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Abstract

Genetic variants responsible for susceptibility to obesity and its comorbidities among Hispanic children have not been
identified. The VIVA LA FAMILIA Study was designed to genetically map childhood obesity and associated biological
processes in the Hispanic population. A genome-wide association study (GWAS) entailed genotyping 1.1 million single
nucleotide polymorphisms (SNPs) using the Illumina Infinium technology in 815 children. Measured genotype analysis was
performed between genetic markers and obesity-related traits i.e., anthropometry, body composition, growth, metabolites,
hormones, inflammation, diet, energy expenditure, substrate utilization and physical activity. Identified genome-wide
significant loci: 1) corroborated genes implicated in other studies (MTNR1B, ZNF259/APOA5, XPA/FOXE1 (TTF-2), DARC, CCR3,
ABO); 2) localized novel genes in plausible biological pathways (PCSK2, ARHGAP11A, CHRNA3); and 3) revealed novel genes
with unknown function in obesity pathogenesis (MATK, COL4A1). Salient findings include a nonsynonymous SNP
(rs1056513) in INADL (p= 1.2E-07) for weight; an intronic variant in MTNR1B associated with fasting glucose (p= 3.7E-08);
variants in the APOA5-ZNF259 region associated with triglycerides (p= 2.5-4.8E-08); an intronic variant in PCSK2 associated
with total antioxidants (p= 7.6E-08); a block of 23 SNPs in XPA/FOXE1 (TTF-2) associated with serum TSH (p= 5.5E-08 to 1.0E-
09); a nonsynonymous SNP (p= 1.3E-21), an intronic SNP (p= 3.6E-13) in DARC identified for MCP-1; an intronic variant in
ARHGAP11A associated with sleep duration (p= 5.0E-08); and, after adjusting for body weight, variants in MATK for total
energy expenditure (p= 2.7E-08) and in CHRNA3 for sleeping energy expenditure (p= 6.0E-08). Unprecedented phenotyping
and high-density SNP genotyping enabled localization of novel genetic loci associated with the pathophysiology of
childhood obesity.
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Introduction

Obesity is a complex disease influenced by genetic and

environmental factors and their interactions. The current surge

in childhood obesity in the U.S. is attributable to an interaction

between a genetic predisposition toward efficient energy storage

and a permissive environment of readily available food and

sedentary behaviors [1]. Genetic architecture of common poly-

genic childhood obesity remains largely unknown. In genetic

studies, the phenotypic description of the obese child usually has

been limited to body mass index (BMI). BMI represents

a composite trait of fat free mass (FFM) and fat mass (FM) and

thus loci influencing BMI may differ from more direct measures of

adiposity. In addition, markers of biological processes underlying

the development of obesity such as dietary intake, energy

expenditure and nutrient partitioning may be more effectual in

identifying causal genetic variants [2]. In epidemiology studies,

childhood obesity has been shown to be genetically correlated with

glucose intolerance, hypertension, dyslipidemia, insulin resistance,

chronic inflammation, and risk for fatty liver disease [3,4].

Identification of genes underlying these distinct patterns of

association also may unravel important biological pathways

involved in the pathophysiology of childhood obesity.

Genome-wide association studies (GWAS) have the potential to

localize genetic loci contributing to obesity down to a few 100 kb

[5]. In fact, a recent meta-analysis of the adult GIANT

Consortium established 32 susceptibility BMI loci [6], several of

which were confirmed in French and German children with

extreme obesity [7] and European adults with early-onset obesity

[8]. Two novel loci near OLFM4 and within HOXB5 were recently

reported based on a meta-analysis of 14 pediatric studies of BMI

[9]. These pediatric GWAS were confined to BMI and cohorts of

European ancestry.

Here, we present findings from a GWAS designed to identify

genetic variants influencing childhood obesity and its comorbid-

ities in the Hispanic population. We have published evidence of

heritability, pleiotropy amongst traits, and chromosomal regions

implicated in obesity among Hispanic children in our VIVA LA
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FAMILIA Study [4,10–15] In-depth phenotyping was performed

to characterize the children, including anthropometry, body

composition, growth, metabolites, hormones, inflammation, diet,

energy expenditure and substrate utilization and physical activity.

Our high-density SNP genotyping and phenotypes representing

not only adiposity, but also biological processes associated with the

development and consequences of childhood obesity enabled

localization of novel genetic loci associated with the pathophys-

iology of childhood obesity.

Materials and Methods

The VIVA LA FAMILIA Study was designed to identify genetic

variants influencing pediatric obesity and its comorbidities. Family

recruitment and phenotyping were conducted in 2000–2005 in

Houston, TX. All enrolled children and parents gave written

informed consent or assent. The protocol was approved by the

Institutional Review Boards for Human Subject Research for

Baylor College of Medicine and Affiliated Hospitals and for Texas

Biomedical Research Institute.

The VIVA LA FAMILIA study design and methodology have

been described in detail elsewhere4. GWAS was performed on 815

children from 263 Hispanic families. The number of families by

sibships was: 8 (one child), 40 (two children), 155 (three children),

48 (four children), 6 (five children), 3 (six children), 2 (seven

children) and 1 (eight children). Each family was ascertained on an

obese proband, defined as a BMI.95th percentile, between the

ages 4–19 y. Once identified, the obese proband and all siblings, 4

to 19 y of age, and their parents were invited to the Children’s

Nutrition Research Center for a tour and full explanation of the

study prior to consenting. The cross-sectional, longitudinal study

design consisted of baseline measurements, with a one-year follow-

up to track children’s growth and body compositional changes. In-

depth baseline phenotyping included vital signs, anthropometry

and body composition, diet and physical fitness, 24-h calorimetry,

eating behavior, physical activity, fasting blood sampling for DNA

and other biochemistries.

Briefly, blood pressure, heart rate and temperature were taken

using an automated monitor. Anthropometric measurements were

performed using standardized techniques according to Lohman

[16]. Body composition was determined by dual-energy x-ray

absorptiometry. Repeated measures after one year were used to

compute growth velocities and changes in FM, FFM and energy

storage [17]. Methods used to measure fasting blood and 24-h

urinary biochemistries are described elsewhere [14,18,19]. A

multiple-pass 24-h dietary recall was recorded on two occasions

using Nutrition Data System (NDS) [20]. Eating behavior was

assessed with a dinner meal and eating in the absence of hunger

[21]. Room respiration calorimetry was used to make 24-h

measurements of energy expenditure and substrate oxidation [13].

Maximum oxygen consumption (VO2max) and heart rate

maximum (HRmax) were measured on a treadmill [22]. Actiwatch

accelerometers were used to measure frequency, duration and

intensity of physical activity [23].

Genotyping
The Illumina HumanOmni1-Quad v1.0 BeadChips were used

to genotype 1.1 million single nucleotide polymorphisms (SNPs) in

815 children enrolled in the VIVA LA FAMILIA Study. Genotype

calls were obtained after scanning on the Illumina BeadStation

500GX and analysis using the GenomeStudio software. Our

genotyping error rate (based on duplicates) was 2 per 100,000

genotypes. Illumina has included sample-dependent and -in-

dependent controls on their BeadChips to test for accuracy of the

procedure. The average call rate for all SNPs per individual

sample was 97%.

SNP genotypes were checked for Mendelian consistency using

the program SimWalk2 [24]. The estimates of the allele

frequencies and their standard errors were obtained using SOLAR

[25]. Specific SNPs were removed from analysis if they had call

rates ,95% (n= 6,596), were uncommon alleles in less than 5

participants (26,537), deviated from Hardy-Weinberg equilibrium

(n= 0), or were monoallelic (n = 56,448). The number of SNPs

that passed quality control and were included in the GWA analysis

was 899,892.

Genome-wide Association Analysis
Measured genotype analysis (MGA) was performed using the

SOLAR program [25]. All phenotypes were transformed by

inverse normalization to meet assumptions of normality. We

obtained residuals using linear regression models adjusted for age,

sex, their interaction and higher order terms. Because energy

expenditure is strongly influenced by body weight across the age

range of 4 to 19 years of age, total energy expenditure and sleeping

energy expenditure were additionally adjusted for body weight.

Also, observed energy intakes consumed in a snack and dinner

were adjusted for total energy expenditure or estimated energy

requirement, again to compensate for the wide range of ages in

our cohort.

Each SNP genotype was converted in SOLAR to a covariate

measure equal to 0, 1, or 2 copies of the minor allele (or, for

missing genotypes, the weighted covariate based on imputation).

These covariates were included in the variance-components mixed

models for measured genotype analyses [26] versus null models

that incorporated the random effect of kinship and fixed effects

such as age, sex, their interaction and higher order terms. For the

initial GWA screen, we tested each SNP covariate independently

as a 1 degree of freedom likelihood ratio test. The p-value

threshold for genome-wide significance (alpha= 0.05) was set at

1.0161027. The p-value threshold for genome-wide significance

was computed for our family-based cohort that takes into account

pedigree structure. The effective number of SNPs given linkage

disequilibrium (LD) was calculated by the method of Moskvina

and Schmidt [27] as implemented in SOLAR. LD was computed

in SOLAR using all available information (all genotyped SNPs on

all individuals). The average ratio of SNP effective number/actual

number obtained from analysis of 1,989 non-overlapping bins of

SNPs was used to calculate the genome-wide effective number of

tests and thus the significance threshold for genome-wide

association. We performed quantitative transmission disequilibri-

um test (implemented in SOLAR) to test for population

stratification.

Results

GWAS was performed on 815 children from 263 Hispanic

families. Mean 6 SD (range) was 25.267.5 (13.4 to 61.9) for the

children’s BMI, 85.6620.8 (4 to100) for BMI percentile and

1.5261.01 (23.0 to 4.5) for BMI z-score. Measured genotype

analysis examined 129 obesity-related traits including BMI and

adiposity as well as biological processes associated with the

pathophysiology of childhood obesity; a description of the

phenotypes is provided in Table S1. In our GWAS, population

stratification was not significant and therefore did not confound

our associations. A complete listing of all suggestive (p,1.0E-06)

and genome-wide significant (p,1.0E-07) genetic variants and

their associated traits are presented by chromosomal position in

Table S2.

Obesity GWAS in Hispanic Children
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Anthropometry and Body Composition
BMI status, body composition and the growth process were

assessed from repeated measurements of body weight, height,

FFM and FM at baseline and after one-year (Table 1). A

nonsynonymous SNP (rs1056513; G1178S (NP_005790.2)) in

INADL on chromosome 1 attained near genome-wide significance

(p=1.2E-07) for weight, and BMI, FFM, FM, trunk FM, and hip

circumference (p = 8.3E-06 to 1.6E-07). SNP rs1056513 is

common (MAF=0.50) and accounted for 3% of the variance in

body weight and body composition in this cohort. Weight z-score

change was significantly associated with an intronic variant in

COL4A1 on chromosome 13 (p = 4.7E-08) (Supporting Informa-

tion Figure S1). Linear growth (height change) was associated

with a variant in the 59UTR region of TSEN34 on chromosome 19

(p=4.5E-08).

Endometabolic Traits
Genome-wide significant variants were identified for several

endometabolic traits (Table 2). An intronic variant in MTNR1B

on chromosome 11 was strongly associated with fasting glucose

(p=3.7E-08). Intronic and 39UTR variants in the APOA5-ZNF259

region on chromosome 11 were associated with triglycerides

(p=2.5-4.8E-08). An intronic variant in PCSK2 on chromosome 20

was associated with total antioxidants (p=7.6E-08). Variants in the

flanking 39UTR regions of RNASE1 on chromosome 14 and

ASS1P11 on chromosome 7 were associated with 24-h urinary

nitrogen excretion and creatinine excretion, respectively (p=8.2-

8.4E-08). An intronic SNP in GCH1 on chromosome 14 was

associated with 24-h urinary dopamine: creatinine ratio (p=6.3E-

08). A nonsynonymous SNP (rs3733402; S143T (NP_000883.2))

in KLKB1 on chromosome 4 was identified for serum free IGF-1.

An intronic SNP in MPRIP on chromosome 17 was associated

with serum IGFBP-3 (p=7.2E-08). A block of twenty-three SNPs

in the flanking 59UTR region of XPA/FOXE1 (TTF-2) on

chromosome 9 were highly associated with serum TSH

(p=5.5E-08 to 1.0E-09) and found to be in strong linkage

disequilibrium with one another (R=0.9121.00).

Inflammation Markers
Genome-wide significant variants were identified for inflamma-

tion markers (Table 3). Highly significant associations for

a nonsynonymous SNP (rs12075; G42D (NP_002027.2)

(p=1.3E-21) and an intronic SNP (p=3.6E-13) in DARC on

chromosome 1 were identified for MCP-1. Coding variants in

GREB1 on chromosome 2 (p=6.5E-08) and DFNB31 on

chromosome 9 (p=2.0E-08) were also identified for MCP-1. A

variants in the 39UTR for CCR3 was highly associated with

MCP1, as well as an intronic SNP in RASGEF1A (p=4.6-9.6E-08).

A variant in the intronic region of ABO was strongly associated

with IL-6 (p=2.0E-08).

Diet, Energy Expenditure, Substrate Utilization and
Physical Activity
Genome-wide significant variants were associated with energy

intake, energy expenditure and substrate utilization, and physical

activity (Table 4). An intronic variant in TMEM229B on

chromosome 14 was associated with ad libitum energy intake at

dinner (p=5.1E-08). An intronic variant in ARHGAP11A on

chromosome 15 was associated with sleep duration (p=5.0E-08).

A SNP in the intronic region of C21orf34 was detected for

respiratory quotient (RQ) during sleep (p=5.3E-08). A variant was

identified for accelerometer-measured light activity in the 59UTR

region of RPL7P3 on chromosome 9 (p=7.5E-08) and sedentary-
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light activity in 39UTR of CTCFL on chromosome 20 (p=3.6E-

08). In addition, adjusting for body weight, highly significant

variants were identified for total energy expenditure (p=2.7E-08)

for MATK on chromosome 19 and sleeping energy expenditure

(p=6.0E-08) for CHRNA3 on chromosome 15.

Discussion

Extensive phenotyping and high-density SNP genotyping

enabled localization of novel genetic loci associated with the

pathophysiology of obesity in Hispanic children. Our unprece-

dented phenotypes represent not only adiposity, but also biological

processes underlying the development of childhood obesity. The

number of genome-wide significant genetic variants detected

substantiates our analytical strategy and statistical power to

identify variants.

Genome-wide significant and suggestive genetic variants were

associated with anthropometric indices, body composition and

growth rate. The common nonsynonymous SNP rs1056513 in

INADL accounted for 3% of the variance in body weight and body

composition, and is highly conserved across mammalian species.

INADL encodes a PDZ domain-containing protein thought to play

a role in tight junctions and adipocyte differentiation [28]. Weight

z-score change observed over one-year was associated with an

intronic variant in COL4A1, which encodes a basement membrane

collagen. Height change was associated with a 59UTR variant

inTSEN34, which is involved in tRNA splicing, a fundamental

process required for cell growth and division [29].

Fasting serum glucose was associated with an intronic variant

(MAF=0.20; effect size 4.8%) in MTNR1B which encodes one of

the melatonin receptors expressed in the retina and brain.

Corroborating our findings, this variant (rs10830963) has been

strongly associated with fasting glucose levels in adults [30,31] and

children [32–35]. Melatonin, the ligand to MTNR1B, has an

inhibitory effect on insulin secretion resulting in elevated fasting

glucose.

Fasting serum triglycerides were associated with variants in the

intron and 39UTRs within the APOA5-ZNF259 region. APOA5 is

an important determinant of circulating triglyceride levels [36].

SNPs detected in our GWAS have been associated with

triglycerides in other populations [37]. In the Kosrae population,

triglyceride levels were associated with seven SNPs near APOC3/

A5 [38]. Variants in the APOA5-ZNF259 region (including

rs3741298) were associated with HDL-C and ApoA-1 response

to therapy with statins and fenofibric acid in patients with

dyslipidemia [39].

Association with total antioxidants was shown for a variant in

PCSK2, a proprotein convertase that is involved in proteolytic

processing of neuropeptide and hormone precursors. PCSK2 is

highly expressed in the islets of Langerhans, where it plays a role in

the conversion of proinsulin to insulin.

A LD block of 23 SNPs in the XPA/FOXE1 (TTF-2) region was

highly associated with fasting serum TSH (MAF=0.25-0.29, effect

size = 2.9-3.8%). The association is likely attributed to FOXE1

rather than XPA which is involved in DNA excision repair [40]

and the skin disease xeroderma pigmentosum [41]. FOXE1 or

thyroid transcription factor 2 (TTF-2) belongs to the ‘forkhead’ gene

family and is involved in promoting the migration process or in

repressing differentiation of the thyroid follicular cells until

migration has occurred [42] and has been associated with thyroid

cancer [43–46]. In the Kosrae population, plasma TSH levels

were strongly associated with 10 SNPs in a region encompassing

TTF-2 on chromosome 9 [38]. In a cohort of Caucasian adults,

genetic variation in FOXE1(TTF-2) showed significant effects on

T
a
b
le

3
.
M
e
as
u
re
d
g
e
n
o
ty
p
e
an

al
ys
is
fo
r
in
fl
am

m
at
io
n
m
ar
ke
rs
.

S
N
P

C
h
r

C
o
o
rd

in
a
te

(G
B

3
6
.2
)

L
o
ca

ti
o
n

(G
B
3
6
.2
)

S
N
P
(G

B
3
6
.2
)

T
ra
it

M
G
A

p
-v
a
lu
e

E
ff
e
ct

S
iz
e

M
in
o
r

A
ll
e
le

M
in
o
r
A
ll
e
le

F
re
q
u
e
n
cy

G
e
n
e
S
y
m
b
o
l

G
e
n
e
N
a
m
e

rs
8
6
3
0
0
2

1
1
5
7
4
4
1
5
4
4

in
tr
o
n

[A
/G
]

M
C
P
-1

(p
g
/m

L)
3
.5
9
E-
1
3
*

0
.0
6
2

A
0
.2
4
4

D
A
R
C

D
u
ff
y
b
lo
o
d
g
ro
u
p
,
ch
e
m
o
ki
n
e
re
ce
p
to
r

rs
1
2
0
7
5

1
1
5
7
4
4
1
9
7
8

co
d
in
g
-n
o
n
sy
n

[A
/G
]

M
C
P
-1

(p
g
/m

L)
1
.3
1
E-
2
1
*

0
.1
0
3

A
0
.4
3
6

D
A
R
C

D
u
ff
y
b
lo
o
d
g
ro
u
p
,
ch
e
m
o
ki
n
e
re
ce
p
to
r

rs
7
3
1
7
5
2
6
2

2
1
1
6
7
5
8
8
2

co
d
in
g

[A
/G
]

M
C
P
-1

(p
g
/m

L)
6
.4
6
E-
0
8
**

0
.0
4
9

A
0
.0
5
3

G
R
EB
1

g
ro
w
th

re
g
u
la
ti
o
n
b
y
e
st
ro
g
e
n
in

b
re
as
t

ca
n
ce
r
1

rs
7
6
4
5
7
1
6

3
4
6
3
1
1
7
8
5

fl
an

ki
n
g
_
3
U
T
R

[A
/G
]

M
C
P
-1

(p
g
/m

L)
9
.5
6
E-
0
8
**

0
.0
4
1

A
0
.3
8
1

C
C
R
3

ch
e
m
o
ki
n
e
(C
-C

m
o
ti
f)
re
ce
p
to
r
3

rs
7
9
5
0
9
4
3
0

9
1
1
6
2
8
0
7
2
7

co
d
in
g

[T
/C
]

M
C
P
-1

(p
g
/m

L)
2
.0
3
E-
0
8
*

0
.0
5
6

A
0
.0
6
8

D
FN

B
31

d
e
af
n
e
ss
,
au

to
so
m
al

re
ce
ss
iv
e
3
1

rs
6
5
7
1
5
2

9
1
3
5
1
2
9
0
8
6

in
tr
o
n

[A
/C
]

IL
-6

(p
g
/m

L)
2
.0
3
E-
0
8
*

0
.0
4
1

A
0
.2
5
4

A
B
O

A
B
O
b
lo
o
d
g
ro
u
p
(t
ra
n
sf
e
ra
se

A
,a
lp
h
a
1
-3
-

N
-a
ce
ty
lg
al
ac
to
sa
m
in
yl
tr
an

sf
e
ra
se
;

tr
an

sf
e
ra
se

B
,
al
p
h
a
1
-3
-

g
al
ac
to
sy
lt
ra
n
sf
e
ra
se
)

rs
2
8
4
6
1
8
0
6

1
0

4
3
0
7
5
7
6
0

in
tr
o
n

[A
/G
]

M
C
P
-1

(p
g
/m

L)
4
.5
8
E-
0
8
*

0
.0
5
3

G
0
.0
4
9

R
A
SG

EF
1A

R
as
G
EF

d
o
m
ai
n
fa
m
ily
,
m
e
m
b
e
r
1
A

A
b
b
re
vi
at
io
n
s:
SN

P
,
si
n
g
le

n
u
cl
e
o
ti
d
e
p
o
ly
m
o
rp
h
is
m
;
ch
r,
ch
ro
m
o
so
m
e
;
M
G
A
,
m
e
as
u
re
d
g
e
n
o
ty
p
e
an

al
ys
is
;
n
o
n
sy
n
,
n
o
n
sy
n
o
n
o
m
o
u
s;

M
C
P
-1
,
m
o
n
o
cy
te

ch
e
m
o
ta
ct
ic

p
ro
te
in
-1
;
U
T
R
,
u
n
tr
an

sl
at
e
d
re
g
io
n
;
IL
-6
,
in
te
rl
u
e
ki
n
-6
.

*S
ig
n
if
ic
an

t
ac
co
rd
in
g
to

th
e
w
id
e
ly

u
se
d
si
g
n
if
ic
an

ce
th
re
sh
o
ld

p
va
lu
e
o
f
,
56

1
0
2
8
.

**
Si
g
n
if
ic
an

t
ac
co
rd
in
g
to

th
e
o
u
r
p
o
p
u
la
ti
o
n
-s
p
e
ci
fi
c
si
g
n
if
ic
an

ce
th
re
sh
o
ld

p
va
lu
e
o
f
,
1
.0
16

1
0
2
7
.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
5
1
9
5
4
.t
0
0
3

Obesity GWAS in Hispanic Children

PLOS ONE | www.plosone.org 5 December 2012 | Volume 7 | Issue 12 | e51954



T
a
b
le

4
.
M
e
as
u
re
d
g
e
n
o
ty
p
e
an

al
ys
is
fo
r
d
ie
t,
e
n
e
rg
y
e
xp

e
n
d
it
u
re
,
su
b
st
ra
te

u
ti
liz
at
io
n
an

d
p
h
ys
ic
al

ac
ti
vi
ty
.

S
N
P

C
h
r

C
o
o
rd

in
a
te

(G
B
3
6
.2
)

L
o
ca

ti
o
n

(G
B
3
6
.2
)

S
N
P
(G

B
3
6
.2
)

T
ra
it

M
G
A

p
-v
a
lu
e

E
ff
e
ct

S
iz
e

M
in
o
r

A
ll
e
le

M
in
o
r
A
ll
e
le

F
re
q
u
e
n
cy

G
e
n
e
S
y
m
b
o
l

G
e
n
e
N
a
m
e

rs
1
6
9
3
3
0
0
6

9
1
5
3
2
5
9
1
4

fl
an

ki
n
g
_
5
U
T
R

[A
/C
]

Li
g
h
t
ac
ti
vi
ty

(m
in
/d
)

7
.4
9
E-
0
8
**

0
.0
3
5

C
0
.1
1
0

R
P
L7
P
3

ri
b
o
so
m
al

p
ro
te
in

L7
p
se
u
d
o
g
e
n
e
3
3

rs
1
7
1
0
4
3
6
3

1
4

6
7
0
0
9
2
3
6

in
tr
o
n

[T
/C
]

D
in
n
e
r
in
ta
ke
,
ad

j
EE
R
(k
ca
l)

5
.1
3
E-
0
8
**

0
.0
4
4

G
0
.0
5
0

TM
EM

22
9B

tr
an

sm
e
m
b
ra
n
e
p
ro
te
in

2
2
9
B

rs
8
0
3
7
8
1
8

1
5

3
0
7
1
4
7
6
8

in
tr
o
n

[A
/G
]

Sl
e
e
p
d
u
ra
ti
o
n
(m

in
/d
)

4
.9
5
E-
0
8
*

0
.0
4
2

G
0
.1
8
1

A
R
H
G
A
P
11
A

R
h
o
G
T
P
as
e
ac
ti
va
ti
n
g
p
ro
te
in

1
1
A

rs
8
0
4
0
8
6
8

1
5

7
6
6
9
8
2
3
6

co
d
in
g

[A
/G
]

Sl
e
e
p
e
n
e
rg
y

e
xp

e
n
d
it
u
re

ad
j

w
e
ig
h
t
(k
ca
l/
d
)

5
.9
5
E-
0
8
**

0
.0
4
8

G
0
.2
3
9

C
H
R
N
A
3

ch
o
lin

e
rg
ic

re
ce
p
to
r,
n
ic
o
ti
n
ic
,
al
p
h
a
3

(n
e
u
ro
n
al
)

rs
1
2
1
0
4
2
2
1

1
9

3
7
4
8
1
0
0

in
tr
o
n

[A
/G
]

T
o
ta
l
e
n
e
rg
y

e
xp

e
n
d
it
u
re

ad
j

w
e
ig
h
t
(k
ca
l/
d
)

2
.6
5
E-
0
8
*

0
.0
5
4

A
0
.3
8
1

M
A
TK

m
e
g
ak
ar
yo

cy
te
-a
ss
o
ci
at
e
d
ty
ro
si
n
e

ki
n
as
e

rs
6
0
2
5
5
9
0

2
0

5
5
5
0
3
9
1
1

fl
an

ki
n
g
_
3
U
T
R

[T
/C
]

Se
d
e
n
ta
ry
&
lig

h
t

ac
ti
vi
ty

(m
in
/d
)

3
.6
1
E-
0
8
*

0
.0
3
9

A
0
.3
0
8

C
TC

FL
C
C
C
T
C
-b
in
d
in
g
fa
ct
o
r
(z
in
c
fi
n
g
e
r

p
ro
te
in
)-
lik
e

rs
2
8
2
3
6
1
5

2
1

1
6
4
0
5
0
0
4

in
tr
o
n

[T
/A
]

Sl
e
e
p
R
Q

5
.2
8
E-
0
8
**

0
.0
4
4

A
0
.1
7
8

C
21
o
rf
34

lo
n
g
in
te
rg
e
n
ic

n
o
n
-p
ro
te
in

co
d
in
g

R
N
A
4
7
8
(L
IN
C
0
0
4
7
8
)

A
b
b
re
vi
at
io
n
s:
SN

P
,
si
n
g
le

n
u
cl
e
o
ti
d
e
p
o
ly
m
o
rp
h
is
m
;
ch
r,
ch
ro
m
o
so
m
e
;
M
G
A
,
m
e
as
u
re
d
g
e
n
o
ty
p
e
an

al
ys
is
;

EE
R
,
e
st
im

at
e
d
e
n
e
rg
y
e
xp

e
n
d
it
u
re
;
U
T
R
,
u
n
tr
an

sl
at
e
d
re
g
io
n
;
R
Q
,
re
sp
ir
at
o
ry

q
u
o
ti
e
n
t.

*S
ig
n
if
ic
an

t
ac
co
rd
in
g
to

th
e
w
id
e
ly

u
se
d
si
g
n
if
ic
an

ce
th
re
sh
o
ld

p
va
lu
e
o
f
,
56

1
0
-8
.

**
Si
g
n
if
ic
an

t
ac
co
rd
in
g
to

th
e
o
u
r
p
o
p
u
la
ti
o
n
-s
p
e
ci
fi
c
si
g
n
if
ic
an

ce
th
re
sh
o
ld

p
va
lu
e
o
f
,
1
.0
16

1
0
2
7
.

d
o
i:1
0
.1
3
7
1
/j
o
u
rn
al
.p
o
n
e
.0
0
5
1
9
5
4
.t
0
0
4

Obesity GWAS in Hispanic Children

PLOS ONE | www.plosone.org 6 December 2012 | Volume 7 | Issue 12 | e51954



free T4 levels and borderline effects on serum TSH [47]. Three of

the SNPs (rs925488, rs1877431, rs1588635) detected in the VIVA

cohort was also reported by Lowe et.al (38); there was no overlap

with Medici et al (43). Also, three of the SNPs (rs2805809,

rs2668804, rs2808693) reported by Lowe et al. (38) was in high

linkage disequilibrium (1.00) with rs2805771, rs2808699,

rs7875482 detected in the VIVA cohort. This is a region of high

LD, located in the 59UTR-region of the gene which has been

shown to influence transcriptional regulation of FOXE1(TTF-2).

The functional variant is likely to be situated at this locus, but its

exact localization remains to be elucidated in future studies,

involving in-depth resequencing.

A unifying role of inflammation in chronic diseases including

cardiovascular disease, diabetes, hypertension and obesity is

emerging. In the VIVA GWAS, variants in six genes were

associated with proinflammatory markers. Our findings support

a major role of Duffy antigen receptor for chemokines (DARC) in

the regulation of the circulating levels of the cysteine-cysteine (CC)

chemokine, MCP-1 (effect size =,10%). In circulation, MCP-1 is

bound to erythrocyte DARC that acts as a chemokine receptor/

reservoir of proinflammatory cytokines [48]. Our strongest

association for MCP-1 was with a nonsynonymous, highly

conservedSNP in DARC (rs12075; MAF=0.44) which replicated

results from the Framingham Heart Study GWAS in Caucasian

adults [49]. MCP-1 was also associated with SNPs in GREB1,

DFNB31, RASGEF1A, and CCR3. Huber et al. found increased

expression of CCR3 in subcutaneous and visceral adipose tissue in

obese patients compared to lean controls [50]. Studies by Schnabel

et al [49] and Naitza et al. [51] found suggestive associations of

serum MCP-1 with CCR2 which is also a MCP-1 receptor and is in

the same region of chromosome 3 as CCR3, and referred to as the

CCR2/CCR3 cytokine receptor gene cluster.

Fasting serum IL-6 levels were associated with variants in the

ABO gene that determines blood group. ABO blood group has

been found to be associated with a number of biomarkers such as

von Willebrand factor levels, Factor VIII levels, thrombomodulin,

TNF-a and ICAM-1 [52,53], and in our case IL-6. The

mechanism by which the A and B alleles affect these biomarkers

is uncertain. In Caucasians with and without type 1 diabetes,

a variant rs579459 near the ABO blood group gene accounted for

19% of the variance in E-selectin levels [52]; in our GWAS, this

same variant was associated with IL-6 levels (p=1.7E-07; Table
S2).

Total energy expenditure, adjusted for body weight, was

significantly associated with rs12104221 in MATK which encodes

a protein-tyrosine kinase involved in signal transduction pathways

[54]. Sleeping energy expenditure, adjusted for body weight, was

associated with rs8040868 in CHRNA3 (cholinergic receptor,

neuronal nicotinic, alpha polypeptide 3), a member of a superfam-

ily of ligand-gated ion channels that mediate fast signal trans-

mission at synapses. After binding to acetylcholine, the receptor

responds by opening ion-conducting channels across the plasma

membrane, suggesting a plausible role of the coding variant

(rs8040868) in energy metabolism [55]. Acetylcholine receptors

activate proopiomelanocortin neurons that in turn activate

melanocortin-4 receptors that are involved in the regulation of

energy intake and expenditure [56], [57].

Sleep duration was associated with an intronic SNP in

ARHGAP11A (rho GTPase activating protein 11A) that encodes

a 1,023-amino acid protein that has a rhoGAP domain and

tyrosine phosphorylation site. Evidence is emerging that obesity

affects sleep, and that sleep patterns and disorders may have an

effect on weight [58]. Although the mechanism is unclear, sleep

disturbances are characteristic of Prader Willi Syndrome, caused

by a deletion in 15q11-q13 that encompasses ARHGAP11A [59].

Sedentary-light physical activity was associated with a variant in

CTCFL, an 11-zinc-finger factor involved in gene regulation.

CTCFL forms methylation-sensitive insulators that regulate X-

chromosome inactivation which may play a role in epigenetic

regulation [60].

Variants in the 11 genes known to cause extreme early-onset

obesity also may contribute to milder forms of obesity [61,62].

None of the genotyped variants in genes for monogenic obesity

reached genome-wide significance in our GWAS, although several

variants in CRHR1, CRHR2, MCHR1, MC3R, MC4R and POMC

were nominally associated. Similarly, variants in or nearby the

susceptibility genes for obesity did not attain genome-wide

significance but several - CHST8, KCTD15, MTCH2, SFRS10,

SH2B1 and TMEM18 - were nominally associated with obesity-

related traits, consistent with GWAS in children of European-

American [63] or European ancestry [9]. The lack of genome-

wide significant findings for monogenic causes of obesity or

susceptibility genes may be a function of our sample size and

statistical power, or the presence of rare variants in the Hispanic

population not represented in the Illumina platform.

The VIVA LA FAMILIA Study is unique in its consideration of

a pediatric Hispanic population. We believe that our extensive

phenotyping and genotyping enabled localization of novel genetic

loci associated with obesity in Hispanic children, despite our

relatively small sample size. Our phenotypes represent not only

adiposity, but also biological processes underlying the development

and consequences of childhood obesity. We applied a standard

and stringent approach to our measured genotype analysis, but do

agree replication is desirable. We believe we have identified genes

that warrant further investigation.

In conclusion, unprecedented in-depth phenotyping and high-

density SNP genotyping enabled the localization of novel genetic

loci associated with the pathophysiology of obesity in Hispanic

children. Identified genome-wide significant loci: 1) corroborated

genes implicated in other studies (MTNR1B, ZNF259/APOA5,

XPA/FOXE1 (TTF-2), DARC, CCR3, ABO); 2) localized novel

genes in plausible biological pathways (PCSK2, ARHGAP11A,

CHRNA3); and 3) revealed novel genes with unknown function in

obesity pathogenesis (MATK, COL4A1). As with other GWAS, the

variants identified are likely not the actual causal variants but

rather markers for genomic regions or loci in which the causal

variants lie. Characterization of the underlying functional genetic

variants contributing to this serious public health problem in

Hispanic children will involve additional study.
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Figure S1 GWAS Manhattan plots are displayed for
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