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Novel flight style and light wings boost flight 
performance of tiny beetles

Sergey E. Farisenkov1,7 ✉, Dmitry Kolomenskiy2,3,7, Pyotr N. Petrov1, Thomas Engels4, 
Nadezhda A. Lapina1, Fritz-Olaf Lehmann4, Ryo Onishi2, Hao Liu5 & Alexey A. Polilov1,6 ✉

Flight speed is positively correlated with body size in animals1. However, miniature 
featherwing beetles can fly at speeds and accelerations of insects three times their 
size2. Here we show that this performance results from a reduced wing mass and a 
previously unknown type of wing-motion cycle. Our experiment combines 
three-dimensional reconstructions of morphology and kinematics in one of the 
smallest insects, the beetle Paratuposa placentis (body length 395 μm). The flapping 
bristled wings follow a pronounced figure-of-eight loop that consists of 
subperpendicular up and down strokes followed by claps at stroke reversals above 
and below the body. The elytra act as inertial brakes that prevent excessive body 
oscillation. Computational analyses suggest functional decomposition of the 
wingbeat cycle into two power half strokes, which produce a large upward force, and 
two down-dragging recovery half strokes. In contrast to heavier membranous wings, 
the motion of bristled wings of the same size requires little inertial power. Muscle 
mechanical power requirements thus remain positive throughout the wingbeat cycle, 
making elastic energy storage obsolete. These adaptations help to explain how 
extremely small insects have preserved good aerial performance during 
miniaturization, one of the factors of their evolutionary success.

Driven by curiosity about the smallest objects, scientific exploration 
of the microscopic world has facilitated the miniaturization of various 
industrial products. But miniaturization is not just a human-made arti-
fice: success stories of miniaturization are abundant in the living world. 
For more than 300 million years, ecological pressures have forced 
insects to develop extremely small bodiesdown to 200 μm long3without 
losing their ability to fly. As the physical properties of flight depend 
on size, constraints that are insignificant at the macro scale become 
significant at the micro scale, and vice versa4. Compared with larger 
sizes, flight at small sizes is dominated by viscous air friction rather 
than inertial forces resulting from the acceleration of the surround-
ing air. This competition between friction and inertia is key for flight 
at all size scales and thus applies to all animals that move through air.

Large insects generally fly faster than smaller ones1. Nevertheless, 
some of the smallest insects fly surprisingly well. For example, it 
was recently revealed that minute featherwing beetles (Coleoptera: 
Staphylinoidea: Ptiliidae) typically fly with similar speeds to their 
larger relatives (Staphylinidae), despite a threefold difference in 
body length2. Moreover, ptiliids can accelerate twice as fast as car-
rion beetles (Staphylinoidea: Silphidae), although the latter are an 
order of magnitude larger. As the size-specific flight-muscle volume 
is smaller in Ptiliidae than in larger beetles5, their excellent flight per-
formance must result from the peculiar structure of their wings and 
flight style. Ptiliids have feather-like bristled wings—a condition known 

as ptiloptery (Fig. 1b)—instead of the membranous wings possessed by 
most insects. This visually striking modification of the flight apparatus 
evolved convergently in extremely small representatives of several 
insect orders. The functional benefits of ptiloptery, however, have 
remained largely unknown.

Although many studies have focused on the secrets of flight in 
minute insects6,7, most experimental data that elucidate wing motion 
and aerodynamics have been obtained from larger insect species8–11. 
Thus, unsteady aerodynamics of millimetre-size insects such as fruit 
flies12,13 and mosquitoes14 have received considerable attention in recent 
decades, whereas studies focusing on tiny insects remained scarce. 
Two-dimensional numerical studies on the aerodynamics of insect 
wings have previously shown that the flow past evenly spaced cylinder 
lattices reduces aerodynamic force production in bristled wings15,16. 
By contrast, experiments with mechanical comb-like models have 
suggested slightly larger lift-to-drag ratios during the clap-and-fling 
phase in bristled wings compared with membranous wings17–19, but did 
not cover the full wingbeat cycle. Meanwhile, using state-of-the-art 
high-speed videography, it has become clear that small insects use a 
wingbeat cycle that is different from that of the larger ones10,11, but, to 
our knowledge, the role of ptiloptery in this cycle has not been con-
sidered.

In this study, we analysed the flight of the miniature featherwing beetle 
Paratuposa placentis. We constructed a morphological model based 
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on data gained from light, confocal and electron microscopy measure-
ments, a kinematical model using synchronized high-speed videography, 
and a dynamical model using computational methods of solid and fluid 
mechanics. The combination of these methods offers a comprehensive 
view of how bristled wings work and explains why common sub-millimetre 
flying insects have bristled rather than membranous wings.

Structural features of P. placentis
P. placentis is one of the smallest non-parasitic insect species, with 
a body length of about 395 ± 21 μm (all measurements are given as 
mean ± s.d.). This size is similar to the size of some unicellular pro-
tists such as Amoeba proteus (Fig. 1a). The body mass of P. placentis is 
2.43 ± 0.19 μg (Supplementary Information). The bristled wing consists 
of a petiole, a narrow wing blade and a fringe of setae (bristles) covered 
with secondary outgrowths (Fig. 1b, c). The wing length is 493 ± 18 μm 
and the setae occupy 95.1 ± 0.3% of the aerodynamically effective wing 
area (interior of the green contour in Fig. 2b).

Wing kinematics
The wingbeat cycle of P. placentis consists of two power strokes, dur-
ing which most of the total flight force is generated20, and two recov-
ery strokes with wings clapping above and below the body (Fig. 2a, c,  
Supplementary Videos 1–6). Dorsal and ventral recovery strokes are 
unique to the Ptiliidae and replace the conventional clap-and-fling 
kinematics described in other insects, including miniature thrips9 and 
parasitoid wasps8. Despite the large stroke amplitude, the wings do not 

always clap tightly at the end of the ventral recovery stroke, depending 
on flight conditions (Supplementary Information). The setal fringes 
of the left and right wings may intersect during the fling phases of the 
recovery strokes. The morphological downstroke and upstroke are 
remarkably similar: the angle of attack (AoA) reaches 73° during the 
downstroke and 85° in magnitude during the upstroke (Fig. 2f). The 
cycle-averaged Reynolds number (Re) based on the mean speed of the 
radius of gyration is 9 and reaches 20 during power strokes when wing 
velocity is highest. The increased AoA during power strokes and the 
presence of recovery strokes are similar to the kinematics of swimming 
in miniature aquatic crustaceans (Supplementary Information), which 
move at similar flow regimes—for example, larvae of Artemia sp.20, with 
a Reynolds number of 10.

Vertical force generation
The wide rounded self-intersecting paths of the wing tips and dynami-
cally changing orientation of the wings (Figs. 2c, 3a) maximize the 
aerodynamic asymmetry between power and recovery strokes. Upon 
each power stroke, geometrical AoA and wing velocity simultaneously 
reach their maxima (Fig. 2f). While forces and velocities are anti-aligned 
(Fig. 3a), their peaks are synchronized (Figs. 3d, 2f). The wing thus first 
produces an increased upward force as it quickly moves flat-on with net 
downward displacement and, subsequently, a small downward force 
while slowly moving edge-on upwards. The near-clap motion reduces 
the parasite downward force upon recovery21. Decomposition of the 
vertical force exerted on the wing into drag and lift (Methods) is shown 
in Fig. 3b, d. The vertical force due to drag exhibits greater positive 
peaks than that due to lift. This is accompanied by extended times of 
slightly negative drag-based vertical force. In association with these 
peaks, airflow simulation reveals a pair of strong vortex rings that are 
typical for drag-producing bodies (Fig. 3c, Supplementary Videos 5, 6).  
Approximately 32% of the cycle-averaged vertical force results from 
drag and 68% results from lift, indicating that the beetle benefits from 
both components. On average, the aerodynamic mechanisms produce 
bodyweight-supporting lift of 2.7 μg (Fig. 3g) (the beetle’s estimated 
body mass is 2.4 μg) and a vertical acceleration of 1.0 m s−2. The net con-
tribution of body and elytra to the vertical force is negligible (Fig. 3g).

Stabilizing role of the elytra
The unusually large horizontal and vertical excursion of the wings dur-
ing flapping poses a peculiar flight dynamics problem. The forces are 
small during the recovery strokes but the moment arm relative to the 
centre of mass is large. This results in a pitching moment large enough 
to overturn the body around its pitching axis (Extended Data Fig. 7, 
Supplementary Information). To compensate for these moments in 
synchrony with wing flapping, the insect opens and closes the elytra 
with large amplitudes (ψmax – ψmin = 52°) compared to other flying 
beetles22–24. Figures 2e, 3f show that the elytra act as an inertial brake.  
At times between t/T of 0 and 0.3, the wings are raised in a dorsal posi-
tion and produce nose-up torque. As soon as the wings start their down-
stroke, the elytra close, causing a nose-down recoil torque on the body. 
During ventral clapping, the wings produce nose-down torque and the 
elytra decelerate and reopen. We found that the elytra movements 
decrease the amplitude of body-pitching oscillation by approximately 
50% compared with flight without elytra (Supplementary Information). 
It is thus likely that the inertial brake observed in P. placentis is a feature 
of ptiliid beetles flying at high wingbeat amplitudes and unique to their 
peculiar flying style.

Bristled versus membranous wings
Numerical modelling suggests a wing mass in P. placentis of approx-
imately 0.024 μg, which is about 1% of the body mass. By contrast, 
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Fig. 1 | External morphology of P. placentis. a–c, Scanning electron 
microscopy images showing relative size of P. placentis (left) and A. proteus 
(right) (a), wing of P. placentis (b) and part of a seta (c). Every image was 
obtained from one randomly selected specimen; for detailed morphometry, 
see Supplementary Information.
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estimates of the mass of a membranous wing with the same outline  
amount to 0.13, 0.14 or 0.19 μg, depending on wing thickness  
(Supplementary Information). These estimates were based on some 
of the smallest membranous-winged insects, namely the wasp Tricho-
gramma telengai (0.73 μm), the beetle Orthoperus atomus (0.85 μm), 
and the beetle Limnebius atomus (1.12 μm). L. atomus is closely related 
to the Ptiliidae. The maximum entry in the inertia matrix (Izz) of the bris-
tled wing is 1,600 μg μm2, and for the membranous wings it is 13,800, 
16,000 and 20,800 μg μm2, respectively. Secondary outgrowths of 
the bristles are unique to Ptiliidae wings and reduce the wing mass by 
44% compared with the bristled wing model with smooth cylindrical 
bristles at the same drag25. The bristled wing architecture with second-
ary outgrowths thus considerably reduces wing mass compared to 
a membranous architecture, while maintaining the needed aerody-
namic properties. This conclusion is also supported by an allometric 
analysis of wing mass in differently sized insects (Extended Data Fig. 1,  
Supplementary Information).

Whereas instantaneous vertical forces generated by the simulated 
membranous wing outscore the bristled wing of P. placentis (Fig. 3d), 
the latter produces as much as 68% of the mean vertical force of the 
membranous wing. The vertical force peaks during power strokes 
produce similar-sized peaks in the mechanical power required for 
wing actuation. Cycle-averaged power consumption in P. placentis is 
relatively low and amounts to only 28 W per kg body mass, but instan-
taneous power may reach up to 110 W kg−1 at t/T = 0.82 (Fig. 3e, h)  
owing to aerodynamic power. The total mechanical power of the 
bristled wing model (Fig. 3e) remains positive during the entire wing-
beat cycle, because low inertia of the wing and high viscous damping 
of the surrounding air enable continuous energy transfer from the 

flight apparatus to the wake. No elastic energy storage is required.  
By contrast, for a membranous wing, the inertial power is similar in 
peak magnitude to the aerodynamic power. Such a wing requires per-
fect elastic energy storage to achieve its minimum mean mechanical 
power of 37 W kg−1 and powerful flight muscles to satisfy 180–210 W kg−1 
peak power requirements (Fig. 3h). The latter computational estimates 
include aerodynamic added mass effects during wing motion and are 
detailed in the Supplementary Information.

At low Reynolds numbers, impermeable membranous wings barely 
outperform leaky bristled wings in generating aerodynamic force. Thus, 
the small advantage of using a membranous wing is overweighed by the 
advantage gained in reducing inertial torques and power by minimiz-
ing wing mass. This trade-off of energy savings for a small penalty in 
aerodynamic force generation is available only at Reynolds numbers 
of about 10 or lower, where sufficiently low leakiness can be achieved 
with a small number of slender bristles.

Conclusions and outlook
The findings reported here expand our understanding of the flight 
mechanics at low Reynolds numbers. In flight, small insects need to 
produce forces to support their body weight in conditions of high vis-
cous drag on the body and wings. P. placentis uses kinematic strategies 
that maximize wing flapping amplitude but at the potential cost of an 
increase in inertial power requirements. This is resolved by ptiloptery, 
an effective structural architecture that serves to reduce inertial costs 
of wing flapping, making elastic energy storage obsolete and reducing 
peak mechanical power requirements of the flight muscles. The wing-
beat cycle of P. placentis is highly functionally divided into power and 
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slow-recovery strokes. The wings thereby produce pronounced high 
torques that cause the high-amplitude body pitch oscillation. Inertial 
braking provided by moving elytra represents an ingenious solution 
to this problem, enhancing posture stability without providing addi-
tional forces for flight. In P. placentis, these mechanisms improve the 
temporal distribution of muscle mechanical power requirements and 
help to maintain aerial performance at an extremely small body size.  
If this flight style is common for miniature beetles, it may largely explain 
their worldwide abundance. Further studies of other microinsects with 
bristled wings will help to reveal the causes of the convergent evolu-
tion of ptiloptery during miniaturization in many groups of insects.
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maries, source data, extended data, supplementary information, 
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Methods

Data reporting
No statistical methods were used to predetermine sample sizes.  
The experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Material
Adult featherwing beetles (P. placentis (Coleoptera: Ptiliidae)) were 
collected in Cát Tiên National Park, Vietnam, in November 2017.  
The beetles were collected and delivered to the laboratory together 
with the substrate for their safety. High-speed video recordings were 
made on the same day during a few hours after collecting.

Morphology and morphometry
The material for morphological studies was fixed in alcoholic Bouin solu-
tion or in 70% ethanol. Wing structure was studied using a scanning electron 
microscope (SEM Jeol JSM-6380 and FEI Inspect F50), after dehydration 
of the samples and critical point drying, followed by gold sputtering.  
A confocal microscope (CLSM Olympus FV10i-O) and a transmitted light 
microscope (Olympus BX43) were also used, for which the samples were 
clarified and microscopic slides were made26 (Supplementary Informa-
tion). Measurements were taken from digital photographs in Autodesk 
AutoCAD software in ten replications (unless otherwise noted). Body 
weights and weights of particular body parts were calculated on the basis 
of three-dimensional reconstructions (Supplementary Information).

Wing mass and moments of inertia
The volumes of the petiole and membranous part (the blade) of the 
wing were measured using CLSM image-based geometrical models. 
Uniform cuticle density 1,200 kg m−3 was assumed27. The wing mass 
was obtained by summing up the contributions from the petiole, blade 
and setae. To calculate the mass of the setae, we first estimated their 
linear density (0.96 μg m−1) using a three-dimensional model25 and 
multiplied it by the length. The petiole and the blade of the wing model 
have constant thickness without veins. A possible range of the mem-
brane thickness was hypothesized on the basis of measurements in  
T. telengai (Hymenoptera: Trichogrammatidae, body length 0.45 mm),  
O. atomus (Coleoptera: Corylophidae, body length 0.8 mm) and  
L. atomus (Coleoptera: Hydraenidae, body length 1.1 mm), on 0.5 μm 
thick histological sections obtained by diamond knife cutting using 
a Leica microtome, after fixation and embedding in araldite. These 
values are the minimal thicknesses measured in each species. The 
measurements were performed using an Olympus BX43 microscope.  
The measurement error of linear dimensions is of the order of magnitude 
of 1% in the spanwise and chordwise directions and 10% for the thickness.  
The s.d. of wing cuticle density25 is approximately 100 kg m−3. This sug-
gests that the overall root sum square error of the wing mass calculation 
is of about 13%. To evaluate the moments of inertia, surface density of 
the membranous parts and linear density of the bristles were calculated. 
The moments of inertia of the individual setae were calculated using 
the formula for a thin rod at an angle and the parallel axis theorem.  
The moments of inertia of the membranous parts were calculated using 
a two-dimensional quadrature rule with the discretization step of 50 μm.

High-speed recording
Flight of the beetles was recorded in closed 20 × 20 × 20 mm cham-
bers, custom made of 1.0 mm thick microscopic slides and 0.15 mm 
cover-glass at a natural level of illumination in visible light. There were 
20–30 insects in the flight chamber during the recording. For tempera-
ture stabilization the flight chamber was chilled by an air fan from the 
outside. The ambient temperature measured by a digital thermocouple 
was 22–24 °C; the temperature of the flight chamber was 22–26 °C.

High-speed video recordings were made using two synchronized 
Evercam 4000 cameras (Evercam) with a frequency of 3,845 FPS and 

a shutter speed of 20 μs in infrared light (850 nm LED). The high-speed 
cameras were mounted on optical rails precisely orthogonal to each 
other and both situated at 0° from the horizon. Two IR LED lights were 
placed opposite to the cameras and one light above the flight chamber. 
A graphical representation of the experimental setup can be found in 
the previous study2.

Measurement of kinematics
For analysis, 13 recordings were selected. For four of them (PP2, PP4, 
PP5 and PP12) we reconstructed the kinematics of body parts in four 
kinematic cycles for each and performed CFD calculations because 
the flight of these specimens was especially similar to conventional 
hovering: relatively slow normal flight with horizontal velocity  
0.057 ± 0.014 m s−1 (hereafter mean ± s.d.) and 0.039 ± 0.031 m s−1 
vertical velocity (PP2, PP4, PP5 and PP12). In CFD analysis with the 
membranous wing model, we selected kinematics of PP2, which does 
not cross the wings while clapping. This case is convenient for com-
paring the performance of bristled wings with substitute membra-
nous wings, because it guarantees that the latter do not intersect. 
The perimeter of the membrane is formed by lines connecting the 
tips of the bristles (see the previous study25 for more information). 
The descriptions of kinematics and aerodynamics, as well as the illus-
trations, refer to results obtained for individual PP2. For the results 
obtained for other specimens, see Supplementary Information and 
Extended Data Figs. 2, 4–6.

Average wingbeat frequency was calculated as the mean of the 
wingbeat frequency in all recordings. In each recording, the number 
of frames was counted in several complete kinematic cycles, 104 cycles 
in total.

For the mathematical description of the kinematics of the wings 
and elytra, we used the Euler angles system28,29 (Fig. 2b) based on 
frame-by-frame reconstruction of the location of the insect’s body 
parts (wings, elytra and body itself) performed in Autodesk 3Ds Max. 
Three-dimensional models of the body and elytra were obtained by 
confocal microscope image stacking, and the flat wing model was based 
on light microscopy photos of dissected wings. We used the rigid flat 
wing model for reconstruction of the kinematics because the deforma-
tions of the wings are minor (Supplementary Information). First, we 
prepared frame sequences with four full kinematical cycles in each.  
The frames were then centred and cropped by point between the bases 
of the wings and then placed as orthogonal projections. Virtual models 
of body parts were placed into a coordinate system with two image 
planes. Then we manually changed the position and rotated body parts 
until their orthogonal projections were superimposed on the image 
planes. For calculating the Euler angles, a coordinate system was cre-
ated (Fig. 2a). The X0Y plane is a plane parallel to the stroke plane, and 
intersecting with the base of wing or elytron, which is positioned in the 
zero point. To determine the position of the stroke plane, we calculated 
the major axis trend line of the wingtip coordinates instead of the linear 
trend line29, because the wingtip trajectory of P. placentis forms a wide 
scatter plot. Stroke deviation angle (θ) and positional angle (φ) were 
calculated from the coordinates of the base and apex. Pitch angle (ψ) 
is the angle between the stroke plane and the chord perpendicular to 
the line between the base and apex. The body pitch angle (χ) is the angle 
between the stroke plane and longitudinal axis of the body, calculated 
as the line between the tip of the abdomen and the midpoint between 
the apical antennomeres. Pitch angle (β) of the stroke plane relative to 
the horizon was also measured.

For flight speed analysis we performed tracking of the centre of 
the body (middle point between the extreme edges of the head and 
abdomen) in Tracker (Open Source Physics) in both projections and 
calculated the instantaneous velocity and its vertical and horizontal 
components in each frame. The obtained speed values were filtered by 
loess fitting in R (stats package). The minimum distance between the 
wingblade tips during bottom claps was also calculated.
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Computational fluid dynamics
Time intervals of low-speed flight with duration longer than four wing 
beats were selected. The angles φ, θ and ψ of the left wing, right wing 
and elytra and the body angle χ were interpolated on a uniform grid 
with time step size Δt = 2.6 × 10−6 s. By solving numerically φ(t) = 0 with 
respect to t, we identified four subsequent wingbeat cycles and calcu-
lated the average cycle period T and the wingbeat frequency f = 1/T. 
We then spline-interpolated the data for each of the four cycles on a 
grid subdividing the time interval [0, T] with step Δt, calculated phase 
averages, then calculated the average between the left and right wing. 
This yielded the plots shown in Fig. 2c, d. Constant forward and upward/
downward flight velocity was prescribed using the time average values 
of the loess-filtered time series.

The computational fluid dynamics analysis was performed using 
the open-source Navier–Stokes solver WABBIT30, which is based on 
the artificial compressibility method to enforce velocity-pressure 
coupling, volume penalization method to model the no-slip condi-
tion at the solid surfaces, and dynamic grid adaptation using the 
wavelet coefficients as refinement indicators. The flying insect 
was represented as an assembly of five rigid solid moving parts: 
the two elytra and the two wings move relative to the body, and the 
body oscillates about its lateral axis (Supplementary Information).  
The kinematic protocol is described in Supplementary Informa-
tion and Extended Data Fig. 2c. The computational domain is a  
12R × 12R × 12R cube, where R is the wing length, with volume penali-
zation used in combination with periodic external boundary condi-
tions to enforce the desired far-field velocity30. The computational 
domain was decomposed in nested Cartesian blocks, each contain-
ing 25 × 25 × 25 grid points. The blocks were created, removed and 
redistributed among parallel computation processes so as to ensure 
maximum refinement level near the solid boundaries and constant 
wavelet coefficient thresholding otherwise during the simulations. 
The numerical simulations started from the quiescent air condition, 
continued for a time period of two wingbeat cycles with a coarse 
spatial grid resolution of Δxmin = 0.00781R to let the flow develop to 
its ultimate periodic state, then the spatial discretization size was 
allowed to reduce to Δxmin = 0.00098R if the wing was bristled or to 
Δxmin = 0.00049R if it was membranous, and the simulation contin-
ued for one more wingbeat period to obtain high-resolution results.  
The air temperature was 25 °C in all cases; its density was ρ = 1.197 kg m−3  
and its kinematic viscosity was ν = 1.54 × 10−5 m2 s−1; the artificial speed 
of sound was prescribed as c0 = 30.38fR, based on an earlier experi-
mental validation25. The volume penalization and other case-specific 
parameter values are provided in Supplementary Information.  
The CFD simulation accuracy is discussed in Supplementary Informa-
tion and Extended Data Fig. 8.

Decomposition of the aerodynamic force of a wing into lift and 
drag components
The drag component of the total instantaneous aerodynamic force 
acting on the wing is defined as its projection on the direction of the 
wing velocity at the radius of gyration. The lift component is defined 
as a vector subtraction of the total force and the drag component.  

The total lift and drag force vectors are projected on the vertical (z) 
direction to obtain the time courses shown in Fig. 3d.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Extended data sets and raw data are available in an Open Science Frame-
work repository (https://osf.io/v3wrk/).

Code availability
Computational fluid dynamics simulations were performed using an 
open-source code WABBIT, which can be downloaded from GitHub 
(https://github.com/adaptive-cfd/WABBIT) and has been described 
in detail elsewhere30.
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Extended Data Fig. 5 | Three-dimensional reconstruction of wing-tip 
trajectories (continuous lines), aerodynamic force vectors (cyan arrows), 
velocity vectors (magenta arrows) and wing orientation (yellow circles and 

arrows) during flight in Paratuposa placentis individuals. a, PP2. b, PP4.  
c, PP5. d, PP12. For interactive 3D pdf version, see Supplementary Fig. 9.
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Extended Data Fig. 9 | Comparison of Paratuposa placentis and other 
insects that have bristled or membranous wings. a, Time variation of the 
vertical force coefficient in three different species. Data for the large 
rhinoceros beetle Trypoxylus dichotomus and for the tiny chalcid wasp Encarsia 
formosa are adapted so that the cycle begins with the downstroke. The force 
coefficient is defined as CV = 2FV/ρ(2ΦRg f )2S, where FV is vertical force, ρ is air 

density, Φ is flapping amplitude, Rg is wing geometric radius of gyration, f is 
flapping frequency, and S is wing area. Note that the bristled wings of Encarsia 
formosa were modelled as impermeable solid plates. For additional 
information, see Supplementary Information. b, Wing length relative to body 
length.
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Extended Data Fig. 10 | Comparison of Paratuposa placentis and Encarsia formosa. a, Time variation of body-mass-specific mechanical power. b, Mean 
(averaged over wingbeat cycle) and peak (maximum over the cycle) body-mass-specific mechanical power.
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