F
1
+ a

1

�
⋯ k

�
�
L
F
1
+ a

L

�

⋮ ⋱ ⋮

k
�
�
1
F
N
+ a

1

�
⋯ k

�
�
L
F
N
+ a

L

�

⎤⎥⎥⎥⎦

(42)nwm.� = O−1
⋅ C

which contribute the rudiments to lodging the entire explica-
tion zone. Disparately, all over end stage of iterations, rudi-
ments are surrounded by Ruddy turnstone contestants and 
all an optimal situation with similar pattern. Figure 2 shows 
the schematic diagram of Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm.

Chaotic Based Ruddy Turnstone 
Optimization Algorithm

Chaotic sequences are combined into Ruddy turnstone Opti-
mization and it termed as - Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm. This integration will aug-
ment the Exploration and Exploitation. Tinkerbell chaotic 
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map [60, 61] engendering standards are implemented. Fig-
ure 3 shows the schematic diagram of Chaotic based Ruddy 
turnstone optimization (CRTO) algorithm.

(43)ut+1 = u2
t
− v2

t
+ a ⋅ ut + b ⋅ vt

(44)vt+1 = 2utvt + c ⋅ ut + d ⋅ vt
The functional value by linear scaling in Tinkerbell cha-

otic map [60, 61] is demarcated as,

where a, b, c and d are non − zero parameters

a = 0.900

b = −0.600

c = 2.000

d = 0.500

At primary stage uoand vo = 0.10

(45)
u∗
t+1

= ut+1 − minimum(u)∕maximum(u) − minimum(u)

Fig. 2  Schematic diagram of Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm

Fig. 3  Schematic diagram of Chaotic based Ruddy turnstone optimi-
zation (CRTO) algorithm
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Quantum Based Ruddy Turnstone 
Optimization Algorithm

Quantum mechanics [71–76] has been combined with Ruddy 
turnstone Optimization Algorithm and it titled as Quantum 
based Ruddy turnstone Optimization (QRTO) Algorithm. 
In quantum method, features emulate the analogous perfor-
mance with the certain stage as they route in a credible pow-
dered of median. The wave utility in the Quantum mechanics 
[71–76] is demarcated as,

(46)|� |2 ⋅ dx ⋅ dy ⋅ dz = Quantum ⋅ dx ⋅ dy ⋅ dz

The time contingent Schrodinger equation [71–76] is 
smeared to evaluate the wave utility is demarcated as,

In the quantum pattern ∆Fit consecutively achieve as 
particle and it successively passages in delta potential in the 
direction of center. Figure 4 shows the schematic diagram 
of Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm.

where � indicate probability density functional value

ih ∙ Ə Ət ∙ Ψ(x,t) = Hor ∙ Ψ(x,t) (47)

where Hor specify the Hamiltonian operator

(48)Hor = −h2∕2m ⋅ Δ2 + V(x)
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(49)

Schrodinger(Time − independent)is
d2�

dz2
+

2m

h2
[G + ��(z)]� = 0

(50)� (z) =
1√
L
e
−

�z�
L

(51)Quantum(z) = �� (z)�2 = 1√
L
e
−

�z�
L

(52)z = ±
L

2
In(1∕g)

Opposition Based Ruddy Turnstone 
Optimization Algorithm

Ruddy turnstone Optimization Algorithm, even though the 
initiative of contestant explications slants to touch an optimal 
solution, yet several are get entombed and not adept of emo-
tive in the route of the dominant solution. It significances to 
snare in local optima and it accordingly enforces into primary 
and slow convergence. Subsequently Opposition based Ruddy 
turnstone optimization (ORTO) Algorithm employs Laplace 
distribution to enhance the exploration skill. Then examining 
the prospect to widen the exploration, a new method endorses 

Fig. 4  Schematic diagram of Quantum based Ruddy turnstone Opti-
mization (QRTO) Algorithm
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stimulating capricious statistics used in formation stage regu-
lator factor in Ruddy turnstone Optimization Algorithm. In 
the proposed procedure, the exchanging of capricious statis-
tics is done with the illogical numbers stimulated by Laplace 
distribution [62–64] to enlarge the assistance of the probabil-
ity of formation stage in the exploration zone.

The probability propagation function of Laplace dispersal 
is,

Opposition based learning (OBL) is one of the influential 
approaches to improve the convergence quickness of proce-
dures [62–64]. The flourishing use of the Opposition based 
learning includes evaluation of opposite populace and domi-
nant populace in the analogous generation to regulate the 
superior contestant explication. The perception of opposite 
number requirements is to be delineated to explicate Opposi-
tion based learning. Figure 5 shows the schematic diagram 
of Opposition based Ruddy turnstone optimization (ORTO) 
Algorithm.

Let O (Z ∈ [c, d]) be a palpable figure and the Oo (opposite 
figure) can be delineated as,

In the exploration area it has been protracted as,

The perception of Opposition based learning is employed 
in the initialization procedure and in iterations by means of 
the cohort vaulting level.

a. Min f
b. if f (O∗) ≤  f (O); then O = O∗

c. Or else
d. Sustain with O in successive generations

An opposite component is assimilated after streamlining 
and produced the distinguished component

(53)function(v) =

{
1

2
exp(−|v − c|∕d), b ≤ c

1 −
1

2
exp(−|v − c|∕d), b > c

(54)
function(v;c, d) = 1∕2v exp(−|v − c|∕d),−∞ < c < ∞

where c ∈ (−∞,∞)

(55)Oo = c + d − U

(56)Oo
i
= ci + di − Ui

Where
(
O1,O2, ..Od

)
indicate dimensional exploration zone

Oi ∈
[
ci, di

]
, i → {1, 2, 3, ..d}

(57)Rti(iter) =
(
LBi + UBi − Rte(iter)

)

where LB,UB are lower and upper bound

At that moment the Flexible speeding up factor (Fs) 
balance the exploration and exploitation and scientifically 
demarcated as,

The Opposition based learning method engaged round the 
distinguished component and it demarcated as,

(58)Fs = Fmax − iterp ⋅ Fmax − Fmin∕itermax

(59)Rti(iter) = Fs ∗
(
LBi + UBi − Rte(iter)

)
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Chaotic in‑Built Opposition Based – 
Quantum Ruddy Turnstone Optimization 
Algorithm

In the projected chaotic in-built Opposition based – Quan-
tum Ruddy turnstone optimization (COQRTO) algorithm, 
the transaction of erratic figures is completed with the 
irrational digits enthused by Laplace distribution to 
amplify the support of the probability of formation level 
inside the exploration zone. Chaotic sequences will aug-
ment the Exploration and Exploitation. Quantum features 
emulate the analogous performance with the certain stage 
as they route in a credible powdered of median. Figure 6 
shows the schematic diagram of chaotic in-built Oppo-
sition based – Quantum Ruddy turnstone optimization 
(COQRTO) algorithm.

Computational Complexity

The off line incorrectness is computed as,

Categories of computation complication of O(nlogn) and 
O(n2) in the finest and least case correspondingly. The general-
ized total calculation of complexity is apportioned as follows:

off − line erroneousness =
1

max iter

max iter∑
t=1

Present erroneousnesst
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Simulation Results

Proposed Extreme Learning Machine based Ruddy turnstone 
optimization (RTO) algorithm, Ruddy turnstone Optimiza-
tion (ELMRTO) Algorithm, Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm, Quantum based Ruddy 
turnstone Optimization (QRTO) Algorithm, Opposition 

O(Q )O(nlogn) = O(T(O(s) + O(p )))

O
(
n2
)
= O

(
t
(
n2 + n × d

))
= O

(
tn2 + tnd

)

O
(
Max iter ∗ N2 ∗ D

)
∗ O(obj.fun) + O(Max iter ∗ t ∗ N) + O(Max iter ∗ N ∗ D)

based Ruddy turnstone optimization (ORTO) Algorithm 
and chaotic in-built Opposition based – Quantum Ruddy 
turnstone optimization (COQRTO) algorithm are corrobo-
rated in Garver’s 6-bus test system, IEEE 30, 57, 118, 300, 
354 bus test systems and Practical system - WDN 220 KV 
(Unified Egyptian Transmission Network (UETN)). At first 
proposed algorithm is reviewed in Garver’s 6-bus test system 
[65]. It has six buses and lines, three generators and five 
loads [65] at buses. Table 1 shows the loss appraisal and 
Table 2 shows the voltage aberration evaluation. Figures 7 
and 8 give the graphical appraisal between the methods.

Comparison of real power loss done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 

Fig. 5  Schematic diagram of Opposition based Ruddy turnstone opti-
mization (ORTO) Algorithm

Fig. 6  Schematic diagram of chaotic in-built Opposition based – 
Quantum Ruddy turnstone optimization (COQRTO) algorithm
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algorithm, Extreme Learning Machine based Ruddy turn-
stone Optimization (ELMRTO) Algorithm, Chaotic based 
Ruddy turnstone optimization (CRTO) algorithm, Quantum 
based Ruddy turnstone Optimization (QRTO) Algorithm, 

Opposition based Ruddy turnstone optimization (ORTO) 
Algorithm and chaotic in-built Opposition based – Quan-
tum Ruddy turnstone optimization (COQRTO) algorithm 
reduced the power loss efficiently. Real power Loss (MW) 
obtained by RTO-11. 123, ELMRTO-11. 054, CRTO-11. 
108, QRTO-11. 096, ORTO-11. 084 and COQRTO-11. 049.

Comparison of voltage deviation done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 
algorithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy 
turnstone optimization (CRTO) algorithm, Quantum based 
Ruddy turnstone Optimization (QRTO) Algorithm, Opposition 
based Ruddy turnstone optimization (ORTO) Algorithm and 
chaotic in-built Opposition based – Quantum Ruddy turnstone 
optimization (COQRTO) algorithm performed well.

Projected Ruddy turnstone optimization (RTO) algorithm, 
Extreme Learning Machine based Ruddy turnstone Optimiza-
tion (ELMRTO) Algorithm, Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm, Quantum based Ruddy turn-
stone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone opti-
mization (COQRTO) algorithm are corroborated in IEEE 30 
bus system [20]. In Table 3 shows the loss appraisal, Table 4 
shows the voltage aberration evaluation and Table 5 gives the 
power permanence assessment. Figs. 9, 10 and 11 gives the 
graphical assessment between the approaches.

Comparison of real power loss done between the stand-
ard methods and proposed Ruddy turnstone optimiza-
tion (RTO) algorithm, Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm, Quantum based Ruddy turnstone Optimization 
(QRTO) Algorithm, Opposition based Ruddy turnstone 

Table 1  Loss appraisal Method Power loss (MW)

BCHA [66] 14.880
BGA [67] 14.150
SBD [68] 13.640
BBBA [69] 12.794
IMBBA [69] 12.768
RTO 11. 123
ELMRTO 11. 054
CRTO 11. 108
QRTO 11. 096
ORTO 11. 084
COQRTO 11. 049

Table 2  Power aberration 
analysis

Method VD (PU)

BCHA [66] NA
BGA [67] NA
SBD [68] NA
BBBA [69] 0.5191
IMBBA [69] 0.2208
RTO 0.2092
ELMRTO 0.2064
CRTO 0.2081
QRTO 0.2073
ORTO 0.2070
COQRTO 0.2060

Fig. 7  Assessment of loss
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optimization (ORTO) Algorithm and chaotic in-built 
Opposition based – Quantum Ruddy turnstone optimization 
(COQRTO) algorithm reduced the power loss efficiently. 
Real power Loss (MW) obtained by RTO- 4.2119, ELM-
RTO- 4.2075, CRTO-4.2109, QRTO-4.2081, ORTO-4.2092 
and COQRTO- 4.2069.

Comparison of voltage deviation done between the 
standard methods and proposed Ruddy turnstone optimi-
zation (RTO) algorithm, Extreme Learning Machine based 

Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm, Quantum based Ruddy turnstone Optimiza-
tion (QRTO) Algorithm, Opposition based Ruddy turn-
stone optimization (ORTO) Algorithm and chaotic in-built 

Fig. 8  Appraisal of Voltage 
aberration
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Table 3  Assessment of loss Method loss (MW)

BAPSOTS [10] 4.5213
SITS [10] 4.6862
SIPSO [10] 4.6862
ANTLOA [11] 4.5900
HYQOTLBO [12] 4.5594
BATLBO [12] 4.5629
SIGA [13] 4.9408
SSPSO [13] 4.9239
HYAS [13] 4.9059
SIFS [14] 4.5777
HYIFS [14] 4.5142
SIFS [16] 4.5275
LISA-I [51] 4.8193
LISA-II [51] 4.8547
SSA [50] 4.5317
ISSA [50] 4.5269
RTO 4.2119
ELMRTO 4.2075
CRTO 4.2109
QRTO 4.2081
ORTO 4.2092
COQRTO 4.2069

Table 4  Assessment of power 
eccentricity

Method Power 
deviancy 
(PU)

SIPSOTVIW [15] 0.1038
BAPSOTVAC [15] 0.2064
BSPSOTVAC [15] 0.1354
HYPSOCF [15] 0.1287
HPGPSO [15] 0.1202
HYSWTPSO [15] 0.1614
HPGSWTPSO [15] 0.1539
HYMPGPSO [15] 0.0892
HQOTLBO [12] 0.0856
SITLBO [12] 0.0913
SIFS [14] 0.1220
HYISFS [14] 0.0890
SIFS [16] 0.0877
LISA-I [51] 0.374
LISA-II [51] 0.377
SSA [50] 0.0854
ISSA [50] 0.0831
RTO 0.0828
ELMRTO 0.0814
CRTO 0.0823
QRTO 0.0821
ORTO 0.0820
COQRTO 0.0812
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Opposition based – Quantum Ruddy turnstone optimiza-
tion (COQRTO) algorithm performed well.

Comparison of voltage constancy done between the 
standard methods and proposed Ruddy turnstone optimi-
zation (RTO) algorithm, Extreme Learning Machine based 

Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm, Quantum based Ruddy turnstone Optimiza-
tion (QRTO) Algorithm, Opposition based Ruddy turn-
stone optimization (ORTO) Algorithm and chaotic in-built 
Opposition based – Quantum Ruddy turnstone optimization 
(COQRTO) algorithm performed well.

Ruddy turnstone optimization (RTO) algorithm, Extreme 
Learning Machine based Ruddy turnstone Optimization 
(ELMRTO) Algorithm, Chaotic based Ruddy turnstone opti-
mization (CRTO) algorithm, Quantum based Ruddy turn-
stone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and cha-
otic in-built Opposition based – Quantum Ruddy turnstone 
optimization (COQRTO) algorithm are corroborated in 
IEEE 57 bus system [55]. Table 6 shows the loss appraisal, 
Table 7 shows the voltage aberration evaluation and Table 8 
gives the power constancy assessment. Figures 12, 13 and 14 
give the graphical appraisal between the methods.

Comparison of real power loss done between the 
standard methods and proposed Ruddy turnstone opti-
mization (RTO) algorithm, Extreme Learning Machine 
based Ruddy turnstone Optimization (ELMRTO) Algo-
rithm, Chaotic based Ruddy turnstone optimization 
(CRTO) algorithm, Quantum based Ruddy turnstone 
Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and 
chaotic in-built Opposition based – Quantum Ruddy 
turnstone optimization (COQRTO) algorithm reduced the 
power loss efficiently. Real power Loss (MW) obtained 

Table 5  Appraisal of Voltage constancy

Method Voltage constancy
(PU)

SIPSOTVIW [15] 0.1258
BAPSOTVAC [15] 0.1499
BSPSOTVAC [15] 0.1271
HYPSOCF [15] 0.1261
HPGPSO [15] 0.1264
HYSWTPSO [15] 0.1488
HPGSWTPSO [15] 0.1394
HYMPGPSO [15] 0.1241
HQOTLBO [12] 0.1191
SITLBO [12] 0.1180
SIALO [11] 0.1161
BAABC [11] 0.1161
SIGWO [11] 0.1242
BBA [11] 0.1252
SIFS [14] 0.1252
HYISFS [14] 0.1245
SIBFS [16] 0.1007
RTO 0.1564
ELMRTO 0.1581
CRTO 0.1569
QRTO 0.1573
ORTO 0.1579
COQRTO 0.1589

Fig. 9  Assessment of loss
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by RTO-20.35, ELMRTO- 20.11, CRTO-20.32, QRTO-
20.29, ORTO-20.22 and COQRTO-20.06.

Comparison of voltage deviation done between the stand-
ard methods and proposed Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) algo-
rithm performed well.

Comparison of voltage constancy done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 
algorithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy turn-
stone optimization (CRTO) algorithm, Quantum based Ruddy 
turnstone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone optimiza-
tion (COQRTO) algorithm performed well.

Projected Ruddy turnstone optimization (RTO) algo-
rithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based 

Fig. 10  Appraisal of Voltage 
aberration

0

0.1

0.2

0.3

0.4
PSO-TVIW

PSO-TVAC
PSO-TVAC

PSO-CF

PG-PSO

SWT-PSO

PGSWT-PSO

MPG-PSO

QO-TLBO

TLBO
FS

ISFSS-FS
LISA-I

LISA-II

SSA

ISSA

RTO

ELMRTO

CRTO

QRTO

ORTO
COQRTO

Voltage deviancy (PU)

Voltage deviancy (PU)

Fig. 11  Assessment of voltage 
constancy

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

PSO-TVIW
PSO-TVAC

PSO-TVAC
PSO-CF

PG-PSO

SWT-PSO

PGSWT-PSO

MPG-PSO

QO-TLBO

TLBO
ALO

ABCGWO
BA

FS

IS-FS

BFS

RTO

ELMRTO

CRTO

QRTO
ORTO

COQRTO

Voltage constancy (PU)

Voltage constancy (PU)

Page 17 of 30    25



Technology and Economics of Smart Grids and Sustainable Energy (2022) 7:25

1 3

Ruddy turnstone optimization (CRTO) algorithm, Quan-
tum based Ruddy turnstone Optimization (QRTO) Algo-
rithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 

– Quantum Ruddy turnstone optimization (COQRTO) 
algorithm are corroborated in IEEE 118 bus system [57]. 
Table 9 shows the loss appraisal, Table 10 shows the 
voltage aberration evaluation and Table 11 gives the 
power constancy assessment. Figs. 15, 16 and 17 give 
the graphical appraisal between the methods.

Comparison of real power loss done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 
algorithm, Extreme Learning Machine based Ruddy turn-
stone Optimization (ELMRTO) Algorithm, Chaotic based 
Ruddy turnstone optimization (CRTO) algorithm, Quantum 
based Ruddy turnstone Optimization (QRTO) Algorithm, 
Opposition based Ruddy turnstone optimization (ORTO) 
Algorithm and chaotic in-built Opposition based – Quan-
tum Ruddy turnstone optimization (COQRTO) algorithm 
reduced the power loss efficiently. Real power Loss (MW) 
obtained by RTO-113.92, ELMRTO-113.31, CRTO-113.80, 
QRTO-113.69, ORTO-113.48 and COQRTO-113.24.

Comparison of voltage deviation done between the stand-
ard methods and proposed Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) algo-
rithm performed well.

Comparison of voltage constancy done between the 
standard methods and proposed Ruddy turnstone optimi-
zation (RTO) algorithm, Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm, Cha-
otic based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimization 

Table 6  Appraisal of power loss

Method Power loss (MW)

ICOA [48] 22.376
ICOA1 [48] 22.383
WCA [48] 26.0402
SSA [48] 25.3854
SFOA [48] 26.6541
COA [48] 24.5358
LISA-I [51] 26.88
LISA-II [51] 26.92
ISA [51] 26.97
MOPSO [49] 27.83
MOEPSO [49] 27.42
MFO [52] 24.25
MOGWA [53] 21.171
SGA [13] 25.64
PSO [13] 25.03
HAS [13] 24.90
RTO 20.35
ELMRTO 20.11
CRTO 20.32
QRTO 20.29
ORTO 20.22
COQRTO 20.06

Table 7  Voltage aberration 
evaluation

Method VD (PU)

ICOA [48] 0.6051
ICOA1 [48] 0.6155
WCA [48] 0.7309
SSA [48] 0.94
SFOA [48] 0.7913
COA [48] 0.6711
LISA-I [51] 1.0642
LISA-II [51] 1.072
ISA [51] 1.0912
MOPSO [49] 1.10
MOEPSO [49] 0.896
RTO 0.616
ELMRTO 0.598
CRTO 0.610
QRTO 0.607
ORTO 0.601
COQRTO 0.590

Table 8  power constancy 
assessment

Method Voltage 
stability 
index

ICOA [48] 0.25169
ICOA1 [48] 0.2583
WCA [48] 0.2789
SSA [48] 0.29
SFOA [48] 0.2831
COA [48] 0.2757
RTO 0.2958
ELMRTO 0.2989
CRTO 0.2964
QRTO 0.2969
ORTO 0.2973
COQRTO 0.2995
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(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) algo-
rithm performed well.

Projected Ruddy turnstone optimization (RTO) algo-
rithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy 
turnstone optimization (CRTO) algorithm, Quantum based 
Ruddy turnstone Optimization (QRTO) Algorithm, Opposi-
tion based Ruddy turnstone optimization (ORTO) Algorithm 
and chaotic in-built Opposition based – Quantum Ruddy 
turnstone optimization (COQRTO) algorithm are corrob-
orated in IEEE 300 bus system [56]. Table 12 shows the 
loss appraisal and Table 13 shows the voltage aberration 

evaluation. Figures 18 and 19 give the graphical appraisal 
between the methods.

Comparison of real power loss done between the stand-
ard methods and proposed Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimiza-
tion (ORTO) Algorithm and chaotic in-built Opposition 
based – Quantum Ruddy turnstone optimization (COQRTO) 
algorithm reduced the power loss efficiently. Real power 
Loss (MW) obtained by RTO-390.156, ELMRTO-390.108, 

Fig. 12  Appraisal of loss

0
5

10
15
20
25
30

ICOA
ICOA1

WCA

SSA

SFOA

COA

LISA-I

LISA-II

ISA

MOPSO
MOEPSO

MFO
MOGWA

SGA

PSO

HAS

RTO

ELMRTO

CRTO

QRTO

ORTO
COQRTO

Power loss (MW)

Power loss (MW)

Fig. 13  Appraisal of power 
deviance
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CRTO-390.137, QRTO-390.126, ORTO-390.118 and 
COQRTO-390.090.

Comparison of voltage deviation done between the 
standard methods and proposed Ruddy turnstone optimi-
zation (RTO) algorithm, Extreme Learning Machine based 
Ruddy turnstone Optimization (ELMRTO) Algorithm, 
Chaotic based Ruddy turnstone optimization (CRTO) 
algorithm, Quantum based Ruddy turnstone Optimiza-
tion (QRTO) Algorithm, Opposition based Ruddy turn-
stone optimization (ORTO) Algorithm and chaotic in-built 

Opposition based – Quantum Ruddy turnstone optimiza-
tion (COQRTO) algorithm performed well.

Projected Ruddy turnstone optimization (RTO) algo-
rithm, Extreme Learning Machine based Ruddy turn-
stone Optimization (ELMRTO) Algorithm, Chaotic based 
Ruddy turnstone optimization (CRTO) algorithm, Quan-
tum based Ruddy turnstone Optimization (QRTO) Algo-
rithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) 
algorithm are corroborated in IEEE 354 bus system [56]. 
In Table 14 shows the loss appraisal and Table 15 shows 

Fig. 14  Appraisal of power 
permanence
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Table 9  loss appraisal

Method Power loss (MW)

ICOA [48] 114.8036
ICOA1 [48] 114.8623
WCA [48] 118.3207
SSA [48] 125.7288
SFOA [48] 125.6801
COA [48] 132.3341
COA1 [48] 123.6867
COA2 [48] 126.0426
LISA-I [51] 119.79
LISA-II [51] 120.15
ISA [51] 120.67
ALCPSO [54] 121.53
CLPSO [54] 130.96
RTO 113.92
ELMRTO 113.31
CRTO 113.80
QRTO 113.69
ORTO 113.48
COQRTO 113.24

Table 10  Voltage aberration 
evaluation

Method VD (PU)

ICOA [48] 0.1605
ICOA1 [48] 0.1608
WCA [48] 0.2315
SSA [48] 0.4883
SFOA [48] 0.6061
COA [48] 0.2034
COA1 [48] 0.1928
COA2 [48] 0.1936
LISA-I [51] 0.2819
LISA-II [51] 0.2876
ISA [51] 0.2948
RTO 0.1592
ELMRTO 0.1551
CRTO 0.1583
QRTO 0.1579
ORTO 0.1571
COQRTO 0.1542
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the voltage aberration evaluation. Figures 20 and 21 give 
the graphical appraisal between the methods.

Comparison of real power loss done between the stand-
ard methods and proposed Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimiza-
tion (ORTO) Algorithm and chaotic in-built Opposition 
based – Quantum Ruddy turnstone optimization (COQRTO) 
algorithm reduced the power loss efficiently. Real power 
Loss (MW) obtained by RTO-336.099, ELMRTO-336.047, 

CRTO-336.081, QRTO-336.076, ORTO-336.064 and 
COQRTO-336.039.

Comparison of voltage deviation done between the stand-
ard methods and proposed Ruddy turnstone optimization 
(RTO) algorithm, Extreme Learning Machine based Ruddy 
turnstone Optimization (ELMRTO) Algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) algo-
rithm performed well.

Proposed Ruddy turnstone optimization (RTO) algo-
rithm, Extreme Learning Machine based Ruddy turn-
stone Optimization (ELMRTO) Algorithm, Chaotic based 
Ruddy turnstone optimization (CRTO) algorithm, Quan-
tum based Ruddy turnstone Optimization (QRTO) Algo-
rithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) 
algorithm are reviewed in practical system - WDN 220 KV 
(Unified Egyptian Transmission Network (UETN)) [70] - 
21 buses and 49 lines). Table 16 shows the loss appraisal 
and Table 17 shows the voltage aberration evaluation. 
Figures 22 and 23 give the graphical appraisal between 
the methods.

Comparison of real power loss done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 
algorithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy 
turnstone optimization (CRTO) algorithm, Quantum based 
Ruddy turnstone Optimization (QRTO) Algorithm, Opposition 
based Ruddy turnstone optimization (ORTO) Algorithm and 

Table 11  Power constancy 
assessment

Method Voltage 
stability 
index

ICOA [48] 0.06061
ICOA1 [48] 0.06064
WCA [48] 0.060731
SSA [48] 0.0639
SFOA [48] 0.0619
COA [48] 0.06123
COA1 [48] 0.06072
COA2 [48] 0.06077
RTO 0.06470
ELMRTO 0.06492
CRTO 0.06476
QRTO 0.06479
ORTO 0.06481
COQRTO 0.06502

Fig. 15  Appraisal of loss
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chaotic in-built Opposition based – Quantum Ruddy turnstone 
optimization (COQRTO) algorithm reduced the power loss 
efficiently. Real power Loss (MW) obtained by RTO-29. 352, 
ELMRTO-29. 329, CRTO-29. 344, QRTO-29. 340, ORTO-29. 
336 and COQRTO-29. 322.

Comparison of voltage deviation done between the standard 
methods and proposed Ruddy turnstone optimization (RTO) 
algorithm, Extreme Learning Machine based Ruddy turnstone 
Optimization (ELMRTO) Algorithm, Chaotic based Ruddy 
turnstone optimization (CRTO) algorithm, Quantum based 
Ruddy turnstone Optimization (QRTO) Algorithm, Opposition 
based Ruddy turnstone optimization (ORTO) Algorithm and 
chaotic in-built Opposition based – Quantum Ruddy turnstone 
optimization (COQRTO) algorithm performed well.

Fig. 16  Appraisal of power 
deviance
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Fig. 17  Appraisal of power 
permanence
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Table 12  Loss appraisal

Method Power Loss (MW)

LISA-I [51] 396.983
LISA-II [51] 397.236
ISA [51] 397.902
MOALO [49] 398.853
RTO 390.156
ELMRTO 390.108
CRTO 390.137
QRTO 390.126
ORTO 390.118
COQRTO 390.090
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Table 18 and Fig. 24 show the time taken for Proposed 
Ruddy turnstone optimization (RTO) algorithm, Chaotic 
based Ruddy turnstone optimization (CRTO) algorithm, 
Quantum based Ruddy turnstone Optimization (QRTO) 
Algorithm, Opposition based Ruddy turnstone optimization 
(ORTO) Algorithm and chaotic in-built Opposition based 
– Quantum Ruddy turnstone optimization (COQRTO) algo-
rithm are corroborated in Garver’s 6-bus test system, IEEE 
30, 57, 118, 300, 354 bus test systems and Practical system 
- WDN 220 KV (Unified Egyptian Transmission Network 
(UETN)).

Table 13  Voltage aberration 
evaluation

Method VD (PU)

LISA-I [51] 5.9324
LISA-II [51] 5.9416
ISA [51] 5.9613
MOALO [49] 6.0169
RTO 5.7412
ELMRTO 5.7360
CRTO 5.7408
QRTO 5.7399
ORTO 5.7378
COQRTO 5.7335

Fig. 18  Appraisal of power loss
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Fig. 19  Appraisal of power 
deviance
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Conclusion

Ruddy turnstone optimization (RTO) algorithm, Extreme 
Learning Machine based Ruddy turnstone Optimization 
(ELMRTO) Algorithm, Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm, Quantum based Ruddy 
turnstone Optimization (QRTO) Algorithm, Opposition 
based Ruddy turnstone optimization (ORTO) Algorithm and 
chaotic in-built Opposition based – Quantum Ruddy turn-
stone optimization (COQRTO) algorithm truncated the loss 
competently. Important goals of the paper are Power fidelity 
extension, power eccentricity minimization and genuine loss 
lessening.

• In Ruddy turnstone optimization algorithm the constel-
lation of Ruddy turnstone, which mobile from one place 
to alternate in the sequence of repositioning and the 
fresh investigation agent position is to evade the smash 
amongst their contiguous Ruddy turnstone.

• In the proposed Extreme Learning Machine based 
Ruddy turnstone Optimization Algorithm, Ruddy turn-
stone Optimization approach enhances Extreme Learn-
ing Machine features to determine an optimal carcass of 
Extreme Learning Machine for enhanced standards.

• In Chaotic based Ruddy turnstone optimization algorithm 
Exploration and Exploitation are augmented. In Quantum 
based Ruddy turnstone Optimization Algorithm, features 
emulate the analogous performance with the certain stage 
as they route in a credible powdered of median.

Table 14  Loss appraisal

Method Power Loss (MW)

LISA-I [51] 337.374
LISA-II [51] 338.715
ISA [51] 339.325
FAHCLSO [49] 341.001
PSO [49] 341.123
RTO 336.099
ELMRTO 336.047
CRTO 336.081
QRTO 336.076
ORTO 336.064
COQRTO 336.039

Table 15  Voltage aberration Method VD(PU)

LISA-I [51] 0.4978
LISA-II [51] 0.5117
ISA [51] 0.5216
FAHCLSO [49] 0.5354
PSO [49] 0.6395
RTO 0.4148
ELMRTO 0.4127
CRTO 0.4142
QRTO 0.4139
ORTO 0.4130
COQRTO 0.4121

Fig. 20  Appraisal of power loss
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• Opposition based Ruddy turnstone optimization Algo-
rithm employs Laplace distribution to enhance the explo-
ration skill. Then examining the prospect to widen the 
exploration, a new method endorses stimulating capri-
cious statistics used in formation stage regulator factor 
in Ruddy turnstone Optimization Algorithm.

• In the projected chaotic in-built Opposition based – 
Quantum Ruddy turnstone optimization algorithm, the 
transaction of erratic figures is completed with the irra-
tional digits enthused by Laplace distribution to amplify 
the support of the probability of formation level inside 
the exploration zone.

Proposed Ruddy turnstone optimization (RTO) algorithm, 
Extreme Learning Machine based Ruddy turnstone Optimiza-
tion (ELMRTO) Algorithm, Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm, Quantum based Ruddy turn-
stone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone opti-
mization (COQRTO) algorithm is corroborated in Garver’s 
6-bus test system, IEEE 30, 57, 118, 300, 354 bus test sys-
tems and Practical system - WDN 220 KV (Unified Egyp-
tian Transmission Network (UETN)). Power loss weakening, 
power inconsistency curbing, and power reliability escalation 
has been accomplished.

Fig. 21  Appraisal of power 
deviance
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Table 16  Loss appraisal Method Power loss (MW)

BSPSO [69] 32.314
BBBA [69] 33.875
IMBBA [69] 30.786
RTO 29. 352
ELMRTO 29. 329
CRTO 29. 344
QRTO 29. 340
ORTO 29. 336
COQRTO 29. 322

Table 17  Power aberration 
analysis

Method VD (PU)

BSPSO [69] 0.5800
BBBA [69] 0.6327
IMBBA [69] 0.6751
RTO 0.5446
ELMRTO 0.5429
CRTO 0.5441
QRTO 0.5438
ORTO 0.5431
COQRTO 0.5420
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Fig. 22  Assessment of loss
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Fig. 23  Appraisal of Voltage 
aberration
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Table 18  Time taken for Ruddy turnstone optimization (RTO) algo-
rithm, Chaotic based Ruddy turnstone optimization (CRTO) algo-
rithm, Quantum based Ruddy turnstone Optimization (QRTO) 

Algorithm, Opposition based Ruddy turnstone optimization (ORTO) 
Algorithm and chaotic in-built Opposition based – Quantum Ruddy 
turnstone optimization (COQRTO) algorithm

Method Garver’s 6-bus
Time (S)

IEEE 30 bus
Time (S)

IEEE 57 bus
Time (S)

IEEE 118 bus
Time (S)

IEEE 300 bus
Time (S)

IEEE 354 bus
Time (S)

WDN 220 KV
Time (S)

RTO 8.99 22.85 29.91 39.90 75.82 85.87 24.97
CRTO 8.92 22.98 29.95 39.93 75.89 85.92 24.90
QRTO 8.90 22.95 29.91 39.89 75.88 85.89 24.88
ORTO 8.87 22.92 29.89 39.83 75.84 85.85 24.83
COQRTO 8.82 22.52 29.67 39.84 75.76 85.86 24.80
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Scope of Future Work

In future Ruddy turnstone optimization (RTO) algorithm, 
Extreme Learning Machine based Ruddy turnstone Optimiza-
tion (ELMRTO) Algorithm, Chaotic based Ruddy turnstone 
optimization (CRTO) algorithm, Quantum based Ruddy turn-
stone Optimization (QRTO) Algorithm, Opposition based 
Ruddy turnstone optimization (ORTO) Algorithm and chaotic 
in-built Opposition based – Quantum Ruddy turnstone optimi-
zation (COQRTO) algorithm can be extended to apply for other 
areas of power system problems. Mainly in the area of medi-
cal diagnosis it can be applied for enhancing the identification 
and treatment of the disease. Sequentially the algorithm can be 
tuned further to solve the large problems in complex systems.
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