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Abstract: The main objective of this research was to introduce a novel machine learning algorithm of

alternating decision tree (ADTree) based on the multiboost (MB), bagging (BA), rotation forest (RF)

and random subspace (RS) ensemble algorithms under two scenarios of different sample sizes and

raster resolutions for spatial prediction of shallow landslides around Bijar City, Kurdistan Province,

Iran. The evaluation of modeling process was checked by some statistical measures and area under

the receiver operating characteristic curve (AUROC). Results show that, for combination of sample

sizes of 60%/40% and 70%/30% with a raster resolution of 10 m, the RS model, while, for 80%/20%

and 90%/10% with a raster resolution of 20 m, the MB model obtained a high goodness-of-fit and

prediction accuracy. The RS-ADTree and MB-ADTree ensemble models outperformed the ADTree

model in two scenarios. Overall, MB-ADTree in sample size of 80%/20% with a resolution of 20 m

(area under the curve (AUC) = 0.942) and sample size of 60%/40% with a resolution of 10 m (AUC =

0.845) had the highest and lowest prediction accuracy, respectively. The findings confirm that the

newly proposed models are very promising alternative tools to assist planners and decision makers

in the task of managing landslide prone areas.
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1. Introduction

Landslides, which are very frequent natural hazards in mountainous regions, cause serious

damages to economy and human lives. In past decades, tremendous efforts have been made to

predict landslides for efficient hazard management. However, it is difficult to perfectly predict the

natural mechanism of landslides, as they are controlled by many conditioning factors. Many methods

have been developed and applied for spatially predicting landslides in recent years, which can be

grouped into two main types, namely qualitative methods and quantitative methods [1]. Qualitative

techniques (landslide inventory and weighted methods) are based on the judgment of experts, whereas

quantitative techniques (statistical, probabilistic and deterministic methods) are based on mathematical

objective algorithms [2]. In general, quantitative methods often produce better results compared with

qualitative methods [3,4]. For example, Borrelli et al. [5] used a bivariate statistical model for landslide

modeling and achieved reasonable results and Ciurleo et al. [6] and Cascini et al. [7] compared heuristic,

statistical and deterministic methods. Their results depicted that deterministic methods are slightly

better than the other models. Other scientists have recently proposed several methods based on

physical modeling, suggesting that they may be more accurate because they use expressions based on

universal physical laws. Furthermore, analysis of past landslides may give useful data which can be

used in methods based on physical modeling [8–13].

In recent years, machine learning algorithms have been popularly used for developing

quantitative models for spatially predicting landslides. Ada and San [14] applied and compared

different machine learning methods, namely support vector machines (SVM) and random forest (RF),

for landslide susceptibility mapping, and stated that these machine learning methods are promising

for landslide prediction and modeling. Other machine learning methods, namely Fisher’s Linear

Discriminant Analysis (FLDA), Bayesian Network (BN), Logistic Regression (LR), and Naïve Bayes

(NB), were applied and compared by Pham et al. [15]. Goetz et al. [16] compared several machine

learning algorithms including Random Forest (RF), SVM, and LR with some conventional statistical

prediction techniques, namely weights-of-evidence (WOE) and generalized additive models (GAM),

and revealed that machine learning methods, especially RF, are more powerful in spatial prediction

of landslides. Even though many machine learning methods have been developed and applied in

recent decades, the development and application of new techniques and algorithms is still needed

for enhancing the quality and accuracy of landslide prediction. More recently, the performance of

single machine learning methods is frequently improved using several ensemble techniques such

as AdaBoost, MultiBoost, Bagging, and Rotation Forest [17]. Ensemble techniques utilize multiple

learning algorithms to combine different machine learning methods for generating hybrid models;

thus, they can efficiently handle complex input to produce a better output [18–21].

The main purpose of this study was to evaluate the efficiency of several ensemble techniques

(MB, BA, RF, and RS) in improving the performance of a base classifier, namely Alternating Decision

Trees (ADTree). The difference between this study and earlier studies is using two scenarios of the

combination of sample size and raster resolution, including 60%/40% and 70%/30% with a raster

resolution of 10 m, and 80%/20% and 90%/10% with a raster resolution of 20 m for preparing landslide

susceptibility mapping (LSM) and assessing their performance by ADTree algorithm and its four

ensembles. For this, some shallow landslides around Bijar City, Kurdistan Province, Iran, were

collected and considered as database for modeling. Various criteria including statistical indexes, the

receiver operating characteristic (ROC) curve and the Friedman and Wilcoxon tests were applied for

validation of the developed models.

2. Description of Study Area

In this study, a region around Bjar City in the eastern part of the Kurdistan Province in Iran,

which is hit by many shallow landslides, was selected. Geographically, it is located between latitudes

of 35◦48′25” N and 35◦59′50” N, and longitudes of 47◦28′50” E and 47◦46′44” E, covering an area of

about 598 km2 (Figure 1). In terms of topography, the elevation of the study area mostly covers low
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land and plain ranging between 1573 m and 2550 m above sea level, with an average of 1898 m. Slope

angles vary from 0◦ to 60◦ such that most of the area is mainly hilly. According to the Köppen climatic

classification, the study area has a cold climate (type D). In addition, the minimum and maximum

annual average temperatures are 4.4 ◦C and 13.4 ◦C, respectively. The analysis of rainfall data from

various gauge stations between 1987 and 2010 shows that the annual average precipitation is about 338

mm. Additionally, analysis of Intensity–Duration–Frequency curve (IDF) of the synoptic station of Bijar

City reveals that the precipitation with a low duration, for example 15 min, creates a high precipitation

intensity of 33.661 mm/h, for a 20-year return period resulting in frequent shallow landslides in the

study area. The number of frost days is 104, and the number of snow days is 35 [22].

 

Figure 1. Location of landslides in the study area in Kurdistan Province of Iran.

In terms of land cover, most of the area, 78%, has been covered by dry-farming lands while

barren lands cover the lowest amount. However, other classes of land covers including irrigated lands,

wood lands, pasture lands, residential areas, and barren lands are existant and classified. In terms of

geology, most of the area, 94%, consists of conglomerate and siltstone with intermediate shale and

marl while 6% is covered by volcanic rocks. The study area belongs to the Sanandaj-Sirjan tectonic

zone where most of mountains have been formed by carbonated stones (Miocene formation) while the

hilly areas have mainly been covered by Pliocene formations including shale and marl, and quaternary

deposits [22] (Figure 2). Overall, precipitation with a high intensity and a low duration in conjunction

with loose and discontinuity formation of hilly mountains can be considered as the most reason for

occurring landsides in the study area.
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Figure 2. Lithological map of the study area.

3. Data Acquisition and Processing

3.1. Landslide Inventory Map

Shirzadi et al. [22] reported that a landslide inventory map (LIM) is prerequisite information for

landslide susceptibility modeling. Additionally, Galli et al. [23] indicated some objectives of LIM for

modeling landslides including: (1) detection and monitoring of location and type of landslides; (2) the

frequency of landslides occurrence; (3) detection and monitoring of single triggering events such as

earthquakes, intense rainfall and rapid snowmelt; (4) the frequency–area analysis of slope instability;

and (5) required information for landslide susceptibility or hazard maps [23]. Thus, a reliable and

accurate LIM, which is more concordant with region reality, can obtain a reasonable result in landslide

modeling. The locations of 111 shallow landslides were firstly obtained from the Forests, Rangeland

and Watershed Management Organization of Iran (FRWOI), and were then checked using field surveys,

interpretations of aerial photographs (1:40,000 scale) and Google Earth images [22,24]. In this study, two

scenarios were used: (1) the combination of sample sizes of 60%/40% and 70%/30% with a resolution

of 10 m; and (2) the combination of sample sizes of 80%/20% and 90%/10% with a resolution of 20 m.

These scenarios were selected after changing different sample sizes and raster resolutions in this study.

Accordingly, from the 111 landslide locations, the number of landslides for sample size of

60%/40% is 67 and 44 landslides for training and validation dataset. These values for sample size of

70%/30% and 77 and 34, for sample size of 80%/20% are 89 and 22 and for sample size of 90%/10%

are 99 and 12, respectively. A comprehensive study of landslide inventory of the study area can be

seen in [22]. They cited that most shallow landslides have a depth lower than 3 m in which rotational

sliding, complex and rotational falling assigned 70.6%, 22.4% and 6.3% of the landslides, respectively.
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In addition, they reported that, in addition to precipitation and geological configuration, man-made

factors including land use change and cutting the foot of slopes were the most common causes of

landslide incidence. Additionally, results of field surveys reveal that landslide length ranged between

70 and 280 m. Moreover, landslide widths ranged between 7 and 293 m. The average, median, mode,

standard deviation, and skewness of the landslide length were 36.388, 25.800, 14.50, 34.003, and 3.738

m, respectively. Statistical indices such as average, median, mode, standard deviation, and skewness

for landslide widths were 62.721, 43.300, 31, 54.821, and 2.703 m, respectively [22].

3.2. Landslide Conditioning Factors

As landslide occurrence is a function of geo-environmental factors which is different from

one region to another, the contributions of these factors in landslide incidence are also completely

different [19]. The conditioning factors of the present study were selected considering many existing

landslide susceptibility studies and data availability in the study area. In this regard, twenty landslide

conditioning factors were adopted in five categories: (1) topographic factors (slope, aspect, elevation,

curvature, plan curvature, profile curvature, and sediment transport index (STI)); (2) hydrological

factors (rainfall, annual solar radiation, stream power index (SPI), topographic wetness index (TWI),

distance to rivers, and river density); (3) lithological factors (lithology, distance to faults, and faults

density); (4) land cover factors (land use and normalized difference vegetation index (NDVI)); and

(5) anthropogenic factors (distance to roads and road density) (Table 1). In this study, two raster

resolutions of 10 m and 20 m for all conditioning factors in conjunction with four sample sizes, namely

60%/40%, 70%/30%, 80%/20% and 90%/10%, were used in landslide modeling process.

Slope is a vital conditioning factor that is widely used for landslide susceptibility modeling [25].

The slope values were extracted from the digital elevation model (DEM) prepared from advanced

space borne thermal emission and reflection radiometer (ASTER) satellite image with resolution of

30 m × 30 m [26,27] and classified into eight classes (Table 1). The correlation between slope aspect and

occurrence of landslides is evident [28]. Different aspects affect the soil and rock degrees of weathering

and the moisture content. The aspect map was extracted from the DEM and reclassified into nine

directions (Table 2). The variety of elevation has a significant influence on landslide [29,30]. Curvature

reflects the shape of ground surface which in turn affects the occurrence of landslide [22]. The map

of curvature for the study area was generated from DEM in six classes (Table 1). The plan curvature

values reflect the steepness degree of slopes influencing the characteristics of surface runoff [29].

The plan curvature values were derived from the DEM and classified according to the natural break

method, into six classes (Table 1). Calvello and Ciurleo [31] demonstrated that natural breaks is the best

classification criteria (of the two adopted by the authors) to be used in classifying the variables. Profile

curvature is the curvature in the vertical plane parallel to the slope direction [32]. The values of profile

curvature acquired through DEM and ArcGIS Tools were divided into six classes using natural break

method (Table 1). The sediment transport index (STI) indicates the amount of sediment transported by

overland flow. This hydrological factor is based on the catchment evolution erosion theories and the

transport capacity limiting sediment flux [33]. The STI is calculated from the following formula:

STI =

(

As

22.13

)0.6( sin β

0.0896

)1.3

(1)

where As is specific catchment area (m2) and sin β is slope gradient (radian) [34].
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Table 1. Landside conditioning factors and their classes for landslide modeling in Bijar City.

No. Landslide Causal Factors Classes

Topographic
factors

1 Slope (o) (1) 0–5; (2) 5–10; (3) 10–15; (4) 15–20; (5) 20–25; (6) 25–30; (7) 30–45; (8) >45

2 Aspect
(1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South;
(7) Southwest; (8) West; (9) Northwest

3 Elevation (m)
(1) 1573–1700; (2) 1700–1800; (3) 1800–1900; (4) 1900–2000; (5) 2000–2100;
(6) 2100–2200; (7) 2200–2300; (8) 2300–2400; (9) >2400

4 Curvature (m−1)
(1) [(−12.5)–(−1.4)]; (2) [(−1.4)–(−0.4)]; (3) [(−0.4)–(−0.2)]; (4) [(−0.2)–0.9];
(5) [0.9–2.5]; (6) [2.5–15.6]

5 Plan curvature (m−1)
(1) [(−6.7)–(−0.8)]; (2) [(−0.8)–(−0.2)]; (3) [(−0.2)–0]; (4) [0–0.4]; (5) [0.4–1.1];
(6) [1.1–10.4]

6 Profile curvature (m−1)
(1) [(−10.7)–(−1.7)]; (2) [(−1.7)–(−0.7)]; (3) [(−0.7)–(−0.2)]; (4) [(−0.2)–0.2];
(5) [0.2–0.9]; (6) [0.9–7.5]

7 STI (1) 0–7; (2) 7–14; (3) 14–21; (4) 21–28; (5) 28–35; (6) 35–42

Hydrological
factors

8 Rainfall (mm)
(1) 263–270; (2) 270–300; (3) 300–330; (4) 330–360; (5) 360–390;
(6) 390–420; (7) 420–450

9 Annual solar radiation (h)
(1) 3.015–6.563; (2) 5.563–6.747; (3) 6.747–6.849; (4) 6.849–6.930;
(5) 6.930–7.073; (6) 7.073–7.236; (7) 7.236–8.215

10 SPI
(1) 0–998; (2) 998–6986; (3) 6986–19,961; (4) 19,961–45,911; (5) 45,911–101,803;
(6) 101,803–255,505

11 TWI (1) 1–3; (2) 3–4; (3) 4–6; (4) 6–8; (5) 8–9; (6) 9–11

12 Distance to Rivers (m) (1) 0–50; (2) 50–100; (3) 100–150; (4) 150–200; (5) >200

13 River density (km/km2) (1) 0–1.9; (2) 1.9–3.2; (3) 3.2–4.2; (4) 4.2–5.2; (5) 5.2–6.3; (6) 6.3–7.8; (7) 7.8–13.2

Lithological
factors

14 Lithology (1) Quaternary (2) Tertiary (3) Cretaceous

15 Distance to Faults (m) (1) 0–200; (2) 200–400; (3) 400–600; (4) 600–800; (5) 800–1000; (6) >1000

16 Fault density (km/km2) (1) 0–0.3; (2) 0.3–0.8; (3) 0.8–1.2; (4) 1.2–1.7; (5) 1.7–2.1; (6) 2.1–2.5; (7) 2.5–3.2

Land Cover
Factors

17 Land use
(1) Residential area (2) Arable land (dry faring and cultivated lands);
(3) Wood land; (4) Grassland; (5) Barren land

18 NDVI
(1) [(−0.23)–(−0.061)]; (2) [(−0.061)–(−0.0081)]; (3) [(−0.0081)–(0.060)];
(4) [(0.060)–0.14]; (5) [0.14–0.24]; (6) [0.24–0.41]; (7) [0.41–0.73]

Anthropogenic
factors

19 Distance to Roads (m) (1) 0–50; (2) 50–100; (3) 100–150; (4) 150–200; (5) >200

20 Road density (km/km2)
(1) 0–0.0013; (2) 0.0013–0.0027; (3) 0.0027–0.0041; (4) 0.0041–0.0055;
(5) 0.0055–0.0069; (6) 0.0069–0.0083; (7) 0.0083–0.0097

Table 2. Factor selection based on the information gain ration techniques.

Conditioning
Factors

10 m 20 m

60%/40% 70%/30% 80%/20% 90%/10% 60%/40% 70%/30% 80%/20% 90%/10%

AM R AM R AM R AM R AM R AM R AM R AM R

Slope angle 0.105 2 0.482 1 0.509 1 0.484 1 0.135 2 0.655 1 0.459 1 0.481 1
TWI 0.142 1 0.597 2 0.427 2 0.409 2 0.142 1 0.482 2 0.428 2 0.409 2

Aspect 0.071 3 0.065 10 0.058 11 0.088 6 0.071 3 0.072 9 0.065 7 0.085 6
STI 0.064 4 0.195 4 0.172 4 0.186 4 0.064 4 0.195 4 0.173 3 0.186 3

Profile curvature 0.005 5 0.042 12 0.094 7 0.031 12 0 - 0.032 12 0.011 12 0 -
Plan curvature 0 - 0.221 3 0.174 3 0.191 3 0 - 0.440 3 0.172 4 0.167 4

Elevation 0 - 0.096 7 0.086 8 0.095 5 0 - 0.096 7 0.059 9 0.095 5
Curvature 0 - 0.114 5 0.106 5 0.085 7 0 - 0.065 10 0.022 11 0.046 11
Land use 0 - 0.064 9 0.058 11 0.050 11 0 - 0.080 8 0.058 10 0.070 8
Rainfall 0 - 0.051 11 0.064 10 0.057 10 0 - 0.051 11 0.065 8 0.057 10

SPI 0 - 0.070 8 0.075 9 0.071 9 0 - 0.116 6 0.076 6 0.071 9
Solar radiation 0 - 0.099 6 0.092 6 0.081 8 0 - 0.119 5 0.077 5 0.076 7

AM, Average Merit; R, Rank.

In this study, STI map was divided into six classes (Table 1). Generally, rainfall plays a critical

role in the occurrence of shallow landslides. Based on the rainfall data of the study area, the values of

rainfall were divided into seven categories (Table 1). Annual solar radiation is defined as the mean

solar radiation converged at a given pixel within one year [34]. The lower the annual solar radiation is,

the higher the probability of failure occurrence will be, due to less available pore spaces of soil [34].

It is computed based on the aspect and slope by ArcGIS 10.2 using “Area Solar Radiation” command.

The solar radiation map in this study was reclassified into seven classes with natural break intervals
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(Table 1). The stream power index (SPI), a factor being able to measure the intensity and erosive power

of slope surface runoff, was calculated as [35]:

SPI = As tan β (2)

where As is the specific catchment area (m2), and β represents the local slope gradient (radian).

The values of SPI are determined by the characteristics of underlying soil and runoff. Eventually,

the SPI map manifested six intervals, as shown in Table 1. Topographic wetness index (TWI) is used to

quantitatively evaluate the tendency of runoff and the position where water converges [35]. The TWI

values were calculated as:

TWI = ln(
α

tan β
) (3)

where α is the cumulative upslope area draining through a point (m2) and β is the slope angle (radian)

at the point. In this study, the TWI map was composed of six categories (Table 1). Distance to rivers is

one of the conditioning factors that have an effective role in landslide stability [36]. Hence, it should be

considered for landslide modeling [37]. It was generated in five classes (Table 1). Another important

conditioning factor used for landslide susceptibility mapping by many researchers is river density [30].

The river network map in this study was reclassified into seven classes with natural break intervals

method (Table 1). Lithology is a basic factor determining the geotechnical engineering characteristics.

The soil and rock that have low engineering characteristics always have a potential for surface sliding.

According to the lithological map extracted from Sanandaj geological map with the scale of 1:100,000,

the lithology was reclassified into three categories (Table 1).

Moreover, the distance to faults map with six categories (Table 1) was constructed from the fault

lines of the lithological data with the help of ArcGIS 10.2. In addition, the degree of influence of faults

was measured by fault density arranged into seven classes, as shown in Table 1. Different land types

have different permeability and strengths which are closely related to the stability of slopes. Land use

was classified into five classes by means of aerial photos interpretation and supervised classification

method (Support Vector Machine algorithm) (Table 1). NDVI can qualitatively assess the vegetation

coverage condition of slope surfaces. The NDVI is calculated from reflectance measurements in the

red and near infrared (NIR) portion of the spectrum as [37]:

NDVI =
(NIR(Band4)− Red(Band3))

(NIR(Band4) + Red(Band3))
(4)

where Red and NIR stand for the spectral reflectance measurements acquired in the red and

near-infrared regions, respectively. The NDVI varies between 1 and −1, and its map was classified

into seven classes (Table 1). Distance to road is another critical factor that is widely used in landslide

risk assessment models. Literature shows that a large number of landslides was observed closer to the

roads [22]. It was mapped with five categories in this study (Table 1). Furthermore, for estimating the

effects of road engineering, the road density was employed as a landslide conditioning factor. The

road density layer in the study area was generated with seven categories (Table 1).

4. Methodology

4.1. Alternating Decision Tree (ADTree)

ADTree is one of the most successful classification algorithms, which is widely applied in data

mining. ADTree algorithm was proposed by Freund and Mason [38] in 1993 based on Boosting. ADTree

base-classifier can not only generate classification results, but also provide the confidence of results,

which is employed to evaluate the accuracy of results [39]. This algorithm is composed of prediction

nodes and decision nodes [40]. The elements in a training set can be divided into prediction nodes

by split tests and the corresponding predictive values of prediction nodes are obtained. Furthermore,
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with iterative computation, growing and pruning, the ADTree base-classifier is generated, which has a

favorable applicability to deal with complex and enormous database [41]. Assuming is a split testing

of predictive node, we get Equation (5):

Z(c) = 2(
√

W+(c)W−(c) +
√

W+(−c)W−(−c)) + W ′ (5)

where W+(c) and W−(c) are the weighted sum of positive tuples and negative tuples that meet the

demand of c. W ′ is other tuples’ weighted sum except the tuple sets divided into p. By finding the

minimum value of Z, the best split testing can be obtained [42]. The optimal construction algorithm of

ADTree, which utilizes the Zpure pruning technology, was invented by Pfahringer [43] (Equation (6)).

Zpure = 2(
√

W+ +
√

W−) + W ′ (6)

where Zpure is the low limit of Z, which can be used for cutting the evaluation of some predictive nodes.

4.2. Bagging (BA)

Bagging is an ensemble of various component learners [44]. Essentially, various data subsets

are acquired by repeated sampling, and the extensiveness and otherness of component learners rise

significantly through training the data subsets mentioned above [45]. In addition, the independence of

component learners is relatively excellent, and different algorithms can be run as parallel. According to

the core idea of Bagging, the main process of this algorithm includes: (1) selecting data randomly and

independently from original data; (2) repeating Step (1) several times to generate a certain amount of

independent datasets; (3) designating a weak learning algorithm to learn various datasets; (4) obtaining

the sequence of predictive function; and (5) voting for the results and selecting the result with the most

votes as a final result [46]. As a sort of ensemble learning method, Bagging can weaken the defects of

component learners and raise the recognition rate of unstable classifiers. Therefore, Bagging has been

widely combined with various weak classifiers, such as Random Forest that combines Bagging and

Decision Tree [47]. Sequences of algorithms related to Bagging have been employed to build landslide

susceptible models [48–50].

4.3. Multiboost (MB)

Multiboost belongs to classification ensemble algorithms, which are made up of various classifiers

generated through classification learning. Due to the diversity among classifiers, the classification

errors decrease dramatically. The errors of base classifiers can be calculated by Equation (7).

e =

∑
xj∈S′ ,Ct(xj) 6=yj

weight
(

xj

)

m
(7)

where e is the errors of base classifiers; S′ is the dataset; and xj and yj are the elements of datasets.

Practically, Multiboost is an organic combination of Wagging and Adaboost which are representative

classification ensemble techniques [51]. The main idea of Multiboost is that Wagging and Adaboost

can reduce the variance and deviation. Hence, the precision of classification results can be improved

further. In the Multiboost algorithm, various classifier-based models are first constructed using

training subsets. The weights of classifier-based models are then adjusted to optimize classification

accuracy [49]. In view of the advantages of Multiboost mentioned above, this algorithm has been

applied in wider research fields [52,53].

4.4. Random Subspace (RS)

RS was proposed by Ho in 1998 [54]. As another important ensemble learning method, RS

also has a superior generalization performance compared with traditional component learners. The
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definition of subspace can be expressed as follow: Assuming W is the nonempty subset of linear space

V, when Equations (8) and (9) hold, W is the linear subspace of V.

α + β ∈ W(α, β ∈ W) (8)

kα ∈ W(α ∈ W, k ∈ R) (9)

where R represents the real number field and k is a number of R. The base learners of RS are formed

by randomly sampling feature subsets, and RS is more suitable to analyze high-dimensional data [55].

The base learners only learn parts of sample information from various feature subsets. Therefore, to

utilize complete sample information, multiple learners should be fused organically. Specifically, the

feature subspaces are picked out using Bootstrap Method. On this basis, multiple base learners can be

generated by classification algorithms using machine learning methods. Finally, various base classifiers

can be bound together in accordance with majority voting method or multiplication rules. In recent

years, numerous research achievements have embodied the excellent classification performance of

RS [56–58].

4.5. Rotation Forest (RF)

The RF algorithm is used to promote the difference and accuracy of base classifiers based on

feature transformation [59]. Before selecting subsamples, the sets of sample attributes should be

segmented and combined randomly to obtain sequences of subsets of sample attributes, of which data

can be preprocessed by feature transformation. Compared with Random Forest algorithm, which is the

basis of RF, RF algorithm has a better performance on processing high dimensional and small-sample

database [60–62]. The main procedure of building RF model includes: (1) dividing the attribute sets

into several subsets; (2) obtaining sample subsets by resampling and making feature transformation

on subsets of sample attributes; (3) realigning the rotation matrix according to sequence of original

attribute sets; (4) training base classifiers based on the data which have been rotated; and (5) integrating

results of various base classifiers and outputting the final forecast category. The probability of a sample

belonging to one category can be calculated by Equations (10) and (11).

uω(x) =

L

∑
i=1

di,j(xRa
i )

L
(j = 1, · · · , c) (10)

x = argmax(uω(x))(ω ∈ C) (11)

where x is a classification sample; ω is one of the categories; C is the universal set of categories; L is the

total number of base classifiers; Ra
i represents the rotation matrix. The flowchart of methodology is

shown in Figure 3.
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TPSST =
TP+ FN

TNSPF =
TN+ FP

TP+ TNACC =
TP+ TN+ FP+ FN

C exp

exp

P - P
Kappa index (K) =

1- P

Figure 3. Flowchart of modeling process and methodology used in this study.

4.6. Comparison and Validation Techniques

4.6.1. Statistical Index-Based Measures

In this study, Sensitivity (SST), Specificity (SPF) and Accuracy (ACC) are popular statistical

indexes used for validation of model performance. Out of these, the SST and SPF are the proportion of

the landslide and non-landslide instances which are correctly predicted as landslide and non-landslide,

respectively [37,63]. Values of these indexes are calculated using the values extracted from confusion

matrix as below:

SST =
TP

TP + FN
(12)

SPF =
TN

TN + FP
(13)

ACC =
TP + TN

TP + NT + FP + FN
(14)

Kappa index (K) =
PC − Pexp

1 − Pexp
(15)

PC = (TP + TN)/(TP + TN + FN + FP) (16)

Pexp =

(

(TP + FN)(TP + FP) + (FP + TN)(FN + TN)/
√

(TP + TN + FN + FP)

)

(17)
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RMSE =

√

1

n

n

∑
i=1

(Xpred. − Xact.)
2 (18)

where TP (true positive) and TN (true negative) are the number of instances predicted correctly,

whereas FP (false positive) and FN (false negative) refer the numbers of instances predicted erroneously.

Pc is the proportion of number of pixels that have been classified correctly as landslide or non-landslide

pixels. Pexp means the expected agreements. Xpred. is the predicted values in the training dataset or the

validation dataset. Xact. is the actual (output) values from the landslide susceptibility models [20].

4.6.2. Receiver Operating Characteristic Curve

The ROC curve is a popular method usually applied to validate the performance of models in

landslide susceptibility assessment. It is constructed by using pairs of two values which are true

positive rate and false negative rate [64,65]. Each point on this curve might be related to a specific

decision criterion for the prediction accuracy; thus, the ROC curve is very useful for validating the

predictive accuracy of models [66–69]. To quantitatively validate the models, area under this curve

(AUC) is often used. More specifically, an ideal model has the AUC value of 1, and better models have

higher AUC values [22,70].

4.6.3. Parametric and Non-Parametric Statistical Tests

Freidman test, which was introduced by Friedman [71], is a common method for validating the

performance of models. It is based on the null prior hypothesis that there is no significant difference

among the applied models, and then statistical indexes including p-values and Chi square values of all

models are calculated and ranked. If p-values and Chi square values are higher than standard values

of 0.05 and 3.841, respectively, then the null prior hypothesis is not true and rejected, and thus, we can

conclude that all models are significantly different. The Wilcoxon signed-rank test is often used to

validate and compare the models on the base of evaluating the statistical significance of differences

among the models. For that, the null hypothesis which is based on the pre-assumption that there is

no statistical difference at the significant level of 0.05 between the models, and then the statistical

values (Z and p values) are determined and evaluated. More specifically, as p value < 0.05 and Z

values beyond the critical values (±1.96), then the null hypothesis is not true and rejected, and thus

the difference among the models is significant [63].

4.7. Factor Selecting based on the Information Gain Ration (IGR) Technique

Information Gain Ratio (IGR) is a widely used feature selection for landslide conditioning factors

in the modeling of landslide susceptibility [49]. It also helps in determining the importance of each

factor for modeling so that it suggests the suitable weights assigned for each factor in generating

the input datasets. Information Gain (IG) value of factor xi in respective with the output class y is

determined by calculating the reduction of the entropy in bits as below [49]:

IG(y, xi) = E(y)− E(y|xi) (19)

where E(y|xi) is inferred the entropy value of y after incorporating the values of factor xi and E(y) is

inferred the entropy of y. E(y|xi) and E(y) are calculated by the following equations:

E(y) = −∑
i

Q(yi) log2(Q(yi)) (20)

E(y|xi) = −∑
i

Q(yi)∑
j

Q(yi|xi) log2(Q(y|xi)) (21)

where Q(yi) is defined as the prior probability of y and Q(yi|xi) is defined as the posterior probabilities

of y corresponding to the factor xi.
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5. Result and Analysis

5.1. Important Factors for Landslide Modeling

The results of different combinations of training and validation datasets showed that for a

combination of 60%/40% with the resolution of 10 m, TWI, slope angle, aspect, LS and profile curvature

have demonstrated effective impacts on landslide occurrence. Other factors did not show any effect on

the occurrence of landslide in the current study so that they were removed from the modeling process.

For three other combinations including 70%/30%, 80%/20% and 90%/10%, the results were different

since all the selected conditioning factors had an impact on the landside occurrences.

In the 70%/30% combination, TWI (Average Merit (AM) = 0.597) had the highest impact and

profile curvature (AM = 0.042) had the lowest, however in the combinations of 80%/20% and 90%/10%,

slope angle (AM = 0.509) had the highest impact on the occurrence of the past landslides. Land use

(AM = 0.058) and profile curvature (AM = 0.031) showed the lowest impact on the landslide for the

combinations of 80%/20% and 90%/10%, respectively (Table 2). For resolution of 20 m, similar to

resolution of 10 m, in the combination of 60%/40%, TWI (AM = 0.142) had the significant impact on the

landslide occurrence, followed by slope angle, aspect and LS. Other factors, due to obtaining the AM

equal to 0, did not illustrate any impact on the landslide occurrence in the study area. However, in the

three other combinations, the results were almost similar to the resolution of 10 m so that slope angle

and profile curvature had the highest and the lowest impact on landslide modeling process (Table 2).

The performance of ADTree algorithm using training dataset for the resolution of 10 m showed

that the combination of 70%/30% using all statistical measures including SST (0.951), SPF (1.00),

ACC (0.975), Kappa (0.950) and RMSE (0.157) had the highest performance compared to the other

combinations while the combination of 60%/40% had the lowest effectiveness. Moreover, in 20 m

resolution, similar to 10 m resolution, while the combination of 70%/30% had the highest performance

shown by SST (0.960), ACC (0.926), Kappa (0.851) and RMSE (0.239), the combination of 80%/20% only

had the highest performance in terms of SPF (0.911). Overall, results based on the resolutions of 10 m

and 20 m indicated that the combination of 70%/30% (highest goodness-of-fit) demonstrated more

performance than the combinations of 80%/20%, 90%/10% and 60%/40% (lowest goodness-of-fit)

(Table 3).

Table 3. Model performance using training dataset and ADTree algorithm.

Raster Resolution (m) 10 20

Sample Size (%)
60%/40% 70%/30% 80%/20% 90%/10% 60%/40% 70%/30% 80%/20% 90%/10%

Statistic Measures

TP 60 77 85 91 55 72 81 89
TN 47 81 76 89 48 78 82 92
FP 7 0 4 9 12 9 8 11
FN 20 4 13 11 19 3 7 8

SST % 0.750 0.951 0.867 0.892 0.743 0.960 0.920 0.918
SPF % 0.870 1.000 0.950 0.908 0.800 0.897 0.911 0.893

ACC % 0.799 0.975 0.904 0.900 0.769 0.926 0.916 0.905
Kappa 0.597 0.950 0.809 0.800 0.537 0.851 0.831 0.810
RMSE 0.351 0.157 0.291 0.300 0.407 0.239 0.273 0.298

The performance of ADTree algorithm using validation dataset is shown in Table 4.

Results indicated that, for 10 m and 20 m resolutions, the combination of 90%/10% had more

prediction power calculated by SST, SPF, ACC, and Kappa, while the combination of 70%/30%

displayed the highest prediction capability for both 10 and 20 m resolutions in terms of RMSE.

Additionally, the results indicate that the combination of 60%/40% for both 10 and 20 m resolutions

showed the lowest prediction power.
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Table 4. Model performance using validation dataset and ADTree algorithm.

Raster Resolution (m) 10 20

Sample Size (%)
60%/40% 70%/30% 80%/20% 90%/10% 60%/40% 70%/30% 80%/20% 90%/10%

Statistic Measures

TP 26 27 17 10 19 27 18 10
TN 37 23 19 10 25 22 20 10
FP 18 3 5 1 35 3 4 1
FN 7 7 3 1 9 8 1 1

SST % 0.788 0.794 0.850 0.909 0.679 0.771 0.947 0.909
SPF % 0.673 0.885 0.792 0.909 0.417 0.880 0.833 0.909

ACC % 0.716 0.833 0.818 0.909 0.500 0.817 0.884 0.909
Kappa 0.631 0.666 0.636 0.818 0.572 0.633 0.727 0.818
RMSE 0.363 0.182 0.390 0.331 0.484 0.256 0.342 0.309

5.2. Selecting the Best Raster Resolution for Each Combination

The prediction of different raster resolutions and sample sizes has been made simultaneously

and results have been checked using the AUC for training and validation datasets (Figure 4a–d).

Results show that the validation dataset is more sensitive than training dataset in change of pixel

resolutions and sample sizes. Basically, in the combinations of 60%/40% (Figure 4a) and 70%/30%

(Figure 4b), the resolution of 10 m had the highest goodness-of-fit and power prediction. In addition,

these figures reveal that, in the combinations of 80%/20% (Figure 4c) and 90%/10% (Figure 4d),

the resolution of 20 m displayed the highest performance using training and validation datasets.

The results generally indicated that the combination of 70%/30% with raster resolution of 10 m had

the highest and the combination of 60%/40% with raster resolution of 20 m the lowest performance.

 
Figure 4. Cont.
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Figure 4. The effects of sample size and raster resolution on the performance of landslide modeling:

(a) sample size of 60%/40%; (b) sample size of 70%/30%; (c) sample size of 80%/20%; and (d) sample

size of 90%/10%.
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5.3. Landslide Modeling Process

The best combination of sample size and raster resolution in the modeling process was selected

for performing the ensemble models of the ADTree algorithm, namely the MB, BA, RF and RF in both

training and validation phases. Basically, for sample sizes of 60%/40% and 70%/30%, the resolution

of 10 m was selected while the resolution of 20 m was considered for sample sizes of 80%/20% and

90%/10%. The number of seed and iteration in the landslide modeling process can affect the results

of goodness-of-fit and prediction accuracy of the models. The results of selecting the best optimal

parameters of ensemble models are shown in Table 5. The effects of number of seed and iteration

for both of training and validation datasets and four different sample sizes of 60%/40%, 70%/30%,

80%/20% and 90%/10% have been investigated for all ensemble models (Table 5).

Table 5. The optimal values of the number of iteration and seed for different sample sizes and raster

resolutions using ensemble models.

Ensemble
Models

90%/10% and
Resolution 20 m

80%/20% and
Resolution 20 m

70%/30% and
Resolution 10 m

60/410% and
Resolution 10 m

S I S I S I S I

MB 7 15 5 11 3 10 1 14
BA 3 10 4 10 6 10 8 10
RS 4 10 8 10 1 11 7 16
RF 6 15 3 13 5 13 1 14

I, iteration; S, seed.

According to Table 5 and Figure 5a–d, in the combination of 60%/40% with the raster resolution

of 10 m, the best values for the number of iteration and seed were 16 and 7, respectively (Figure 5a,b),

while, in the combination of 70%/30% with the raster resolution of 10 m, these values were 11 and

1 (Figure 5c,d). In addition, results showed that the values of 11 and 5 were the optimum values for

the number of iteration and seed in the combination of 80%/20% with the raster resolution of 20 m

(Figure 5e,f). In the combination of 90%/10% with the raster resolution of 20 m, these values were 15

and 7 (Figure 5g,h).

   
 

Figure 5. Cont.
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Figure 5. The trend of changes of the number of seed and iteration in the landslide modeling process:

(a) optimum number of iteration for the combination of 60%/40% with the raster resolution of 10 m,

(b) optimum number of seed for the combination of 60%/40% with the raster resolution of 10 m;

(c) optimum number of iteration for the combination of 70%/30% with the raster resolution of 10 m,

(d) optimum number of seed for the combination of 70%/30% with the raster resolution of 10 m;

(e) optimum number of iteration for the combination of 80%/20% with the raster resolution of 20 m,

(f) optimum number of seed for the combination of 80%/20% with the raster resolution of 20 m;

(g) optimum number of iteration for the combination of 90%/10% with the raster resolution of 20 m,

(h) optimum number of seed for the combination of 90%/10% with the raster resolution of 20 m.

Based on the best selected values for the number of seed and iteration, modeling process using

four ensemble models was performed, as shown in Tables 6–9. Results of the combination of 60%/40%

with the resolution of 10 m showed that in the training phase, the RS model had the highest prediction

power based on sensitivity (0.938), specificity (0.900), accuracy (0.918) and ROC (0.974). The lowest

prediction power belonged to the ADTree based on sensitivity and ROC, however, in terms of specificity,

it belonged to RF. Accuracy index demonstrated that the prediction power of BA, RS, and ADTree were

similar since all showed the lowest prediction power. The RS model obtained the highest prediction

power for the validation phase based on specificity and accuracy, however, in terms of the sensitivity,

the BA model outperformed other models. Overall, the RS model had the highest performance in

comparison to the other models in the combination of 60%/40% with the resolution of 10 m (Table 6).

Table 6. Results of ensembles modeling by combination of 60%/40% and raster resolution of 10 m.

Criteria
ADTree RF RS BA MB

T V T V T V T V T V

True positive 60 26 46 26 60 30 48 27 52 29
True negative 47 37 61 36 63 36 59 37 63 33
False positive 7 18 21 18 7 14 19 17 15 15
False negative 20 7 6 8 4 8 8 7 4 11

Sensitivity 0.750 0.788 0.885 0.765 0.938 0.789 0.857 0.794 0.929 0.725
Specificity 0.870 0.673 0.744 0.667 0.900 0.720 0.756 0.685 0.808 0.688
Accuracy 0.799 0.716 0.799 0.705 0.918 0.750 0.799 0.727 0.858 0.705
AUROC 0.864 0.737 0.907 0.796 0.974 0.791 0.889 0.788 0.940 0.756

T, training dataset; V, validation dataset.
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In the combination of 70%/30% with the raster resolution of 10 m, results concluded that the RS

model outperformed the MB (0.964), BA (0.962), ADTree (0.951) and RF (0.948) models in the training

phase, evaluated by sensitivity (0.974). In terms of the specificity, BA (1.000) and ADTree (1.000)

showed the highest prediction power, followed by MB (0.987), RS (0.940) and RF (0.906). In terms

of the accuracy, the BA (0.981) model had the higher performance, followed by the MB and ADTree

(0.975), RS (0.957) and RF (0.926) models. Based on ROC, RS (0.997) outperformed the other models.

MB in terms of sensitivity, BA and RF in terms of specificity, MB and ADTree in terms of accuracy, and

RS in terms of ROC displayed the highest prediction capabilities for validation dataset. Overall, the

results indicate that the RS model outperformed the other models in the combination of 70%/30%

with the raster resolution of 10 m in the study area (Table 7).

Table 7. Results of ensembles modeling by combination of 60%/40% and raster resolution of 10 m.

Criteria
ADTree RF RS BA MB

T V T V T V T V T V

True positive 77 27 73 28 76 28 75 28 80 28
True negative 81 23 77 22 79 21 78 21 78 22
False positive 0 3 8 2 5 2 6 2 1 8
False negative 4 7 4 8 2 9 3 9 3 2

Sensitivity 0.951 0.794 0.948 0.778 0.974 0.757 0.962 0.757 0.964 0.933
Specificity 1.000 0.885 0.906 0.917 0.940 0.913 1.000 0.913 0.987 0.733
Accuracy 0.975 0.833 0.926 0.833 0.957 0.817 0.981 0.817 0.975 0.833
AUROC 0.979 0.862 0.984 0.898 0.997 0.901 0.983 0.893 0.996 0.892

T, training dataset; V, validation dataset.

The results in Table 8 show the performance of the ensemble models in the combination of

80%/20% with the raster resolution of 20 m. This table shows that the MB, BA, RF and ADTree models

based on sensitivity (0.920), specificity (0.911) and accuracy (0.916) had the similar performance and

outperformed the RS model in the training phase. However, in terms of the ROC, the MB model

demonstrated the highest performance (0.988), followed by the RF (0.987), BA (0.974), RS (0.972) and

ADTree (0.967) models. According to the validation dataset, the MB model outperformed the other

models in terms of specificity (0.833), accuracy (0.864) and ROC (0.934), while, in terms of sensitivity,

the ADTree model illustrated the highest prediction power (Table 8).

Table 8. Results of ensembles modeling by combination of 80%/20% and raster resolution of 20 m.

Criteria
ADTree RF RS BA MB

T V T V T V T V T V

True positive 81 18 81 19 78 18 81 18 81 18
True negative 82 20 82 20 82 20 82 20 82 20
False positive 8 4 8 3 11 4 8 4 8 4
False negative 7 1 7 2 7 2 7 2 7 2

Sensitivity 0.920 0.947 0.920 0.905 0.918 0.900 0.920 0.900 0.920 0.900
Specificity 0.911 0.833 0.911 0.870 0.882 0.833 0.911 0.833 0.911 0.833
Accuracy 0.916 0.884 0.916 0.886 0.899 0.864 0.916 0.864 0.916 0.864
AUROC 0.967 0.903 0.987 0.937 0.972 0.926 0.974 0.926 0.988 0.934

T, training dataset; V, validation dataset.

In Table 9, the results of the combination of 90%/10% with the raster resolution of 20 m reveal that

the MB model had the highest performance in terms of sensitivity (0.948) and ROC (0.992) however

the RF model outperformed the other models in terms of specificity (0.959) and accuracy (0.950) in

the training phase. In the validation phase, although the MB, BA, RF and ADTree models showed

the same performance and outperformed RS in terms of the sensitivity (0.909), specificity (0.909) and
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accuracy (0.909), MB displayed the highest prediction power in terms of the ROC (0.926), followed by

the BA, RF, ADTree and RS models (Table 9).

Table 9. Results of ensembles landslide modeling using combination of 90%/10% and raster resolution

of 20 m.

Criteria
ADTree RF RS BA MB

T V T V T V T V T V

True positive 89 10 96 10 88 10 87 10 92 10
True negative 92 10 94 10 92 9 93 10 95 10
False positive 11 1 4 1 12 1 13 1 8 1
False negative 8 1 6 1 8 2 7 1 5 1

Sensitivity 0.918 0.909 0.941 0.909 0.917 0.833 0.926 0.909 0.948 0.909
Specificity 0.893 0.909 0.959 0.909 0.885 0.900 0.877 0.909 0.922 0.909
Accuracy 0.905 0.909 0.950 0.909 0.900 0.864 0.900 0.909 0.935 0.909
AUROC 0.957 0.876 0.983 0.913 0.968 0.884 0.968 0.921 0.992 0.926

T, training dataset; V, validation dataset.

5.4. Landslide Susceptibility Mapping

After determining the best ensemble models, they were performed for generation of different

landslide susceptibility maps. In the modeling process, for sample sizes of 60%/40% and 70%/30%

with the raster resolution of 10 m, the RS model was selected as the most proper model for spatial

prediction of landslides in the study area while the MB model was also selected as an acceptable

model. At first step, models have been learned using the training dataset. The entire study area was

then converted to a raster format and a unique value was assigned to each pixel based on the learned

pattern, which called landslide probability index (LPI). These continuous indexes were classified based

on the natural break classification scheme for developing the maps using different landslide probability

occurrence or susceptibility. These classes of susceptibilities were very low (VLS), low (LS), moderate,

high and very high (VHS), as shown in Figure 6.

     

  
(a) (b) 

Figure 6. Cont.
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(g) (h) 

Figure 6. Landslide susceptibility mapping prepared by the ADTree model and its ensemble:

(a) ADTree, sample size 60/40 & Resolution: 10 m; (b) RS-ADT, sample size 60/40 & Resolution: 10 m;

(c) ADTree, sample size 70/30 & Resolution: 10 m; (d) RS-ADTree, sample size 70/30 & Resolution:

10 m; (e) ADTree, sample size 80/20 & Resolution: 20 m; (f) MB-ADTree, sample size 80/20 &

Resolution: 20 m; (g) ADTree, sample size 90/10 & Resolution: 20 m; (h) MB-ADTree, sample size

90/10 & Resolution: 20 m.



Sensors 2018, 18, 3777 21 of 28

5.5. Evaluation of Landslide Susceptibility Maps

Model validation was carried out using the ROC and AUC for both training and validation

datasets (Figure 7a–h). In the combination of 60%/40% with the raster resolution of 10 m, the area

under the ROC curve (AUROC) using training dataset (goodness-of-fit) by the ADTree as the base

classifier and its ensemble of RS were 0.843 and 0.883, respectively (Figure 7a). Additionally, the

AUROC using validation dataset (prediction accuracy) for the ADTree model was 0.800 and for RS

was 0.845 (Figure 7b). In the combination of 70%/30% with the raster resolution of 10 m, the AUROC

in ADTree and its ensemble of RS were 0.925 and 0.942, respectively (Figure 7c). These values for

prediction accuracy were 0.899 and 0.912 (Figure 7d). Results shown in Figure 7e show that the AUROC

using training dataset for ADTree was 0.912 while for its ensemble of MB was 0.944. Moreover, these

values for prediction accuracy were 0.871 and 0.942 (Figure 7f). Ultimately, in the combination of

60%/40% with the raster resolution of 10 m, the AUC for ADTree and its ensemble of MB were 0.885

and 0.893, respectively (Figure 7g), while, for the validation dataset, these values were 0.864 and 0.893

(Figure 7h).

  

  

Figure 7. Cont.



Sensors 2018, 18, 3777 22 of 28

  

  

Figure 7. Model comparison and evaluation of the ADTree and its ensembles in different sample sizes

and raster resolutions using: training dataset (a,c,e,g); and validation dataset (b,d,f,h).

Overall, results of comparison and validation of ADTree and its ensembles for different sample

sizes and raster resolutions indicated that the MB model had the highest prediction power for the

combination of 80%/20% with the resolution of 20 m, followed by the combination of 70%/30% with

the resolution of 10 m using the RS model, the combination of 90%/10% with the resolution of 10 m by

the MB model and the combination of 60%/40% with the resolution of 10 m by the RS model.

6. Discussion

Since many methods and modeling techniques have been developed for preparing landslide

susceptibility assessment, increasing the performance of landslide models has been more attempted by

landslides researchers [72]. In other words, the goodness-of-fit and prediction accuracy of new machine

learning algorithms have been questioned in landslide modeling [17]. Hence, the main objective of

this study was to check the performance of the ADTree algorithm as a decision tree algorithm in

combination with four Meta classifiers/machine learning ensembles: MB, Bagging, RF and Random

subspace RS for landslide susceptibility mapping. What is more predominated in this study is the

design of two scenarios: (i) the combination of two sample sizes including 60%/40% and 70%/30%

with a resolution of 10 m; and (ii) the combination of two sample sizes including 80%/20% and

90%/10% with a resolution of 20 m for training and validation datasets. It is safe to say that, according
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to the literature review, ADTree and its ensembles have rarely been used at Bijar City in Kurdistan

Province of Iran.

The results of this study proved that Meta classifiers were improved the goodness-of-fit and

prediction accuracy of ADTree as a single-based algorithm (base classifier) in the two scenarios.

Our findings were reasonable because the ensemble classifiers decreased the bias, variance,

and over-fitting problems in landslide modeling to enhance the performance of base classifier [19].

These results are in agreement with those in [19,22,73,74], which report that ensemble models lead

to increasing the performance of the singles-based models. The findings also include that, in the

first scenario, the RS ensemble model had the highest goodness-of-fit (AUC = 0.942) and prediction

accuracy (AUC = 0.912). Shirzadi et al. [22] expressed that the RS ensemble model can well detect the

weakness of the NBTree base classifier in determining landslide locations around Bijar City, Kurdistan

Province, Iran. In the second scenario, results indicate the superiority of the MB ensemble model in

both goodness-of-fit (AUC = 0.944) and prediction accuracy (AUC = 0.942). Among all four machine

learning ensemble models, ADTree with the Multiboost model (MB-ADTree) acquired the highest

improvement. It is because the MB ensemble model has more ability for reducing the bias, variance,

and over-fitting problems compared to other ensemble methods. This finding was exactly similar to

that found by Pham et al. [74] who declared that MB is a powerful ensemble technique in comparison

to Adaboost, Bagging, Dagging, Rotation Forest and Random Subspace models for spatial predation of

landslides. It is remarkable that the success of a landslide model depends completely on the training

dataset with lower noise and over-fitting problems. In other words, selecting a proper training dataset

including landslide and non-landslide locations in conjunction with all conditioning factors is a critical

issue in landslide modeling. Landslides and non-landslide locations were randomly selected and the

most important conditioning factors to assess their predictive capability for modeling were extracted

using the information gain ratio (IGR) technique for the two scenarios.

This technique led to the selection of the best factors with low noise for modeling process [75,76].

Results show that, in the combination of 60%/40% with the resolutions of 10 m and 20 m, among

twenty factors, only five factors including slope angle, TWI, aspect, LS, and profile curvature were more

effective. Our findings also indicate that, in the combinations of 70%/30%, 80%/20% and 90%/10%

with the resolutions of 10 and 20 m, twelve factors were important for landslide modeling including

slope angle, TWI, aspect, LS and profile curvature, plan curvature, elevation, curvature, Land use,

rainfall, SPI, and solar radiation. Ineffective factors were removed from the modeling process due

to having average merit equal to 0. Moreover, slope angle and TWI were the two most significant

factors in the study area contributing in landslide occurrence. Therefore, our findings reveal that, with

removing the factors with low predictive capability, the performance of the models increased. It was

found that, to achieve a powerful and capable ensemble model, the parameters affecting the results of

modeling should be correctly determined such as number of seed and number of iteration. Therefore,

it is necessary to optimize these parameters to obtain the best performance of theses ensemble models.

7. Conclusions

The core of this study was to present a hybrid approach of ADTree and different ensemble

algorithms (Multiboost, Bagging, Rotation forest and Random subspace) to construct different

ensemble models including ADTree-MB, ADTree-Bagging, ADTree-RF, and ADTree-RS for the

development of landslide susceptibility maps in Bijar City, Kurdistan province, Iran. Performance

of these models was evaluated using sensitivity, specificity, accuracy, Kappa and RMSE measures.

We found that the resolution of 10 m obtained more performance for sample sizes of 60%/40% and

70%/30% while the best performance was acquired by the resolution of 20 m and sample sizes of

80%/20% and 90%/10%. Additionally, we found that, for sample sizes of 60%/40% and 70%/30%,

The RS-ADTree outperformed other ensemble models, while the MB-ADTree had the most prediction

accuracy in comparison to other ensemble models for sample sizes of 80%/20% and 90%/10%. It

implies that the RS and MB models could more decrease the noise and over-fitting problems and
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hence they produced better results than the other ensemble models. Moreover, among all sample

sizes and raster resolutions, the MB-ADTree models (a raster resolution of 20 m and a sample size of

80%/20%) outperformed and outclassed other ensemble models. Therefore, MB-ADTree model could

be efficiently used for predicting landslide susceptibility. This model could also serve environmental

managers in decision-making and developing pro-active environmental management policies in

landslide-prone regions.
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