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Abstract: We hypothesize that our fingertip image-based heart rate detection methods using

smartphone reliably detect the heart rhythm and rate of subjects. We propose fingertip curve

line movement-based and fingertip image intensity-based detection methods, which both use the

movement of successive fingertip images obtained from smartphone cameras. To investigate the

performance of the proposed methods, heart rhythm and rate of the proposed methods are compared

to those of the conventional method, which is based on average image pixel intensity. Using a

smartphone, we collected 120 s pulsatile time series data from each recruited subject. The results show

that the proposed fingertip curve line movement-based method detects heart rate with a maximum

deviation of 0.0832 Hz and 0.124 Hz using time- and frequency-domain based estimation, respectively,

compared to the conventional method. Moreover, another proposed fingertip image intensity-based

method detects heart rate with a maximum deviation of 0.125 Hz and 0.03 Hz using time- and

frequency-based estimation, respectively.
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1. Introduction

Recently, smartphones have been widely spread and used in our daily life. Moreover, smartphones

have rapidly evolved in terms of hardware, software, and application. For example, central processing

unit (CPU), memory, and battery performance of smartphones are enhanced fast; embedded sensors got

diverse; and various types of applications with different operating systems (OSs) are actively developed

for smartphones. As a result, smartphone applications are not only assisting office and personal

work but also providing entertaining contents/games. Especially, health monitoring smartphone

applications has gained much attention due to users’ increased interest in point-of-care health

technologies [1].

An important and promising health monitoring smartphone application is heart rhythm

monitoring application since heart rhythm monitoring provides information about heart healthiness

as well as vital sign information. For example, heart rhythm monitoring is used to detect if a subject

has atrial fibrillation (AF) since AF gives irregular heart rhythms. AF is the most common arrhythmia

and can lead to serious complications such as stroke and heart failure [2–4].

Nowadays, smartphones are considered to be effective for heart rhythm monitoring. Specifically,

heart rhythm monitoring based on smartphone camera recordings of fingertips are shown to give

heart rhythms in an accurate way since there is vibration and blood flow through the pulmonary
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vessels beneath fingertips [5–9]. In this paper, we propose novel heart rate detection methods for

iPhone 4S/5S/6S, which can detect heart rate using the changes of fingertip images recorded from

a smartphone’s video camera. To detect changes of fingertip images, we considered two different

approaches: (1) fingertip curve line movement detection; and (2) fingertip intensity movement detection.

To increase the detectability of heart rate in fingertip curve movement detection, we adopted bit

arrangement, edge detection, and smoothing techniques. The edge detection [10–13] and smoothing

techniques [14–16] have been widely used in detecting objects and removing noises in digital image

processing. In this study, we evaluate our heart rate detection algorithms’ performance with data from

healthy subjects who were recruited after consenting for our study at Texas Tech University (TTU)

(Lubbock, TX, USA). The rest of this paper is organized as follows: Section 2 describes experimental

protocol and preprocessing in our research; Section 3 explains two different proposed approaches

which are both based on fingertip images changes; Section 4 evaluates the performance of the proposed

approaches on test data; and Section 5 concludes this paper.

2. Materials

2.1. Experimental Protocol

We obtain video camera recording of fingertip data from volunteering subjects using iPhone

4/5/6. We recruited volunteering participants between 18 and 80 years old at TTU without diagnosed

cardiovascular and tremor problems that limit keeping hands still during fingertip video camera

recording measurement. Here, the recruited volunteering subjects are healthy. Our collection data

protocol was approved by the Institutional Review Boards of TTU (#2016-764). The subjects all gave

signed consent forms. The subjects are asked to sit and place their fingertips on a camera lens as shown

in Figure 1a. We start our smartphone application after guiding the subject not to move their hands

with maintaining his/her fingertip placed on a lens as shown in Figure 1a. Our developed algorithm

records the subject’s fingertip images for two minutes. The developed smartphone application turns

off in an automatic way after this two minutes of recordings. We downloaded this recorded data from

the smartphone to an offline server, and performed signal processing and data analysis using MATLAB

in the server.

–
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In this study, we evaluate our heart rate detection algorithms’ performance 

the subject’s 
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Figure 1. Our developed smartphone-based heart rate detection application: (a) fingertip placement;

and (b) graphic user interface (GUI) of our developed application.

2.2. Preprocessing

Our developed heart rate detection method was implemented as a smartphone application.

The graphical user interface (GUI) of our developed application is shown in Figure 1b. The smartphone

application records a sequence of fingertip images from the smartphone video camera showing
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its average pixel intensity values in real-time. The development platform of iPhone 4/5/6 is iOS.

iPhone 4/5/6 have enough central processing unit (CPU) speed/random access memory (RAM)

size of 800 MHz/512 MB, 1.2 GHz/1 GB, and 1.38 GHz/1 GB, respectively, to handle smartphone

camera recording operation and preprocess/process a successive sequence of fingertip images

in real-time. The video cameras give sampling rates/image resolutions of 30 frames per second

(fps)/1280 × 720 pixels for iPhone 4, and 30 fps/1920 × 1080 pixels for iPhone 5/6. To reduce

computational complexity, we used the upper left part (640 × 480 pixels) of the recorded images

since this upper left part was shown to give better estimate of heart rhythm change compared the

other parts [5].

3. Methods

We propose two heart rate detection methods based on successive fingertip images taken

by smartphone video cameras: fingertip curve line movement-based detection and fingertip

image-intensity based detection methods. The details of these proposed methods are described in

Sections 3.1 and 3.2, respectively.

3.1. Fingertip Curve Line Movement-Based Detection

Fingertip curve line movement-based heart rate detection method detects the heart rate from

the movement (or change) of fingertip curves in successive recorded fingertip images. This proposed

method consists of a sequence of procedures shown in Figure 2. Along this sequence of procedures,

the image format is converted when needed in order to either increase a camera’s sensitivity to the

fingertip curve movement or reduce the computational complexity. Specifically, the image format is

converted following these three steps: (1) recorded raw images are converted into RGB 565 images

where each pixel is represented by five red, six green, and five blue bits; (2) RGB 565 images are

converted to RGB 888 format with bit arrangement, compressed into red images by extracting only

eight red bits from RGB 888 images; and (3) RGB 888 images are converted into gray-scale images

which are obtained by directly assigning eight bits of intensity values in red images into those in

grayscale images [17].

either increase a camera’s sensitivity to the 
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Figure 2. Procedure of the fingertip curve line movement-based detection method.

In a sequence of the gray-scale images, edge detection and smoothing techniques are applied in

order to detect major fingertip curve lines with filtering out low and high frequency components in

the images, and each technique is described in Sections 3.1.1 and 3.1.2.

3.1.1. Edge Detection

An edge in image processing is defined to be a set of points (or a segment) where image brightness

(or intensity) changes abruptly [10–16]. In the proposed method, the edge detection procedure finds

these edges (or fingertip curve line) based on the intensity value x(i, j) of pixel (i, j), where i and

j are x- and y-axis position values in the grayscale image, respectively. Denoting the maximum

intensity value difference between neighboring pixels by ∆x(i, j)max = max{x(i, j)− x(k, l)} where

k ∈ {i − 1, i, i + 1} and l ∈ {j − 1, j, j + 1}, ∆x(i, j)max values at the edges are expected to be larger

than those at non-edge points. Here, edge detection output y is derived by mapping ∆x(i, j)max to

y(i, j) where y(i, j) is 0 (white) when ∆x(i, j)max > Ath and y(i, j) is 1 (black) when ∆x(i, j)max < Ath,

where Ath is a pre-defined threshold value for the ∆x(i, j). The Y-image of raw (or YUV) image

(Figure 3a) is preprocessed (Figure 3b) as described in Section 3.1, and the edges in Figure 3b are more

visible compared to those in Figure 3a. The edge detection procedure changes greyscale input image
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(Figure 3a) into binary output image (Figure 3c). The pseudocode of this edge detection procedure is

shown in Figure 4.

   

(a) (b) (c) 

Figure 3. An example of the edge detection procedure on a fingertip image obtained from a smartphone

video camera: (a) greyscale image in YUV raw image; (b) preprocessed image; and (c) the edge

detected image.

Figure 4. Flow chart of our proposed edge detection procedure.
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3.1.2. Smoothing

Smoothing is a procedure of capturing significant patterns in an image while leaving isolated

(or fine) patterns out. Since the edge detection procedure can detect both isolated and adjoined

noticeable points, as shown in Figure 5a, smoothing is needed to detect only adjoined noticeable

points, e.g., fingertip curves. In the smoothing procedure, individual (or isolated) points coming from

noise are decreased while the points near adjoining points are increased leading to a smoother line

(or segment).

   
(a) (b) (c) 

Figure 5. An example of the smoothing procedure on a fingertip image obtained from a smartphone

video camera: (a) after distance transform; (b) after diffusion; and (c) after binarization.

We adopt the anisotropic diffusion-based smoothing method, which consists of distance transform,

anisotropic smoothing, and binarization [18,19]. In the distance transform step, the binary image

having edges obtained in the edge detection procedure (see Section 3.1.1) is transformed into a

distance-transformed grayscale image. This step facilitates the next anisotropic smoothing step

by diffusing discrete white points (detected noticeable points) into their neighboring regions as

shown in Figure 5a (edge detected is given in Figure 3c). The anisotropic smoothing step is a main

step which performs smoothing in the grayscale image by giving more weight (diffusion) to the

directions (anisotropic) of the distance transformed images [18,19]. The grayscale image obtained by

this anisotropic approach is shown in Figure 5b. The binarization step with a pre-defined threshold

value finalizes the smoothing procedure by converting smoothed grayscale images into black and

white images, as shown in Figure 5c.

3.1.3. Fingertip Curved Region Detection

Fingertip curved regions are detected in successive smoothed images to detect the movements

(or changes) of the curved regions, which are considered to reflect heart rhythms. Here, a fingertip

curved region is defined as a region closed by the surrounding curves obtained in Section 3.1.2, or

image boundaries in smoothed images. The procedure of this fingertip curved region detection step

can be explained in a sequential way: (1) initial phase (iframe = 0) and (2) remaining phase (iframe > 0),

where iframe denotes the index of the recorded image frame taken by a smartphone video camera.

To facilitate this region detection procedure, we set the color of the pixels on image boundaries (right,

left, up, down) to black.

In the initial phase, the regions having average distance davg, from their centroids, larger than

a predefined threshold value Dth are found among the detected curved regions, and are called

non-trivial regions. Assuming that the movements of these non-trivial regions are all reflecting

heart rhythms, we choose only one representative region, which has the largest average distance davg

among the non-trivial regions bounded by either the upper or lower smoothed curved line, to reduce

computational complexity in further procedures of Section 3.1.4. For example, three non-trivial (white)

regions, after inverting the smoothed image of Figure 5c, are separated as shown in Figure 6a. After

setting four boundary edges to black, we find two regions which have upper or lower smoothed

curved lines. Between the two found regions, the upper region is chosen to be a representative
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region, as shown in Figure 6b, since it has a larger average distance davg between the upper and lower

regions which are bounded by either the lower or upper smoothed curved lines, respectively. Finally,

the number of pixels in the representative region is counted and logged. In the remaining phase,

representative regions in successively recorded fingertip images are detected, and the number of pixels

inside the representative region are logged.

  
(a) (b) 

by Welch’s power spectrum estimation metho

Figure 6. An example of the fingertip curved region detection procedure on a fingertip image obtained

from a smartphone video camera: (a) non-trivial three regions (white) are found in an inverting

smoothed image and (b) one representative region having the largest davg is found.

3.1.4. Heart Rhythm and Rate Detection

As mentioned in Section 3.1.3, the area of a region is calculated by counting the number of

pixels within the representative region. Heart rhythm is detected based on this area changes of the

representative region in this proposed method. The area of a region is logged in the previous step

(see Section 3.1.3). Heart rate is detected in two ways: (1) peak detection (time-domain); and (2) dominant

frequency detection (frequency-domain). The time-domain approach estimates a heart rate by inversing

the median value of a set of successive peak-to-peak intervals while the frequency-domain approach

estimates by Welch’s power spectrum estimation method within 0.5 Hz to 2 Hz [20].

3.2. Fingertip Image Intensity-Based Detection

The fingertip image intensity-based heart rate detection method detects the heart rate from the

movement (or change) of fingertip images, binarized based on intensities, in successive recorded

fingertip images. The flowchart of this proposed method is shown in Figure 7. Along this sequence

of procedures, (1) raw images obtained from a smartphone camera are converted into RGB images;

and (2) the red signals in the RGB images are converted into binary images. Specifically, the latter

binarization step is performed with the initial median intensity value Rintensity, which is defined as the

median intensity value in an initial image frame. Denoting row and column indices in an image by i

and j, respectively, the binarization step compares the intensity values r(i, j) of each pixel in the initial

image frame to Rintensity. If r(i, j) exceeds Rintensity, then the value s(i, j) of the output binary image is 1

(white). Otherwise, s(i, j) becomes 0 (black). Figure 8 gives an example of this binarization result.

With this white region as the representative fingertip curved region, heart rhythm and rate

detection is performed by the same procedure described in Section 3.1.4.

by Welch’s power spectrum estimation metho

 

Figure 7. Procedure of the fingertip image intensity-based detection method.
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–2 Hz in Welch’s power spectrum of the 
shows the Welch’s power spectrum of the time series signals obtained 

Figure 8. An example of fingertip image intensity-based detection results obtained from a smartphone

video camera.

4. Results

We evaluated the performance of the proposed heart detection algorithms for the iPhone data.

A total of 120 s of data is collected from each subject. We compared our heart rate detection algorithm

to the previous arrhythmia discrimination algorithms [5], which detects heart rate from the pulsatile

time series data obtained by averaging the pixel intensities of successive images. Specifically, the

threshold value for anisotropic diffusion was set to −2. As performance metrics, we considered the

estimated pulsatile heart rhythm and rate.

Figure 9 compares the estimated heart rhythms of the proposed fingertip curve line

movement-based algorithm and the conventional average intensity-based algorithm, and shows that

they are similar each other. We performed a correlation test on clean signals to evaluate the correlation

between the proposed and conventional algorithms. The correlation coefficient values between peak

locations obtained by the proposed fingertip curve line movement-based and conventional heart rate

detection methods are 0.9999 for subjects 1, 2, 3, 4, 6, 7, 8, and 9; 0.9998 for subject 5; and 0.9996 for

subject 10. These high correlation coefficient values indicate that the peak locations obtained from the

proposed and conventional algorithms are highly correlated to each other. Inversely, the correlation

coefficient values between sampled heart rhythm values of the proposed and conventional methods

are relatively lower compared to the correlation coefficient values of the peak locations above since

the two methods measure rhythms in different ways. For example, the correlation coefficient value

between sampled heart rhythm values is 0.9590 for subject 2, as shown in Figure 10.

We estimate heart rate from time series signals, obtained in Section 4, using time- or

frequency-domain methods, as explained in Section 3.1.4. Specifically, in frequency-domain method,

heart rate is estimated by deriving dominant frequency within 0.5 Hz–2 Hz in Welch’s power spectrum

of the time series signal. Figure 11 shows the Welch’s power spectrum of the time series signals obtained

from (a) the proposed fingertip curve line movement detection; and (b) the conventional method.

The proposed detection methods give more power of the heart rate frequency component than the

conventional method, while the proposed and conventional methods give similar dominant frequencies.

Estimated heart rates of our proposed and conventional algorithms from 10 subjects are shown in

Table 1. Specifically, the maximum deviation is 0.0832 Hz using the time-based estimation method,

while they have the maximum deviation of 0.124 Hz using the frequency-based estimation method.
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Figure 9. Estimated heart rhythms of the proposed fingertip curve line movement-based algorithm

and the conventional average intensity-based algorithm.

 

Figure 10. An example of the correlation between heart rhythms obtained from the proposed fingertip

curve line movement-based and the conventional heart rate detection methods for subject 2. Here, the

correlation line is denoted by the red solid line and the correlation index is 0.9590.
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Figure 11. An example of the heart rate estimation of the proposed fingertip curve line movement-based

and the conventional heart rate detection methods (frequency-domain estimation).

Table 1. Mean and standard deviation (STD) heart rate (HR) of ten healthy subjects estimated by the

proposed and conventional methods.

Subject
Estimated

Mean ± STD HR
(Proposed, Time)

Estimated
Mean ± STD HR

(Conventioal, Time)

Estimated
Mean ± STD HR

(Proposed, Frequency)

Estimated
Mean ± STD HR

(Conventioal, Frequency)

1 1.8078 ± 0.1170 1.8128 ± 0.1511 1.7460 ± 0.0716 1.7820 ± 0.0502
2 1.1370 ± 0.0493 1.1451 ± 0.0780 1.2900 ± 0.2683 1.2900 ± 0.3354
3 1.3840 ± 0.0401 1.4014 ± 0.1170 1.4229 ± 0.0596 1.4314 ± 0.1006
4 1.3776 ± 0.0932 1.3847 ± 0.1201 1.3513 ± 0.1649 1.4257 ± 0.2683
5 1.0433 ± 0.1647 1.0475 ± 0.1645 1.0839 ± 0.2937 1.1817 ± 0.3832
6 1.3629 ± 0.1508 1.3779 ± 0.1992 1.3983 ± 0.0880 1.3878 ± 0.0758
7 1.1155 ± 0.1733 1.1066 ± 0.1251 1.1714 ± 0.2439 1.1030 ± 0.1443
8 1.6486 ± 0.2009 1.6331 ± 0.1969 1.6725 ± 0.0521 1.7625 ± 0.0991
9 1.2986 ± 0.1537 1.3419 ± 0.3446 1.3057 ± 0.1682 1.1817 ± 0.4451
10 1.9577 ± 0.0828 2.0409 ± 0.4093 2.0182 ± 0.0911 1.9555 ± 0.2154

Fingertip Image Intensity-Based Method

Figure 12a compares heart rhythm estimations from our proposed fingertip image intensity-based

and conventional methods. As shown in Figure 12a, the red band shows the most apparent peaks

among RGB bands. Figure 12b compares peak detections of proposed and conventional methods

and shows similar peak detection performance. Figure 13 shows frequency analysis on the signals
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obtained from our proposed and conventional algorithms. Here, red bands are reassured to have the

highest power at the heart rate frequency. We estimated heart rates of ten subjects similarly to Table 1.

Estimated heart rates of our proposed and conventional algorithms have the maximum deviation of

0.125 Hz using the time-based estimation method while they have the maximum of 0.03 Hz using the

frequency-based estimation method.

 

(a) 

 
(b) 

Figure 12. Heart rhythms obtained by the proposed (median-based) and conventional methods:

(a) heart rhythms from the conventional RGB band-based method and the proposed method; and

(b) peak detection results from the conventional red band-based method and the proposed method.
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Figure 13. Frequency-domain analysis of heart rhythms obtained by the proposed (median-based) and

conventional methods.

5. Conclusions

Real-time heart rhythm and rate detection using smart devices has gained much attention.

Given that heart rhythm and rate detection has growing interest in the point-of-care health area,

more convenient and accurate heart rhythm and rate detection technology is required. In this paper,

we have shown that the heart rhythm and rate of healthy subjects can be accurately estimated using

the proposed fingertip image-based detection methods with successive fingertip images recorded

by the smartphone cameras. Our proposed heart rate detection methods for the smartphone was

designed in two ways: (1) a fingertip curve line movement-based detection; and (2) a fingertip image

intensity-based detection. We evaluated our heart rate detection methods with an iPhone and the

results demonstrated that our proposed methods have provided heart rhythms with high correlation

and heart rate with high accuracy, compared to the conventional algorithms. Given the prevalence of

smartphones, our proposed heart rate detection methods using smartphones are expected to provide a

convenient and accurate way to monitor heart rhythm and rate in our daily lives.
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