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Abstract

Bacille Calmette-Guérin (BCG) is an attenuated strain of Mycobacterium bovis currently used as a

vaccine against tuberculosis. Global distribution and propagation of BCG has contributed to the in

vitro evolution of the vaccine strain and is thought to partially account for the different outcomes

of BCG vaccine trials. Previous efforts by several molecular techniques effectively identified large

sequence polymorphisms among BCG daughter strains, but lacked the resolution to identify

smaller changes. In this study, we have used a NimbleGen tiling array for whole genome

comparison of 13 BCG strains. Using this approach, in tandem with DNA resequencing, we have

identified six novel large sequence polymorphisms including four deletions and two duplications in

specific BCG strains. Moreover, we have uncovered various polymorphisms in the phoP-phoR locus.

Importantly, these polymorphisms affect genes encoding established virulence factors including cell

wall complex lipids, ESX secretion systems, and the PhoP-PhoR two-component system. Our study

demonstrates that major virulence factors are different among BCG strains, which provide

molecular mechanisms for important vaccine phenotypes including adverse effect profile, tuberculin

reactivity and protective efficacy. These findings have important implications for the development

of a new generation of vaccines.

Background
Bacille Calmette-Guérin (BCG) is an attenuated strain of
Mycobacterium bovis and is the only available vaccine
against tuberculosis (TB). Since 1974, BCG vaccination
has been included in the World Health Organization
(WHO) Expanded Program on Immunization. It is esti-
mated that more than 3 billion individuals have been

immunized with BCG and over 100 million doses of BCG
are administered annually. Multiple studies have con-
firmed that BCG is generally safe and can protect children
against disseminated disease, including tuberculosis men-
ingitis [1,2]. BCG also provides cross-protection against
leprosy [3]. However, the success of BCG against pulmo-
nary TB in adults is still debated, since randomized clini-

Published: 15 September 2008

BMC Genomics 2008, 9:413 doi:10.1186/1471-2164-9-413

Received: 6 August 2008
Accepted: 15 September 2008

This article is available from: http://www.biomedcentral.com/1471-2164/9/413

© 2008 Leung et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18793412
http://www.biomedcentral.com/1471-2164/9/413
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Genomics 2008, 9:413 http://www.biomedcentral.com/1471-2164/9/413

Page 2 of 12

(page number not for citation purposes)

cal trials have reported protection efficacy ranging from
0–80% [4,5]. Several hypotheses for the variation in
observed efficacy have been proposed [6-9].

One explanation concerns the heterogeneity of the BCG
strains [6]. The original BCG was derived from a virulent
strain of M. bovis isolated from a cow. From 1908 through
1921, this isolate was subjected to 230 passages on glycer-
inated potato bile medium, which generated an attenu-
ated strain termed BCG [10]. Distribution and widespread
use of BCG started around 1924 and was accompanied by
changes in the manufacturing process in production facil-
ities. For instance, while BCG in Sweden was transferred
without interruption from bile potato to bile potato
medium in accordance with Calmette's original practice
[11], BCG production in Denmark involved alternating
rounds of growth on potato bile medium and Sauton
broth until 1949 when it was grown exclusively in Sauton
medium [12]. Prior to the establishment of seed stocks in
the 1960s, BCG was passaged continuously, and the
changes in media and transfer schedules contributed to
the "in vitro evolution" of BCG [6]. It is estimated that as
many as 49 production substrains have been used at one
time or another in various parts of the world [13], includ-
ing the four major BCG vaccines in current use (BCG-Pas-
teur, -Danish, -Glaxo, and -Japan) [14]. The relative
protective efficacy of BCG substrains is currently
unknown [6,15].

Anecdotal reports have long indicated that BCG sub-
strains exhibit phenotypic differences in growth character-
istics, biochemical activities, ability to protect against
challenge with Mycobacterium tuberculosis (M. tb), and
residual virulence [16]. Over the past decade, numerous
groups have sought to identify the genomic changes
responsible for these phenotypes. The earliest whole
genome comparisons confirmed that BCG was indeed
related to, but distinct from M. tb and M. bovis [17-19].
Subsequent analyses of multiple vaccine strains have
uncovered extensive genome diversity including both
deletions and duplications in BCG substrains [18,20-22].
The phylogeny established by these molecular methods is
consistent with the historical records of BCG dissemina-
tion [20,23,24]. For example, BCG strains acquired after
1927 exhibit the RD2 deletion, while nRD18 is only
deleted in strains obtained after 1933. Other genomic
changes are exclusive to individual daughter strains, and
are associated with vaccine production at specific loca-
tions [22,24].

A number of molecular techniques have been used to
investigate genomic polymorphisms in BCG strains. Early
efforts using subtractive hybridization [18] and spotted
oligonucleotide arrays [20,22,25] effectively identified
large sequence polymorphisms, but lacked the resolution

to identify smaller changes. More recently, complete
genome sequencing has enabled high-resolution analysis
of BCG-Pasteur 1173P2 [24], but sequences for other BCG
lineages have yet to be determined. To identify potential
genomic polymorphisms in other BCG substrains, we
have employed a tiling array platform developed by Nim-
bleGen Systems. This DNA microarray-based comparative
genome sequencing technique allows high resolution
detections of sequence polymorphisms [26-28]. Using
this technique, in tandem with DNA resequencing, we
have identified a number of novel genomic polymor-
phisms in BCG strains. Importantly, these polymor-
phisms affect genes that are known virulence factors and
are expected to have a major impact on the immunogenic-
ity and efficacy of individual vaccine strains.

Results
We have used NimbleGen tiling arrays to analyze the
genomic variability of 13 BCG strains, including BCG-
Russia, -Japan, -Moreau, -Sweden, -Birkhaug, -China, -
Prague, -Glaxo, -Danish, -Tice, -Phipps, -Frappier and -
Pasteur. All of these strains, except BCG-China, have pre-
viously been subjected to genomic analysis by other meth-
ods [18,20,22,24,25]. The complete genome sequence of
BCG-Pasteur 1173P2 is available [24]. The same BCG-Pas-
teur strain was included in the analysis to serve as an inter-
nal control for our experiments in addition to validating
the NimbleGen technique. In each experiment, genomic
DNA from M. tb H37Rv [29] acted as the common refer-
ent.

Deletions and Duplications

A total of 42 deletions were identified. Twenty-five of
these have been described previously [18,20,22,24,25].
Thirteen more represent transposons (e.g., IS6110)
present in the referent strain (M. tb H37Rv), but absent
from the M. bovis and BCG lineages [24,29,30]. Six dupli-
cations were identified, four (DU1, DU2-I, -II, -III) of
which have been described previously [21,24]. These
results confirm the validity of our approach, and the util-
ity of tiling arrays for comparative genomics. A total of 4
novel deletions and 2 duplications were identified in our
analysis. These novel deletions and duplications are
described below.

Two deletions specific to BCG-Moreau were identified.
The first is a 975 bp deletion (Table 1) that eliminates the
distal end of fadD26 (Rv2930/BCG2952) and the start of
ppsA (Rv2931/BCG2953). These genes are part of the
genetic locus required for the biosynthesis of phthiocerol
dimycocerosates (PDIMs) and phenolic glycolipids
(PGLs) [31], two cell wall lipids known to be important
for the virulence of M. tb and M. bovis [32-34]. In previous
work, we demonstrated that BCG-Moreau does not pro-
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duce PDIMs or PGLs [35], which is now explained by the
fadD26-ppsA deletion identified in the current study.

The second novel polymorphism in BCG-Moreau is an
1128 bp deletion within Rv3887c/BCG3942c (Table 1).
Although intact in other BCG substrains, this region over-
laps with a 2.4-kb deletion (termed RDpan) found in
some M. bovis strains [36], including the sequenced strain,
AF2122/97 [30]. The Rv3887c/BCG3942c gene encodes a
membrane transport protein and is part of the ESX-2 type
VII secretion system [37]. The role of the ESX-2 system in
virulence is unknown considering its variable presence
among clinical M. bovis isolates from both France and
England [36]. However, loss of the Rv3887c membrane
transporter likely eliminates the secretion of ESAT-6- and
CFP-10-like antigens [37] and influences the immuno-
genicity of the vaccine strain.

Two novel deletions were identified in BCG-Sweden and
BCG-Birkhaug. These polymorphisms are identical
between the two BCG strains, which is consistent with
their genealogy [24]. The first deletion comprises 110 bp
and disrupts the promoter and translational start site of
whiB3 (Rv3416/BCG3486) [see Additional file 1]. The
other is a 245 bp deletion within trcR (Rv1033c/
BCG1091c) (Table 1). Both genes encode transcriptional
regulators known to impact virulence.

WhiB3 belongs to a family of seven M. tb transcriptional
regulatory proteins that contain iron-sulfur clusters and
are predicted to regulate gene expression in response to
environmental stimuli [38]. WhiB3 responds to oxygen
and nitric oxide, and is important for regulation of carbon
metabolism [39]. The deletion of whiB3 in M. bovis atten-
uates in vivo growth in guinea pigs [40]. TrcR is the
response regulator of the TrcR-TrcS two-component sys-
tem. Deletion of trcS from M. tb generates a hypervirulent
phenotype such that the strain exhibits increased lethality
in SCID mice [41].

Although the genomic profiles of BCG-Birkhaug and
BCG-Sweden are similar, we have also found that BCG-

Birkhaug is distinguished by a strain-specific duplication,
named DU-Birkhaug. This spans the origin of replication
and is analogous to the DU1 duplication in BCG-Pasteur
[21,24] (Fig. 1A). However, the borders of the DU-
Birkhaug are different. Whereas DU1 encompasses 29.6
kb from Rv3910 to pknB/Rv0014, DU-Birkhaug spans a
slightly different region, from trxB/Rv3913 to rodA/
Rv0017c. Most of the genes in these regions are involved
with DNA replication and cell division. Unlike DU1, DU-
Birkhaug also appears to be in a genomic location distant
to its original copy. Initial PCR-based attempts to charac-
terize the boundaries of this duplication assumed that the
second copy was nearby failed to detect a product (data
not shown). As such, the genome location of DU-
Birkhaug remains unknown.

Our analysis also revealed a novel duplication in the
genome of BCG-Tice termed DU-Tice. It comprises a 22-
kb duplication that encompasses Rv1782-Rv1800 (Fig.
1B). The precise boundaries and location of this duplica-
tion were determined using primers at the junction (Fig.
1C). Interestingly, DU-Tice encodes the ESX-5 secretion
system [37,42]. This includes several conserved mem-
brane transporters (Rv1782, Rv1783, Rv1795, and
Rv1797), a membrane associated ATPase (Rv1784), a set
of PE/PPE genes (Rv1787-Rv1792) and the ESAT-6 and
CFP-10 family proteins (esxM and esxN) [37]. ESX-5 is
absent from the genome of the fast-growing, non-patho-
genic M. smegmatis, but present in both the M. avium com-
plex and M. marinum. The role of ESX-5 in virulence has
been demonstrated in M. marinum [37,42]. It has been
suggested that the ESX clusters evolved via gene duplica-
tion [43] and DU-Tice offers the first snapshot of such an
event.

To our knowledge, we have conducted the first genomic
analysis of BCG-China, which is a descendant of BCG-
Danish obtained from the Statens Serum Institut around
1947. Consistently, BCG-China exhibits the DU2-III
duplication and deletion of RD2 (data not shown), which
is similar to other BCG-Danish derivatives, including
BCG-Prague (obtained in 1946 from passage 725) [44],

Table 1: Novel deletions and duplications determined in current study.

BCG strains Polymorphisms Start End Size (bp) Genes affected

Moreau Deletion 3244503 3245478 975 fadD26, ppsA

4370517 4371645 1128 Rv3887c

Birkhaug/Sweden Deletion 1158377 1158622 245 trcR

3834822 3834932 110 whiB3

Tice Duplication 2017525 2039587 22062 Rv1782-Rv1800

Birkhaug Duplication 1
4402007

20813
4411395

30201 Rv3913-Rv0017c

The coordinates correspond to the genome of M. tb H37Rv. The two deletions and DU-Tice were confirmed by PCR application and DNA 
sequencing.
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Novel duplications identified in BCG-Birkhaug and BCG-Tice by NimbleGen tiling arrayFigure 1
Novel duplications identified in BCG-Birkhaug and BCG-Tice by NimbleGen tiling array. Sections of the ratio plot 
are shown. The ratio of the reference (M. tb H37Rv) probe intensity (Cy5) was divided by the test (BCG strain) probe intensity 
(Cy3). Reference probes and test probes that do not span a mutation should represent full-length perfect match hybridization, 
and thus should have similar intensities, with a reference/test ratio near 1. If the test genome contains an amplification event 
(increased copy number when compared to the reference), then the reference/test ratio will shift below 1. (A) Novel duplica-
tion (DU-Birkhaug) identified in BCG-Birkhaug, which is analogous to the DU-Pasteur (DU1) but has different borders. The 
same genomic region of BCG-Sweden, which is closely related to BCG-Birkhaug, is shown for comparison. (B) Novel duplica-
tion (DU-Tice) identified in BCG-Tice. Three other BCG strains belonging to the same group (DU2-IV) are shown for compar-
ison. (C) The precise border of DU-Tice is mapped by PCR amplification using primers specific to the junction. The two copies 
are immediately adjacent to each other and overlap by 1 bp.



BMC Genomics 2008, 9:413 http://www.biomedcentral.com/1471-2164/9/413

Page 5 of 12

(page number not for citation purposes)

BCG-Glaxo (obtained in 1954, from passage 1077) and
BCG-Danish (lyophilized in 1961, from passage 1331)
[45]. However, BCG-China and -Prague do not contain
the previously described deletion of Rv1810, which is
characteristic of BCG-Glaxo and -Danish. As such, the
Rv1810 deletion must have occurred between 1947 and
1954. Coincidentally, this period corresponds to the
replacement of potato bile medium by Sauton medium
for BCG production in Denmark [12].

Polymorphisms of phoP-phoR

The PhoP-PhoR system is one of the 11 two-component
systems found in the M. tb genome [29]. The PhoR pro-
tein is a transmembrane histidine kinase that transmits
signals from the environment by autophosphorylation.
The phosphoryl group is then transferred to PhoP, a
response regulator that regulates the expression of multi-
ple genes [46]. Recently, several studies have demon-
strated that the PhoP-PhoR system, particularly PhoP,
plays an essential role in M. tb virulence [26,46-48]. A sin-
gle point mutation (S219L) in the DNA binding region of
PhoP partially accounts for the attenuation of the H37Ra
strain of M. tb [26]. Furthermore, a phoP mutant of M. tb
was found to be more attenuated than BCG-Pasteur in
SCID mice infections [47]. Our NimbleGen analysis
revealed some weak signals in the phoP-phoR region (not
shown), which prompted us to resequence these genes.
The DNA fragment containing the promoter region of

phoP, the ORFs of phoP and phoR, and the intergenic
region was PCR amplified from each BCG strain and
determined by DNA sequencing.

Our sequence analysis revealed a number of polymor-
phisms in the phoP-phoR locus in various BCG strains
compared to the genome sequence of M. bovis. The three
early BCG substrains, BCG-Russia, -Japan, and -Moreau,
contain an identical IS6110 (1,356 bp) insertion at nucle-
otide 851593 of the M. tb genome, which is 18 bp
upstream of the start codon of phoP (Fig. 2). This IS6110
element is identical to many other copies of IS6110 found
in various locations in the M. tb genome. It is flanked by
a 3-bp direct repeat (GAA) on both sides and is in an
inverse orientation of phoP-phoR (Fig. 2). The presence of
an IS6110 element in the promoter region of phoP in BCG-
Russia, -Japan, and -Moreau has been described previ-
ously, but its insertion site and orientation were not deter-
mined until now [49]. Although not present in M. tb
H37Rv or M. bovis AF2122/97, an IS6110 insertion in the
phoP promoter was found in a clinical strain of M. bovis
termed B strain, which was responsible for a severe noso-
comial outbreak of multidrug resistant TB in humans in
Spain [50,51]. However, unlike the three BCG strains, the
IS6110 insertion in the M. bovis B strain is located at 75 bp
upstream of the start codon of phoP and is in the same ori-
entation as phoP-phoR [50]. The potential effect of IS6110

IS6110 insertion in the phoP promoter in BCG-Russia, -Moreau, and -JapanFigure 2
IS6110 insertion in the phoP promoter in BCG-Russia, -Moreau, and -Japan. (A) Schematic representation of the 
phoP-phoR locus with IS6110 inserted in an inverse orientation 18 bp upstream from phoP start codon. (B) Nucleotide 
sequence surrounding IS6110. The IS6110 sequence is boxed. The GAA direct repeats flanking the IS6110 insertion site is 
underlined and in boldface. The ATG start codons of phoP and phoR are indicated by arrows and in boldface.
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on phoP expression is described in the 'Discussion' sec-
tion.

Three other novel phoP-phoR polymorphisms that likely
impact their functions were also uncovered by our
sequencing analysis. An identical, 11-bp deletion within
the ORF of phoR was uncovered in BCG-Sweden and BCG-
Birkhaug (ACCGGACTGGG, nucleotides from 853689 to
853699, M. tb genome coordinates). This deletion
changes the amino acid sequence of 54 residues (residues
432 to 485) in the C-terminal of PhoR. This polymor-
phism is different than the previously described 10 bp
deletion within phoR present in BCG-Danish and BCG-
Glaxo, which affects residues 91–485 [24]. BCG-Frappier
also contains a single nucleotide deletion (A at 852701,
M. tb genome coordinates), causing a frame-shift muta-
tion that affect residues 103–485 of PhoR. Together, these
results indicate that besides BCG-Danish and BCG-Glaxo,
BCG-Sweden, -Birkhaug, and -Frappier also contain a
defective phoR gene.

A single nucleotide insertion within the ORF of phoP was
uncovered in BCG-Prague (G, between nucleotides
852067 and 852068, M. tb genome coordinates) [see
Additional file 2]. This frame shift mutation changes the
C-terminal sequence (residues 154–247) of PhoP, which
is the DNA binding domain (residues 144–247) [52-54].
As such, BCG-Prague is a natural phoP mutant.

Single point mutations in PhoP or PhoR are also found in
various BCG strains and are summarized in Table 2. In
contrast, sequences of the phoP-phoR locus of BCG-Phipps,
-Tice, and -Pasteur are identical to the published sequence
of BCG-Pasteur and M. bovis [24,30].

Discussion
The loss of the RD1-encoded ESX-1 protein secretion sys-
tem during 1908–1921 contributes to the attenuation of

BCG ([55], see also Fig. 3). However, because reintroduc-
tion of ESX-1 into BCG does not restore full virulence,
other genetic lesions are also involved [56]. Whole
genome sequence comparison reveals 2,223 single nucle-
otide polymorphisms (SNPs) between BCG-Pasteur and
M. tb H37Rv, and 736 SNPs between BCG-Pasteur and M.
bovis AF2122/97 [24]. NimbleGen analysis revealed 1,010
SNPs between BCG-Pasteur and M. tb H37Rv. Of which,
945 SNPs were correctly identified when comparing to the
complete genome sequence of BCG-Pasteur. Thus the
NimbleGen technique has a limited ability to detect SNPs
but the majority of identified SNPs are accurate. Our Nim-
bleGen analysis also revealed numerous SNPs (ranging
from ~400 to ~1,800) between individual BCG strains
and M. tb H37Rv, and the majority of changes detected by
the NimbleGen technique are also present in BCG-Pasteur
(data not shown). This suggests that the loss of RD1 and
the accumulation of a number of point mutations during
the 230 passages in vitro likely account for the initial loss
of virulence by 1921. Subsequent dissemination of BCG
to various parts of the world, accompanied by changes in
the manufacturing process, further affected the residual
virulence and immunogenicity of individual BCG strains.
As such, some strains are more virulent than others in ani-
mal models of infection [57] and also exhibit differential
ability to induce adverse reactions (reactogenicity) follow-
ing vaccination in neonates [58]. Our current work begins
to provide some explanation for these observed differ-
ences (Fig. 3).

Consistent with a previous study [58], we find that the
earliest distributed BCG strains, BCG-Russia, -Japan, and -
Moreau, all contain a second copy of IS6110 that is
inserted in the promoter region of phoP. A similar, albeit
distinct, insertion of IS6110 in the phoP promoter was also
found in a virulent strain called M. bovis B strain [50]. The
presence of IS6110, which is in the same orientation as
phoP, increases the expression of phoP and (the resulting

Table 2: Novel polymorphisms of phoP-phoR in BCG strains identified in current study.

BCG strains Polymorphisms of phoP Predicted effects on 
PhoP

Polymorphisms phoR Predicted effects on PhoR

Russia
Japan
Moreau

IS6110 insertion at 18 bp upstream 
of ATG start codon

Upregulation of phoP One SNP in BCG-Moreau.
No SNP in BCG-Russia or 
-Japan

D322G mutant in BCG-
Moreau

Birkhaug
Sweden

ND NA 11 bp deletion within ORF Mutated 54 residues of the C-
terminal

Prague Single base insertion within ORF Mutated 94 residues of the 
C-terminal

ND NA

Frappier SNP within ORF T9M mutant Single base deletion within 
ORF

Mutated 383 residues of the 
C-terminal

China SNP within ORF P151S mutant ND NA

The sequences of phoP-phoR in BCG-Phipps, BCG-Tice, and BCG-Pasteur are 100% identical to the published genome sequences of M. bovis 
AF2122/97 [30]. BCG-Danish and -Glaxo contains a 10 bp deletion within phoR, which was described previously [24]. ND: polymorphisms not 
detected. NA: no affect.
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increase in virulence) was thought to be responsible for
the outbreak of M. bovis B strain in humans [50]. Simi-
larly, the expression level of phoP was found to be higher
in BCG-Japan than in BCG-Pasteur [24]. However, in
BCG-Japan, -Russia, and -Moreau, the IS6110 is in the
inverse orientation of phoP (Fig. 2). As such, how IS6110
upregulates phoP expression in BCG is not immediately
apparent and likely involves a different mechanism. One
possibility is the elimination of phoP autoregulation. It
was shown that PhoP protein, albeit from H37Ra, binds
to three 9-bp direct repeats within the phoP promoter
sequence and represses its own expression [52]. In BCG,
IS6110 is inserted between the PhoP binding sites and the
start codon of phoP, which could impair the repression by
PhoP and subsequently increase phoP expression. Alterna-
tively, an unidentified promoter sequence within IS6110
in the same orientation of phoP could drive the expression
of phoP. The presence of the second copy of IS6110 in
these early BCG strains also suggests that the original BCG
isolated in 1921 might have been derived from a highly
virulent M. bovis strain containing the same IS6110 ele-
ment. This IS6110 was subsequently lost in other BCG
strains (Fig. 3) and is not present in most clinical strains
of M. bovis and M. tb isolated in modern times [50,59].
Given the important role of PhoP in M. tb virulence,
higher expression of phoP could explain why BCG-Russia
is generally considered more virulent than other BCG
strains [6]. However, in the other early strains, BCG-
Moreau and BCG-Japan, the loss of lipid virulence factors
PDIMs and PGLs appears to have a more pronounced

effect on virulence. Consequently, these two strains,
together with BCG-Glaxo, which also lacks PDIMs and
PGLs, and as we have described previously, are more
attenuated and less reactogenic than other BCG strains
[35]. The deletion of fadD26-ppsA described here provides
a genetic mechanism for the defective PDIM/PGL biosyn-
thesis in BCG-Moreau. However, this region is intact in
BCG-Japan and BCG-Glaxo, indicating that other mecha-
nisms may also lead to the PDIM/PGL defect.

BCG-Sweden was obtained from the Institut Pasteur in
1926 while Konrad Birkhaug acquired the strain that
bears his name around 1927 [6]. Previous studies indi-
cated that these strains differ from other early BCG strains
(i.e., BCG-Russia, -Japan, -Moreau) only by the loss of the
IS6110 element described above. Our current work reveals
three novel deletions shared by BCG-Sweden and BCG-
Birkhaug (Fig. 3), which distinguish them from other
early strains. Two deletions affect the regulatory proteins
WhiB3 and TrcR, and have different impacts on virulence.
The whiB3 gene appears to be important for virulence. The
M. bovis whiB3 mutant is attenuated for growth in guinea
pigs but not in mice [40]. Conversely, the trcRS two-com-
ponent system has a negative impact on virulence. Dele-
tion of trcS from M. tb generates a hypervirulent
phenotype in SCID mice [41]. BCG-Sweden was used in
Sweden from 1926 until 1978 and was then replaced by
BCG-Danish because of the high frequency of osteitis
associated with the former strain [60]. The deletion of trcR
may contribute to the reactogenicity of BCG-Sweden.

Refined genealogy of BCG vaccinesFigure 3
Refined genealogy of BCG vaccines. The genealogy is modified from a previous model [24]. Genetic markers identified in 
this work are highlighted.
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The other deletion found in BCG-Sweden and BCG-
Birkhaug affects the phoR gene of the phoP-phoR two-com-
ponent system. Remarkably, three other late BCG strains,
BCG-Danish, -Glaxo, and -Frappier also contain a defec-
tive phoR gene. Together a total of five BCG strains are nat-
ural phoR mutants. However, three distinct mutations are
found among these five strains, which correspond to their
genealogy (Fig. 3). The role of phoR in virulence is less
understood than for phoP. Among its many functions,
phoP is required for the biosynthesis of trehalose-contain-
ing cell wall lipids [48,61,62]. Contrastingly, phoR does
not seem to be required for this function [62]. Neverthe-
less, the fact that the phoR mutation has been acquired by
different groups of BCG strains by three independent
events and genetic mechanisms suggests that there was a
common selective pressure and an important role for this
gene during the in vitro evolution of BCG.

Another BCG strain that contains a major mutation in the
phoP-phoR system is BCG-Prague. A single nucleotide
insertion in the ORF of phoP changes the C-terminal
sequence, which contains the DNA binding domain of
PhoP [52-54]. As such, BCG-Prague is a natural phoP
mutant and likely to be more attenuated than other BCG
strains. This is consistent with the study by Lagranderie et
al., which showed in mice models of infection that BCG-
Prague exhibited more attenuated phenotypes compared
to three other BCG strains (BCG-Russia, -Pasteur, and -
Glaxo) [57]. Compared to 11 other BCG strains, including
BCG-Russia, -Moreau, -Japan, -Sweden, -Danish, -Glaxo,
and -Pasteur that have been analyzed in the current study,
BCG-Prague consistently exhibited the weakest ability to
induce delayed type hypersensitivity to tuberculin in chil-
dren [63] or in guinea pig models [64]. Because of the tra-
ditional presumption that tuberculin reactivity is
associated with vaccine potency, BCG-Prague, which was
used in Czechoslovakia between 1951–1980 and
appeared to be effective, was replaced by BCG-Russia in
1981 [58]. An immediate increase of BCG-induced ostei-
tis cases was observed in Czechoslovakia following the
switch of BCG-Prague to BCG-Russia [65]. The phoP muta-
tion detected in the current study may explain the weak
tuberculin sensitivity induced by BCG-Prague. It was
recently shown that a phoP mutant of M. tb was more
attenuated than BCG-Pasteur and confers an equivalent
protection in mice against M. tb challenge. In the guinea
pig model, the M. tb phoP mutant showed superior protec-
tion to BCG-Pasteur against a high dose challenge with M.
tb [47]. Consequently, the M. tb phoP mutant is now being
evaluated as a vaccine candidate to replace BCG [66].
Since BCG-Pasteur contains an intact phoP gene, and in
light of our finding, it would be worthy to compare the M.
tb phoP mutant with BCG-Prague in terms of safety and
protective efficacy.

The novel duplication uncovered in BCG-Tice (DU-Tice)
may have an impact on its residual virulence and immu-
nogenicity. DU-Tice contains the entire ESX-5 secretion
system, which is one of the five type VII secretion systems
found in the M. tb complex [37]. Importantly, besides the
RD1-encoded ESX-1, ESX-5 is the only other ESX system
that has been shown to be involved in virulence thus far
[37]. ESX-5 is conserved in other pathogenic mycobacteria
and reported to facilitate the cell-to-cell spread of M. mari-
num in infected macrophages, a function shared by ESX-1
[42]. However, ESX-5 does not complement the loss of
virulence caused by ESX-1 deletion, suggesting that they
play distinct roles in virulence [37]. Horwitz and co-work-
ers have used BCG-Tice as the host strain to overexpress
antigen 85B. This resulted in a recombinant strain termed
rBCG30 that exhibits superior protective efficacy over
BCG-Tice and is currently being evaluated as a vaccine
candidate in human clinical trials [67-71]. The rBCG30
Tice strain also showed significantly stronger immune
response and better protection against M. tb challenge
than the rBCG30 strain based on BCG-Connaught [69].
The duplication of ESX-5 in BCG-Tice, which could
increase the residual virulence and immunogenicity, may
partially account for the benefit associated with rBCG30
Tice.

Conclusion
Our current work has uncovered six large sequence poly-
morphisms not described previously, including two dele-
tions exclusive to BCG-Moreau, two deletions shared by
BCG-Sweden and BCG-Birkhaug, as well as the DU-
Birkhaug and DU-Tice duplications. Moreover, we have
uncovered a number of polymorphisms in the phoP-phoR
locus in various BCG strains. Remarkably, these polymor-
phisms affect genes that are well known to have major
impact on the virulence of M. tb or M. bovis. These include
genes involved in the biosynthesis of lipid virulence fac-
tors PDIMs/PGLs, genes that encode the ESX family type
VII secretion system, and the phoP-phoR two-component
regulatory system. As such, the current collection of BCG
comprises natural mutants of established virulence factors
identified thus far. BCG-Moreau, -Japan, and -Glaxo are
PDIMs/PGLs deficient mutants. BCG-Prague is a phoP
mutant. BCG-Sweden, -Birkhaug, -Danish, -Glaxo, and -
Frappier are defective in phoR. BCG-Sweden and BCG-
Birkhaug are also whiB3 mutants. These findings have
important implications on the current effort and future
development of TB vaccines. Currently, among major
efforts, a phoP mutant of M. tb and several recombinant
BCG strains including rBCG30 Tice, rBCG-Aeras 403 Dan-
ish, rBCGΔ Ure::CHly Pasteur, BCG::RD1 Pasteur, and
rBCGΔ Sod Tice are being evaluated as new generation TB
vaccines in preclinical or clinical trial studies [72]. In addi-
tion, a mutant of M. bovis deficient in PDIMs/PGLs is
being considered as a vaccine to protect wildlife against
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bovine tuberculosis [73]. Our previous study [35] and cur-
rent work provide direct evidence that BCG vaccine strains
are different in major virulence factors, and likely have
different vaccination properties including safety, immu-
nogenicity, and efficacy. Since new vaccine candidates are
evaluated for their vaccination properties relative to BCG,
the appropriate choice of BCG strain for these studies is
critical. Furthermore, because it is likely that BCG will
continue to play a role in tuberculosis control by being
included in forthcoming clinical trials, as either a primer
to be boosted by new components (e.g. subunit or DNA
vaccine) or as an integral component (e.g. recombinant
BCG) of new vaccines, greater attention must be given to
the benefits that a particular strain may – or may not –
offer.

Methods
Bacterial strains

The mycobacterial strains used in this study were: Myco-
bacterium tuberculosis H37Rv, BCG-Russia (ATCC 35740),
BCG-Moreau/Rio de Janeiro, BCG-Japan, BCG-Sweden,
BCG-Birkhaug (ATCC 35731), BCG-Denmark 1331
(ATCC 35733), BCG-China, BCG-Prague, BCG-Glaxo
(ATCC 35741), BCG-Tice (ATCC 35743), BCG-Frappier
(ATCC 35735), BCG-Connaught, BCG-Phipps (ATCC
35744), and BCG-Pasteur 1173. All BCG strains except
BCG-China have been previously described [20]. BCG-
China was obtained from Shanghai Institute of Biological
Product, which is the main manufacturer for BCG in
China.

Genomic DNA extraction and labeling

Mycobacteria were cultured in Middlebrook 7H9 broth
supplemented with 10% ADC. Chromosomal DNA was
extracted using QIAGEN Genomic-tip 100/G kit (Qiagen)
and then labeled with a random primer reaction. DNA (1
μg) was mixed with 1 O.D. of 5'-fluorescence dye labeled
random nonamer (Cy3 for BCG strains and Cy5 for refer-
ence strain H37Rv) (TriLink Biotechnologies) in 62.5 mM
Tris-HCl, 6.25 mM MgCl2 and 0.0875% ß-mercaptoetha-
nol, denatured at 98°C for 5 min, chilled on ice, and incu-
bated with 100 units Klenow fragment (NEB) and dNTP
mix (6 mM each in TE) for 2 h at 37°C. Reactions were ter-
minated with 0.5 M EDTA (pH 8.0), precipitated with iso-
propanol, and resuspended in water. A fifty-fold
amplification was typically achieved.

Design of mutation mapping microarray

Mutation mapping microarrays were designed with Nim-
bleGen algorithms that select a 29-mer oligonucleotide
every 7 bases on each strand of the reference genome
sequence (Genbank Accession AL123456) [29]. All
probes were synthesized in parallel on a four-array set
using a Digital Light Processor™ (Texas Instruments, Plano
Texas) and photoprotected by phosphoramidite chemis-

try (Maskless Array Synthesis) (NimbleGen Systems, Mad-
ison WI) in a random probe layout [74,75].

Microarray hybridization

Labeled genomic DNA was hybridized to arrays in the
NimbleGen Hybridization Buffer at 42°C for 16 hr using
a MAUI hybridization system (BioMicro Systems, Inc. Salt
Lake City, Utah). Labeled genomic DNA (5 μg) from the
reference strain M. tb H37Rv and from each BCG strain
were co-hybridized to each array. Arrays were washed with
NimbleGen wash buffer, and were then spun dry in a
microarray high-speed centrifuge (TeleChem Interna-
tional, Inc., Sunnyvale, CA) and stored until scanned.

Analysis of mapping array data and design and 

hybridization of resequencing microarrays

Microarrays were scanned at 5 μm resolution using the
Genepix® 4000B scanner (Axon Instruments, Union City
CA), and pixel intensities were extracted using NimbleS-
can™ v2.4 software (NimbleGen). Probes that spanned
potential mutations were identified by NimbleGen soft-
ware. Probe sequences corresponding to all possible can-
didate mutation sites were selected for resequencing. The
strategy that was used to automatically generate the
sequencing array is similar to that described previously
[28]. Briefly, 8 probes per base position were analyzed, 4
per genome strand. These probes contain all possible alle-
les at a centrally located position. The length, melting
temperature and mismatch position of each probe were
optimized. When target DNA is hybridized to these arrays
the perfectly matched probe will hybridize more strongly
than the three corresponding mismatched probes for each
strand. The differential signal intensity between the per-
fectly matched probe and mismatched probes allows the
base to be determined precisely. These resequencing
arrays were synthesized, hybridized with labeled genomic
DNA from each BCG strain and scanned as above.
Sequence base assignments were made using a machine-
learning algorithm [76]. Putative mutation-containing
DNA segments were PCR amplified and verified by capil-
lary sequencing [see Additional file 3]. The microarray
data has been deposited in the Center for Information
Biology Gene Expression Database (CIBEX; http://
cibex.nig.ac.jp), with the accession number of CBX70.
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