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active methane consumers at terrestrial
natural gas seeps
Muhammad Farhan Ul Haque1,2* , Andrew T. Crombie3* and J. Colin Murrell1

Abstract

Background: Natural gas seeps contribute to global climate change by releasing substantial amounts

of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the

atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and

energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like

facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e.

ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella

in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from

natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active

utilisers of natural gas at seep sites.

Results: The community structure of active methane-consuming bacteria in samples from natural gas seeps from

Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA-

SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of

various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas

seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. PC1 and PC4 from Pipe Creek,

able to utilise methane, ethane, propane and various non-gaseous multicarbon compounds. Functional and

comparative genomics of these new isolates revealed genomic and physiological divergence from already known

methanotrophs, in particular, the absence of mxa genes encoding calcium-containing methanol dehydrogenase.

Methylocella sp. PC1 and PC4 had only the soluble methane monooxygenase (sMMO) and lanthanide-dependent

methanol dehydrogenase (XoxF). These are the first Alphaproteobacteria methanotrophs discovered with this reduced

functional redundancy for C-1 metabolism (i.e. sMMO only and XoxF only).

Conclusions: Here, we provide evidence, using culture-dependent and culture-independent methods, that

Methylocella are abundant and active at terrestrial natural gas seeps, suggesting that they play a significant role in

the biogeochemical cycling of these gaseous alkanes. This might also be significant for the design of biotechnological

strategies for controlling natural gas emissions, which are increasing globally due to unconventional exploitation of oil

and gas.
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Background
Methane, a potent greenhouse gas, is one of the most

significant contributors to climate change. Emissions

since the Industrial Revolution have driven a large in-

crease in the atmospheric concentrations of methane,

currently around 1.8 ppm, an increase by a factor of 2.6

from pre-industrial times [www.esrl.noaa.gov/gmd/ccgg/

trends_ch4/]. Globally, approximately 600–900 Tg of

methane is emitted annually from various natural and

anthropogenic sources [1]. Based on the process of me-

thane synthesis, it can be categorised as arising from two

origins. Firstly, biogenic methane is produced by meth-

anogenic archaea, under anaerobic conditions, mainly in

wetlands, landfill sites, rice paddies, the rumen of cattle

and the hindgut of termites. Secondly, methane is pro-

duced from the thermogenic decay of sedimentary or-

ganic material, resulting in a mixture of methane and

other gases commonly known as natural gas. The origin

of methane-rich gas can be determined by its chemical

composition and by measurement of the stable isotopic

ratios of carbon (C) and hydrogen [2, 3].

Natural gas is emitted to the atmosphere from sub-

surface reservoirs, through natural seepage or during

mining and extraction of coal and hydrocarbons. These

sources contribute a significant amount of methane

(42–64 Tg year−1) and other climate-active gases, e.g.

ethane (a photochemical pollutant, 2–4 Tg year−1) and

propane (an ozone precursor, 1–2.4 Tg year−1) [4, 5].

Seepage of natural gas occurs over a wide range of ter-

restrial hydrocarbon-prone sedimentary basins, both as

visible features including dry gas seeps and mud volca-

noes, hot and cold springs, alkaline soda lakes and

volcanic systems [2, 6–11] and also as diffused and

frequently undetected microseepage [12]. In marine

environments, natural gas is emitted from deep sea

hydrothermal vents and shallow marine methane seeps

[13, 14]. Terrestrial natural gas seeps have been re-

ported for centuries in many regions, including the

Appalachian Basin in the USA [15–17], represented by

towns such as Gasport (Niagara County, USA), thus

named in 1826. Many of these seeps emit natural gas,

which can be ignited [18]. Recently a seep, reputedly

known to Native Americans thousands of years ago,

named the “Eternal Flame” (Chestnut Ridge National

Park USA) was highlighted, where remarkable releases

of natural gas were observed [19]. The gas released

from this site contains methane (60%, v/v) plus ethane

(23%, v/v) and propane (12%, v/v) [19]. Human activ-

ities have also caused major natural gas releases, e.g.

the Deepwater Horizon disaster of 2010 released 170,000 t

of natural gas [20]. Geological events such as thawing gla-

ciers [21], as well as the exploitation of unconventional oil

and gas reserves, including shale gas extraction (fracking)

are predicted to increase the release of geological

methane, with accompanying concerns of environmental

pollution and climate change [22–25].

However, methanotrophic bacteria, a unique group of

microbes that utilise methane as their sole source of C

and energy, can consume methane before it reaches the

atmosphere and have been reported to mop up over half

of the methane produced by methanogens in wetlands

[26–28]. Phylogenetically, most aerobic methanotrophs

belong to the phyla Proteobacteria (Alphaproteobacteria,

Gammaproteobacteria) and Verrucomicrobia (although

Verrucomicrobia comprises both methanotrophs and

non-methanotrophs, preventing designation as methano-

trophs by taxonomy alone in this case). They contain the

enzyme methane monooxygenase (MMO) which cataly-

ses the oxidation of methane to methanol [29]. There

are two types of MMO: a copper-containing, membrane-

bound, particulate methane monooxygenase (pMMO)

and a diiron centre-containing, cytoplasmic, soluble me-

thane monooxygenase (sMMO) [29–32]. After the initial

oxidation of methane to methanol, methanol dehydro-

genase oxidises methanol to formaldehyde, which can be

assimilated to cell carbon or further oxidised to formate

and CO2 for energy generation [31]. There are two types

of methanol dehydrogenase common in methanotrophs; a

calcium-containing enzyme encoded by the mxa gene clus-

ter and a lanthanide-containing variant (XoxF) encoded by

xoxF [33–35]. Although xoxF genes were detected in

methanotrophs many years ago, their function was not

established until the discovery of the role of lanthanides

(rare earth elements) as co-factors [36]. Recently, several

studies have shown that lanthanides regulate the expression

of both types of methanol dehydrogenases in methano-

trophs [37–42] and methylotrophs [43–46]. These findings

confirm that lanthanide-containing XoxF is also environ-

mentally important, in addition to the calcium-containing

methanol dehydrogenase [35, 47].

Methanotrophs were considered obligate for decades

until the discovery of Methylocella, a facultative genus

capable of growing on several multicarbon compounds in

addition to methane [48, 49]. Methylocella belong to the

family Beijerinckiaceae (Alphaproteobacteria) that com-

prises diversified heterotrophs ranging from generalist

organotrophs (e.g. Beijerinckia indica) to facultative metha-

notrophs (e.g. Methylocella silvestris) and obligate metha-

notrophs (e.g. Methylocapsa acidiphilia) [50]. Recently,

some more limited facultative methanotrophs of the genera

Methylocystis and Methylocapsa, which can grow on etha-

nol or acetate in addition to C-1 substrates, have been

described [51–54]. Analysis of the genome of Methylocella

silvestris BL2 revealed that, unlike most methanotrophs,

Methylocella uses only the sMMO to oxidise methane and

does not contain the pMMO [55]. For decades, ecological

studies, which often rely on the pMMO gene markers,

have identified obligate methanotrophs as prevalent in

Farhan Ul Haque et al. Microbiome           (2019) 7:134 Page 2 of 17

http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/
http://www.esrl.noaa.gov/gmd/ccgg/trends_ch4/


environments rich in methane emissions [56, 57] and

with the exception of a few previous studies [58, 59]

little is known about the distribution of Methylocella in

the environment.

Microbes growing on other components of natural

gas, such as ethane and propane, include mainly Actino-

bacteria (e.g. Rhodococcus, Nocardioides and Mycobac-

terium) [60–63], Gammaproteobacteria (Pseudomonas)

[64] or Betaproteobacteria (Thauera) [65, 66]. Many

propanotrophs contain a propane monooxygenase (PrMO)

enabling growth on ethane and propane [67, 68]. Propano-

trophs are metabolically versatile compared to methano-

trophs, and grow on a range of multicarbon compounds,

but not methane [67]. PrMO of propanotrophs and sMMO

of methanotrophs form two distinct groups within a large

family of enzymes known as soluble di-iron monooxy-

genases (SDIMOs) [69–71].

Methylocella silvestris BL2 also contains a PrMO and

can grow on methane and propane simultaneously using

sMMO and PrMO [49]. The metabolic versatility of

Methylocella to utilise several components of natural gas

is unique and suggests a potentially significant role for

Methylocella-like facultative methanotrophs in the bio-

geochemical cycling of natural gas in the environment.

We hypothesised that less versatile obligate methano-

trophs and propanotrophs at natural gas seep sites may

be at a competitive disadvantage compared to Methylo-

cella. Terrestrial natural gas seeps have been largely

ignored in the past in terms of methanotrophic studies

[72–74] compared to the studies targeting marine

hydrocarbons seeps [75–81]. Recently, we reported that

Methylocella-like facultative methanotrophs are abun-

dant at natural gas seep sites [59]. However, these data

did not reveal the activity of abundant taxa. Therefore,

the aim of this study was to identify the active microbes

involved in cycling natural gas methane and determine if

Methylocella-like facultative methanotrophs are active at

terrestrial seep sites, using both culture-dependent and

culture-independent methods.

Results and discussion

Active methanotrophs at terrestrial natural gas seeps

revealed by DNA stable isotope probing (DNA-SIP)

We sampled two different natural gas seeps reported to

emit thermogenic natural gas containing methane, eth-

ane and propane; Andreiasu Everlasting Fire, Romania,

with a slightly basic pH (pH 8.2), and Pipe Creek, New

York, USA, with slightly acidic pH (pH 6.0) [7, 18, 59].

Amplicon sequencing targeting the 16S rRNA gene in

DNA samples isolated directly from these environments

was performed to investigate the native bacterial com-

munity of the seep sites. Sequence analysis showed that

out of 12 phyla at an abundance of higher than 1%,

Proteobacteria (alpha, beta and gamma), Actinobacteria,

Bacteroidetes and Chloroflexi formed the major part (>

70%) of native bacterial communities in unenriched

environmental samples (Additional file 1: Figure S1).

Dominant taxa included Sideroxydans (Pipe Creek) and

Mycobacterium (Andreiasu Everlasting Fire) when ana-

lysed at the genus level (Fig. 1). As reported previously

[59], among methanotrophs, Methylocella and Methylo-

capsa dominated in samples from Pipe Creek while

Methylococcus and Methylocella were the most abundant

methanotrophs in Andreiasu Everlasting Fire (Fig. 1).

Verrucomicrobia were also abundant in samples from

Andreiasu Everlasting Fire, but cannot be definitively

identified as methanotrophs based on 16S rRNA gene

phylogeny. Comparatively, the relative abundance of

Methylocella was higher at Pipe Creek (5.92% ± 0.1) than

at Andreiasu Everlasting Fire (1.89% ± 0.01). Interest-

ingly, the proportion of ethane and propane in the nat-

ural gas released from the Pipe Creek seep (22% v/v,

ethane and propane) was also several times higher than

in the gas released from Andreiasu Everlasting Fire (3%

v/v, ethane and propane) [7, 18, 59]. This suggested that

increased ethane and propane content of natural gas

might favour Methylocella-like facultative methano-

trophs to colonise natural gas seep sites [59, 82].

The community structure of active methane-consuming

bacteria in samples from natural gas seep sites was investi-

gated by DNA-SIP [83], using 13C-methane incubations in

parallel with 12C-methane incubations (as control) at two

time points (determined by incorporation of total methane

consumed, i.e. 100 and 200 μmol methane utilised per

gram sample). Rates of consumption of 13C-methane or
12C-methane observed in these samples from natural gas

seeps (Fig. 2, Table 1) were faster than those reported for

biogenic methane consumption in agricultural wetlands

[84, 85]. This suggests that these natural gas seep sites

may be hotspots for methane oxidation and potentially

a large active biological sink for methane. DNA recov-

ered from CsCl fractions of SIP incubations revealed

that 200 μmol methane utilised per gram of sample

(approximately 100 μmol C assimilated to biomass per

gram of sample) resulted in the incorporation of suffi-

cient 13C label for a successful DNA-SIP experiment

(Additional file 1: Figure S2).

The 16S rRNA gene sequences retrieved by PCR from

heavy and light DNA fractions of 13C-methane- and
12C-methane-incubated samples were resolved into op-

erational taxonomic units (OTUs) at the genus level.

Eighteen OTUs (Pipe Creek) and 14 OTUs (Andreiasu

Everlasting Fire) were found at a relative abundance of

greater than 1% in heavy DNA fractions retrieved from
13C-methane-incubated samples (Fig. 3). Taxa were

identified as being 13C-labelled based on their relative

abundance in heavy and light fractions of incubations

with 13C-methane, as compared with 12C-methane
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controls (as described in the “Materials and methods”

section). The relative abundance of labelled taxa consti-

tuted 51.84% and 51.65% of the total in Pipe Creek and

Andreiasu Everlasting Fire, respectively. Sequences affili-

ated with the genera Methylocella (30.3%), Verrucomi-

crobium (24.8%) Methylobacter (11.1%), Methylocapsa

(10.0%) and Methylocystis (5.5%) were detected in 13C-

labelled DNA obtained from DNA-SIP experiments with

samples from Pipe Creek (Fig. 3), identifying Methylo-

cella as the most abundant active methanotroph at this

site. Methylocella were also 13C-labelled in Andreiasu

Everlasting Fire DNA-SIP samples and constituted 3.5%

of 13C-labelled taxa along with the methanotrophs

Crenothrix (28.9%), Methyloglobulus (14.6%) and Methy-

losinus (3.6%) (Fig. 3). Hyphomicrobium and Methylo-

bacterium were the only non-methanotrophs identified

as 13C-labelled in DNA-SIP experiments with Pipe Creek

samples, while in DNA-SIP experiments with Andreiasu

Everlasting Fire samples, non-methanotrophic bacteria

labelled with 13C were Hyphomicrobium, Rhodospiril-

lum, Micavibrio and Bdellovibrio (Fig. 3). Hyphomicro-

bium and Methylobacterium are methylotrophic bacteria

and may have been feeding on methanol released during

methane utilisation by methanotrophs [86]. Micavibrio

and Bdellovibrio are bacterial predators that might also

have been cross-feeding on active methanotrophic bac-

teria. The presence and labelling of methylotrophs sug-

gest that methanotrophs are supporting a community of

non-methane oxidisers in these environments. Our data

show that Methylocella was the only active methano-

trophic genus common to both environments. Previ-

ously, Methylocella were detected in environmental

samples originating from acidic forest soils and acidic

peatlands as reported in a few cultivation-independent

[87–90] and cultivation-dependent studies [54, 91–96].

Studies focussing on functionally active methanotrophs

(for example [97–100]) also detected Methylocella in

acidic environments leading to the belief that Methylo-

cella were mainly confined to acidic environments,

although, interestingly, some studies reported that

Methylocella were also abundant in alkaline environ-

ments [58, 59, 101]. Our observation that Methylocella

are active methanotrophs in environmental samples

from geological natural gas-emitting sites of acidic and

Fig. 1 Relative abundance of bacterial genera in native environmental samples from Pipe Creek and Andreiasu Everlasting Fire, based on 16S

rRNA gene amplicon sequencing. Genera with a relative abundance of higher than 5% are shown in bold and with an asterisk (*). 16S rRNA gene

amplicon sequence data for Andreiasu Everlasting Fire were reported in Farhan Ul Haque et al. [59]
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basic pH suggest that its metabolic flexibility gives

Methylocella a competitive advantage over other metha-

notrophs to utilise methane and other short-chain

alkanes in such environments.

Targeted isolation of facultative methanotrophs

As indicated above, culture-independent DNA-SIP

experiments showed that Methylocella-like facultative

methanotrophs were one of the most abundant and

active methanotrophs at the natural gas seeps. To com-

plement these results, we isolated facultative methano-

trophs capable of utilising methane, ethane and propane

as their only source of carbon and energy. Enrichments

of environmental samples from the seep sites were incu-

bated under a mixture of methane, ethane and propane

(in a proportion comparable to the gas released from

Pipe Creek). Serial dilutions of enrichment cultures were

plated and incubated under the gas mixture, and col-

onies were screened for parallel growth on each gas

separately. We isolated two bacterial strains growing

under these gases, both as a mixture and individually

(Table 2, Additional file 1: Table S1). Methylocella sp.

PC1 and PC4 from Pipe Creek exhibited faster growth

rates on methane and propane (up to 0.04 h−1, Table 2)

compared to those previously reported for Methylocella

(0.01–0.02 h−1 on methane and 0.005–0.015 h−1 on pro-

pane) [49, 102, 103]. As with Methylocella silvestris BL2

[49], they grew under methane and propane simultan-

eously and could also utilise non-gaseous multicarbon

compounds, including acetate, pyruvate and succinate

(Additional file 1: Table S1). The isolates grew faster on

ethane compared to their growth on methane or pro-

pane (Table 2, Additional file 1: Figure S3), as the only

source of C and energy. Since these isolates were from

an environment rich in ethane [18, 59], they may have

been adapted to ethane utilisation and, hence, can utilise

the major components of natural gas and serve as a nat-

ural biofilter for the various geological gases before they

are emitted from terrestrial natural gas seep sites to the

atmosphere.

Functional genomics and comparative genomics of

Methylocella isolates

Analysis based on the 16S rRNA gene revealed that strains

Methylocella sp. PC1 and PC4 were most closely affiliated

with Methylocella tundrae (Fig. 4). Previously, complete

genomes of only three strains of Methylocella have been re-

ported, belonging to Methylocella silvestris and Methylo-

cella tundrae species [55, 104, 105]. Genome sequencing

Table 1 Potential rates1,2 of methane utilisation by

environmental samples

Substrate gas Pipe Creek Andreiasu Everlasting Fire

13C-methane 34.41 (± 9.53) 38.33 (± 0.16)

12C-methane 44.84 (± 3.39) 38.25 (± 3.58)

1Values (μmol methane per gram of fresh sample per day) are calculated

based on the methane consumed by fresh environmental samples incubated

in lab scale microcosms (120 ml sealed serum vials) with 13C-methane or 12C-

methane injected into the headspace (1%, v/v)
2Average values of biological duplicates (± standard error of means)

are presented

Fig. 2 Consumption of methane by environmental samples from natural gas seep sites of Pipe Creek (a) and Andreiasu Everlasting Fire (b).

Microcosms containing environmental samples were incubated under 13C-methane (red circles) or 12C-methane (blue circles) as the only sources

of C or energy without any supplementary nutrients. The total amount of methane was injected into the headspace in two spikes (approximately

100 μmol/gram of fresh sample per spike). Data points show the mean (with error bars showing the standard errors) of duplicate incubations for

each substrate
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Fig. 3 Community profile of the enriched heavy (C-13 H) and light (C-13 L) DNA fractions of 13C-methane incubations from DNA-SIP experiment

with the Pipe Creek samples (a) and Andreiasu Everlasting Fire samples (b), analysed by 16S rRNA gene amplicon sequencing. Sequencing

community profiles of heavy (C-12 H) and light (C-12 L) fractions of control incubations with 12C-methane are also presented. Taxa represented

by black borders and in parenthesis are identified as “13C-labelled” in that experiment. Taxa present at a relative abundance lower than 1% in any

replicate of C-13 H fraction are included in “Others”. Data presented here are the mean of biological duplicates
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and in silico DNA-DNA hybridization analyses suggest that

these novel Methylocella sp. PC1 and PC4 strains represent

subspecies of Methylocella tundrae distinct from Methylo-

cella tundrae T4 strain (Additional file 1: Table S2).

PCR analyses as well as genome sequence analysis of

the isolates showed that the mmoX gene (encoding

MmoX, the alpha subunit of sMMO) is present while

the pmoA gene (encoding the alpha subunit of pMMO)

is absent. This is in agreement with previous reports of

Methylocella [55, 104]. Apart from Methylocella, the ob-

ligate methanotrophs Methyloceanibacter [106] and

Methyloferula stellata [107], also lack pMMO and rely

on sMMO for methane oxidation.

Detailed analyses of the genomes revealed the presence

of the genes of the soluble methane monooxygenase

(mmo operon genes), in both isolates (Fig. 5). In contrast

to Methylocella silvestris BL2 that has only one copy of

the mmo operon, two complete mmo operons are present

Table 2 Growth rates1 of new Methylocella isolates with methane and other short-chain alkanes

Isolate Methane
(20 %, v/v)

Ethane
(10 %, v/v)

Propane
(10 %, v/v)

Methylocella sp. PC1 4.1 × 10−2 (± 5.0 × 10−5) 5.7 × 10−2 (± 7.0 × 10−4) 3.4 × 10−2 (± 8.0 × 10−4)

Methylocella sp. PC4 4.1 × 10−2 (± 5.0 × 10−5) 5.3 × 10−2 (± 5.0 × 10−4) 3.4 × 10−2 (± 1.5 × 10−4)

1Cultures were grown in 20 ml volume in 120 ml sealed serum vials. Growth was measured in terms of optical density increase (measured at 540 nm). Growth

rates (per hour) are calculated using at least four growth points of logarithmic growth phase (Additional file 1: Figure S3). Values presented are biological

duplicates (± standard error of means).

Fig. 4 Phylogenetic analysis based on 16S rRNA sequences from new Methylocella isolates (bold red) along with other known Methylocella (bold

black) strains. Accession number for the nucleotide sequences are given in brackets. Sequences were aligned using Mega 7.0 and the optimal

tree (drawn to scale, with branch lengths measured in the number of substitutions per site) with the sum of branch length = 0.65 is shown

where the evolutionary history was inferred using the neighbour-joining method (1067 positions in the final dataset)
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Fig. 5 a The soluble methane monooxygenase genes in Methylocella sp. PC1 and PC4 isolates compared with their homologues in Methylocella

silvestris BL2. Names of the genes are given above, and amino acid identities to their homologous proteins in Methylocella silvestris BL2 are shown

in brackets. b Phylogenetic analysis of MmoX (alpha subunit of soluble methane monooxygenase) from new Methylocella isolates (bold red)

along with MmoX from other known Methylocella (bold black) strains based on the derived amino acid sequences. Protein names and accession

numbers for the sequences are given in brackets. Amino acid sequences were aligned using Mega 7.0 and the optimal tree (drawn to scale, with

branch lengths measured in the number of substitutions per site) with the sum of branch length = 0.53 is shown where the evolutionary history

was inferred using the neighbour-joining method (392 positions in the final dataset). The percentage of replicate trees in which the associated

taxa clustered together in the bootstrap test (1000 replicates) ranged from 59 to 100
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in Methylocella sp. PC4 (Fig. 5). To our knowledge, having

multiple copies of mmo operons is unique to this novel

Methylocella sp. PC4 isolate compared to other extant

Methylocella strains. The mmo operons in Methylocella

sp. PC1 and PC4 are highly conserved and of high similar-

ity to those present in Methylocella silvestris BL2 (Fig. 5).

The structural genes for sMMO (mmoXYBZDC) are

adjacent to regulatory genes encoding a σ54 transcriptional

regulator (mmoR) and a putative GroEL-like chaperone

(mmoG), respectively.

Methanol dehydrogenase, the second essential enzyme

for methane metabolism, catalyses the conversion of

methanol to formaldehyde during C-1 metabolism. Surpris-

ingly, Methylocella sp. PC1 and PC4 lacked the mxa gene

operon encoding the classical calcium-containing methanol

dehydrogenase. Instead, multiple copies of the xox gene

clusters encoding for a lanthanide-containing methanol

dehydrogenase XoxF and associated proteins (XoxJ and

XoxG) were present (Fig. 6a). Two complete xox gene

operons (xoxFJG) phylogenetically related to XoxF5

and XoxF3 clades [108] are present (Additional file 1:

Figure S4). Absence of calcium-containing methanol

dehydrogenase in Methylocella sp. PC1 and PC4 was

confirmed by failure to PCR-amplify mxaF, encoding

the alpha subunit (Fig. 6b). Methylocella sp. PC1 and

PC4 showed very poor growth with methanol as the

only source of C and energy when grown without

adding lanthanides in the growth medium (Fig. 6c),

confirming lanthanide-dependence under these conditions.

All Methylocella strains and other methanotrophs described

to date contain the classical calcium-containing methanol

dehydrogenase, usually in addition to the lanthanide-

dependent methanol dehydrogenase(s) [33, 34, 47], with the

exception of the Verrucomicrobium methanotroph Methyla-

cidiphilum fumariolicum SolV [36] and two gammaproteo-

bacterial methanotrophs [109]. The recently discovered role

of lanthanides in the activity and regulation of methanol de-

hydrogenase had prompted us to use lanthanum as a regular

nutrient in the medium for enrichment and isolation of

methanotrophs, which facilitated the isolation of novel

Methylocella sp. PC1 and PC4 isolates containing only

lanthanide-dependent methanol dehydrogenase. To our

knowledge, these are the first alphaproteobacterial methano-

trophs which do not contain a calcium-containing methanol

dehydrogenase.

In addition to mmo and xox gene operons, other genes re-

quired for the central metabolism of C-1 substrate were also

analysed (Additional file 1: Table S3). A complete set of

genes encoding enzymes required to convert formaldehyde

into formate via tetrahydromethanopterin (H4MPT) path-

way was found (Additional file 1: Table S3), and the genes

(mtdA and fchA encoding methylene-tetrahydrofolate de-

hydrogenase and methenyl-tetrahydrofolate cyclohydrolase,

respectively) required to convert formaldehyde into formate

via the tetrahydrofolate (H4F) pathway were not found, but

instead folD, encoding bifunctional 5,10-methylene-H4F

dehydrogenase/methenyl-H4F cyclohydrolase, was present.

For oxidation to CO2, genes encoding molybdenum-

containing formate dehydrogenase (FDH2) [110] were found

(Additional file 1: Table S3). To assimilate formaldehyde

into biomass, the genes encoding enzymes of the serine

cycle were present in both isolates (Additional file 1:

Table S3). Our comparative genomic analyses show

that the pathway for the assimilation and oxidation of

formaldehyde from C-1 substrates to produce biomass

and energy is similar in these isolates to that of Methy-

locella silvestris BL2 (Additional file 1: Table S3).

The genomes of Methylocella sp. PC1 and PC4 con-

tained genes (prmABCDGR) encoding PrMO, a SDIMO

enzyme responsible for the growth of bacteria on short-

chain alkanes (Fig. 7a). Genes encoding PrMO in Methy-

locella sp. PC1 and PC4 share identities (> 78% based on

AA sequences) with those found in Methylocella silves-

tris BL2. Methylocella silvestris BL2 and Methylocella

silvestris TVC are the only strains described previously,

capable of growing on methane and propane and con-

taining both sMMO and PrMO [55, 104]. Interestingly,

and in contrast to other Methylocella strains, isolates

Methylocella sp. PC1 and PC4 contain more divergent

copies of gene clusters putatively encoding another

SDIMO in addition to PrMO and sMMO. BLAST and

phylogenetic analyses reveal that these gene clusters

(here named as bmoXYBZDCG in Methylocella sp. PC1

and PC4) are more similar to the bmo genes encoding

butane monooxygenase found in Thauera butanivorans

(Fig. 7b, c) [111, 112]. Methylocella sp. PC1 and PC4 did

not grow with butane as the only source of carbon and

energy. The reason could be that this bmo-like gene

cluster in both Methylocella sp. PC1 and PC4 lacks

bmoR and istAB genes (Fig. 6b). BmoR is putatively in-

volved in the regulation of butane monooxygenase and

was required for good growth of Thauera butanivorans

on butane [112]. However, the presence of multiple SDI-

MOs in the genomes of Methylocella sp. PC1 and PC4,

in particular, sMMO and PrMO enabled them to grow

on methane as well as on ethane and propane, the major

components of fugitive nature gas. This report is to our

knowledge the first to describe and to isolate novel

strains of facultative methanotrophs from natural gas

seep sites. Considering the extent of gas seeps spread

over Earth’s terrestrial regions, this finding has profound

implications for the biological consumption of natural

gas and carbon cycling in these environments, which

have been ignored in the past.

Conclusion
Here, we provide evidence, using culture-dependent and

culture-independent methods, that Methylocella are
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abundant and active at terrestrial natural gas seeps.

Methylocella were the only active methanotroph found in

both of the contrasting natural gas seep sites tested, sug-

gesting that they play a significant role in biogeochemical

cycling of these gaseous alkanes and may serve as a

natural biofilter for gaseous hydrocarbons of geological

sources before they are emitted to the atmosphere.

We also isolated novel Methylocella isolates with consid-

erable differences to extant strains, illustrating that natural

gas seeps may be a rich source of new methanotrophs.

Using lanthanum as a nutrient in medium for the enrich-

ment of cultures from the natural gas seep sites we isolated

Methylocella sp. PC1 and PC4, which contain only XoxF

methanol dehydrogenase. Our comparative genomic and

growth data suggest that the ability of Methylocella strains

to utilise methane as well as short-chain alkanes, integral

components of natural gas, is not restricted to one species.

The bacteria obtained in this study provide novel experi-

mental models for investigating the complexity and func-

tion of the facultative methanotrophic community active at

terrestrial natural gas seeps. This would also be of signifi-

cance for the design of environmental biotechnological

strategies for controlling natural gas emissions along with

industrial applications for converting these gases to value-

added products, as natural gas emissions are increasing

globally due to unconventional oil and gas extraction.

Materials and methods
Chemicals and reagents

All chemicals and reagents (purity, > 99%) were obtained

from Sigma-Aldrich unless otherwise stated. Buffers, cul-

ture media and solutions were prepared in ultra-pure

water, and sterilisation was done by autoclaving (15 min,

121 °C, 1 bar) or by filtration (0.2 μm).

Bacterial strains and growth conditions

Modified diluted nitrate mineral salt (DNMS) medium

[49] supplemented with 5 μM lanthanum (LaCl3) was

used as a growth medium in 120 ml serum vials (with

20ml culture volume), with substrate gas as the only

source of C and energy. Methane (20%), ethane (10%)

and propane (10%), individually or in a mixture at vary-

ing concentrations, were injected (percentage v/v in

headspace) in sealed serum vials as C substrates. The

growth of liquid cultures was monitored by measuring

the optical density at 540 nm. Concentrations of sub-

strate gases in the cultures were quantified using a gas

chromatograph (GC) using an Agilent 7820A GC

equipped with a Porapak Q column (Supelco) coupled

to a flame ionisation detector (FID) to measure methane,

ethane and propane concentrations as previously de-

scribed [49]. Comparison of growth of Methylocella sp.

PC4 with and without lanthanum (Fig. 6) was performed

in 50 ml polypropylene falcon tubes (with 15ml culture

volume) to avoid any contamination of lanthanides from

glassware. As many methanotrophs do not store well

frozen [113], cultures were maintained on plates or in

liquid.

Sample collection

Two different natural gas seep sites, (Andreiasu Ever-

lasting Fire, Romania (Additional file 1: Figure S1B),

with a slightly basic pH (8.2), and Pipe Creek, New

York, USA (Additional file 1: Figure S1B), with slightly

acidic pH (6.0)) with varying characteristics of physical

nature, pH and the proportion of methane, ethane and

propane in the gas released, were sampled as described

previously [59]). Two to five sub-samples, taken from

each site in sterile 50 ml plastic tubes, were pooled

together in the lab before further experiments were

carried out.

DNA-SIP incubation, DNA extraction and fractionation

For DNA-SIP experiments, approximately 2 g of soil/

sediment suspensions (1:3 environmental samples and

water ratio) in sterile ultra-pure molecular biology grade

water without any nutrient supplements were incubated

in 120 ml sealed serum vials. Substrate gas (12C-methane

or 13C-methane) was injected into the headspace of each

serum vial at 1% concentration (v/v) and consumption

was followed over time by GC. Time point 1 samples

from DNA-SIP incubations were harvested after they

had consumed approximately 1% (v/v) added gas, and

for time point 2 samples, 12C-methane or 13C-methane

was replenished by injecting an extra 1% (v/v) of gas and

then harvested after approximately 2% (v/v) of total gas

had been consumed. Samples were harvested in order to

obtain time points based on 0, 1% (v/v) and 2% (v/v)
12C-methane or 13C-methane gas consumed, corre-

sponding to 0, 100 and 200 μmol C consumed per gram

(See figure on previous page.)

Fig. 6 a Gene clusters encoding for the two types of lanthanide-dependent methanol dehydrogenases XoxF3 and XoxF5 in Methylocella sp. PC1

and PC4. Names of the genes are given above. Another copy of xoxF5 is also present in the genomes of Methylocella PC1 and PC4, but only as a

singleton gene (see Additional file 1: Figure S4). b PCR amplification showing the absence of mxaF in Methylocella sp. PC1 (lane 1) and

Methylocella sp. PC4 (lane 2) along with positive control Methylocella silvestris BL2 (lane 3) and no template control (lane 4). Lane M represents 1

kb DNA ladder. c Growth of Methylocella sp. PC4 with (red) and without (blue) lanthanum. Cultures were grown in DNMS medium with methanol

(20 mM) as the only source of carbon and energy. Each point shows the average of duplicate cultures with error bars (invisible if smaller than

symbol size) showing the standard errors. A control without any carbon substrate showing no growth of cells (green) was also performed
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of fresh sample, respectively. All incubations were carried

out in duplicate for each substrate and for each time point.

Samples were harvested by centrifugation at 10,000 × g for

15min in 50ml falcon tubes. Supernatants were discarded

and the soil/sediment pellets were stored at − 20 °C and

used later for DNA extraction. DNA was extracted from

unenriched environmental samples and SIP-incubated sam-

ples using the FAST DNA spin kit for soil (MP Biomedi-

cals), following the manufacturer’s instructions. Quality and

quantity of DNA was checked by Qubit (Invitrogen) and

NanoDrop (Thermo Fisher Scientific).

Labelled and unlabelled DNA from SIP-incubated samples

were separated by density gradient ultracentrifugation and

fractionation (12 fractions per sample) as described previ-

ously [114]. The quantity of DNA retrieved from each frac-

tion was plotted against the corresponding refractive index,

quantified using a refractometer (Reichert AR200, Reichert

Analytical Instruments, Buffalo, NY, USA) (Additional file 1:

Figure S2). Based on the data shown in Additional file 1:

Figure S2, three to four fractions of each sample containing

labelled DNA (refractive index range 1.4032–1.4045) were

mixed and designated as the “heavy” DNA fraction, while

two to three fractions of each sample containing unlabelled

DNA (refractive index range 1.4015–1.4025) were mixed

and designated as the “light” DNA fraction.

Illumina Mi-Seq sequencing of PCR amplicons

PCR amplicons of 16S rRNA gene obtained from the

unfractionated unenriched environmental DNA samples

and the heavy and light DNA fractions from 12C-methane-

or 13C-methane-incubated samples, were sequenced using

the Illumina Mi-Seq sequencing platform of MR DNA

(Shallowater, TX, USA). Universal primers 341F and 785R

[115] targeting the V3 and V4 regions were used to PCR

amplify 16S rRNA gene fragment in a reaction volume of

25 μl containing 12.5 μl 2x PCRBIO Ultra Polymerase

(PCR BIO), 1 μl of each of forward and reverse primers

(10 μM) and 2 μl of template DNA. The cycling conditions

were 95 °C for 3min, followed by 30 cycles of 94 °C for 20

sec, 55 °C for 20 sec, 72 °C for 30 sec, with a final extension

at 72 °C for 5 min. PCR products from duplicate reactions

for each fraction were pooled before purifying using a

NucleoSpin gel and PCR Clean-up kit (Macherey-Nagel).

The quality and quantity of purified PCR products was

assessed by gel electrophoresis and a NanoDrop and then

concentrations of all PCR products were adjusted to

15–20 ng/μl. DNA libraries following the Illumina TruSeq

DNA library protocol from purified PCR products were

prepared and sequenced. Sequence data from 16S rRNA

amplicons was processed using the MR DNA proprietary

analysis pipeline (www.mrdnalab.com) as described

previously [59]. Briefly, barcode and primer sequences

were removed and then short sequences < 200 bp, se-

quences with ambiguous base calls and sequences with

homopolymer runs exceeding 6 bp were removed. After

denoising of the sequences, 16S rRNA gene OTUs were

defined with clustering at 3% divergence (97% identity)

followed by removal of singleton sequences and chimaeras

[116–121]. BLASTn against a curated database derived

from GreenGenes, RDPII and NCBI (www.ncbi.nlm.nih.

gov, http://rdp.cme.msu.edu) was used for the final

taxonomic classification of OTUs into each taxonomic

level. Taxa fulfilling the following criteria were identi-

fied as labelled: (1) the relative abundance in the heavy

DNA fraction of the 13C-methane-incubated sample

was higher than 1.0%, (2) the abundance in the heavy

DNA fraction of the 13C-methane-incubated sample

was higher than the abundance in the light DNA frac-

tion of the 13C-methane and (3) the difference in the

abundance in the compared heavy and light DNA frac-

tions of the 13C-methane-incubated sample was higher

than that of the 12C-methane-incubated sample.

Enrichment cultures, isolations and genome sequencing

of new Methylocella isolates

Fresh samples (1 g) from the Pipe Creek natural gas seep

site were incubated in 10ml DNMS medium supple-

mented with 5 μM lanthanum in 120 ml sealed serum

(See figure on previous page.)

Fig. 7 a Gene operon encoding the propane monooxygenase in Methylocella sp. PC1 and PC4 compared with their homologues in Methylocella

silvestris BL2. Names of the genes are given above and amino acid identities to their homologous proteins in Methylocella silvestris BL2 are shown

in brackets. b Gene operon putatively encoding butane monooxygenase in Methylocella sp. PC1 and PC4 compared with their homologues in

Thauera butanivorans. c Phylogenetic analysis of the alpha subunit of propane monooxygenase (PrmA) and putative butane monooxygenase

(BmoX) from Methylocella PC1 and PC4 isolates (red and blue, respectively). PrmA and BmoX from known closely related strains (bold black) and

other soluble diiron monooxygenases (ThmA, alpha subunit of tetrahydrofuran monooxygenase; Blr3677 and Rsp2792, putative monooxygenases;

PmoC, alpha subunit of propene monooxygenase; MmoX, alpha subunit of methane monooxygenase; DmpN, alpha subunit of phenol

hydroxylase; TomA3, alpha subunit of toluene ortho-monooxygenase; IsoA, alpha subunit of isoprene monooxygenase; and TouA, toluene o-

xylene monooxygenase component) from different bacteria are also presented. Compressed MmoX sequences are same as the known methane

monooxygenases presented in Fig. 5b. Protein names and accession number for the sequences are given in brackets. Amino acid sequences

were aligned using Mega 7.0 and the optimal tree (drawn to scale, with branch lengths measured in the number of substitutions per site) with

the sum of branch length = 5.7 is shown where the evolutionary history was inferred using the neighbour-joining method (316 positions in the

final dataset). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates) ranged

from 60 to 100

Farhan Ul Haque et al. Microbiome           (2019) 7:134 Page 13 of 17

http://www.mrdnalab.com
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://rdp.cme.msu.edu/


vials. A mixture of gases (20%, v/v) in the headspace was

injected as the only supplemental source of C and energy

comprising of methane, (70%, v/v) ethane (10%, v/v) and

propane (20%, v/v), and the vials were incubated in a

shaker (150 rpm) at 25 °C for 3 weeks in the dark. Then,

serial dilutions (1/10 times) of the enrichment cultures

were plated onto DNMS agar plates (supplemented with

5 μM lanthanum), and incubated again under a mixture of

gases (10%, v/v) injected into the headspace containing

methane (70%, v/v) ethane (10%, v/v) and propane (20%,

v/v) in a sealed jar. After 2 weeks of incubation, isolated

colonies appearing on the plates were resuspended in

20 μl sterile DNMS medium individually. Each colony sus-

pension was replica-plated onto three plates of DNMS

medium (supplemented with 5 μM lanthanum) and incu-

bated under methane, ethane or propane individually in

the headspace (10%, v/v) as the only source of carbon and

energy. Colonies growing under all three gases were con-

sidered as facultative methanotrophs. These facultative

methanotrophs were purified by serial dilution of cultures

and transfer of single colonies several times on agar plates.

Purity of cultures was confirmed by microscopy of cul-

tures, multiple cloning and sequencing of 16S rRNA and

mmoX genes and subsequent genome sequencing. The

genome sequences were checked for completeness and

contamination using CheckM [122]. Upon mapping of

raw reads to the assembly using Bowtie2 (v. 2.3.4.1) [123],

~ 99% of all reads aligned to the genome, thus confirming

purity of these new Methylocella strains (Additional file 1:

Table S5). Genomic DNA from Methylocella strains was

extracted using the Wizard Genomic DNA Purification

Kit (Promega) according to the manufacturer’s instruc-

tions and used for PCR analyses to generate 16S rRNA,

mmoX, mxaF, pmoA and prmA amplicons using specific

primers (Additional file 1: Table S4). Genome sequencing

of Methylocella PC1 and PC4 was performed at

MicrobesNG (Birmingham, UK) using Illumina HiSeq

technology and assembled using SPAdes 3.7 into contigs

(Additional file 1: Table S5). Genome sequence annota-

tion, exploration and comparative genomics of various

Methylocella strains were performed using MicroScope,

an online platform by GenoScope (France) providing a

collection of bioinformatic tools [124].

Additional file

Additional file 1: Table S1. Growth of Methylocella sp. PC1 and PC4

under various substrates. Table S2. In-silico DNA-DNA hybridization

(DDH) of Methylocella sp. PC1 and PC4 genomes compared with other

Methylocella strains. Table S3. Genes identified putatively involved in the

central metabolism of C-1 substrates in Methylocella sp. PC1 and PC4.

Table S4. Primers used for PCR amplification in this study. Table S5.

Characteristics of sequenced genomes of new Methylocella isolates.

Figure S1. Relative abundance (%) of dominant bacterial phyla as re-

vealed by 16S rRNA gene sequencing of DNA from native environmental

samples. Figure S2. DNA retrieved as a function of refractive index of

each fraction recovered after ultracentrifugation. Figure S3. Growth

curves of Methylocella sp. PC1 and PC4 under various gaseous substrates.

Figure S4. Phylogenetic analysis of methanol dehydrogenases from

Methylocella PC1 and PC4 isolates. (PDF 798 kb)
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