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REVIEW ARTICLE

Novel heart failure biomarkers: why do we fail to exploit their potential?

Arnold Pieka, Weijie Dua,b, Rudolf A. de Boera and Herman H. W. Sillj�ea

aDepartment of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
bDepartment of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China

ABSTRACT

Plasma biomarkers are useful tools in the diagnosis and prognosis of heart failure (HF). In the last
decade, numerous studies have aimed to identify novel HF biomarkers that would provide super-
ior and/or additional diagnostic, prognostic, or stratification utility. Although numerous bio-
markers have been identified, their implementation in clinical practice has so far remained largely
unsuccessful. Whereas cardiac-specific biomarkers, including natriuretic peptides (ANP and BNP)
and high sensitivity troponins (hsTn), are widely used in clinical practice, other biomarkers have
not yet proven their utility. Galectin-3 (Gal-3) and soluble suppression of tumorigenicity 2 (sST2)
are the only novel HF biomarkers that are included in the ACC/AHA HF guidelines, but their clin-
ical utility still needs to be demonstrated. In this review, we will describe natriuretic peptides,
hsTn, and novel HF biomarkers, including Gal-3, sST2, human epididymis protein 4 (HE4), insulin-
like growth factor-binding protein 7 (IGFBP-7), heart fatty acid-binding protein (H-FABP), soluble
CD146 (sCD146), interleukin-6 (IL-6), growth differentiation factor 15 (GDF-15), procalcitonin (PCT),
adrenomedullin (ADM), microRNAs (miRNAs), and metabolites like 5-oxoproline. We will discuss
the biology of these HF biomarkers and conclude that most of them are markers of general
pathological processes like fibrosis, cell death, and inflammation, and are not cardiac- or HF-spe-
cific. These characteristics explain to a large degree why it has been difficult to relate these bio-
markers to a single disease. We propose that, in addition to clinical investigations, it will be
pivotal to perform comprehensive preclinical biomarker investigations in animal models of HF in
order to fully reveal the potential of these novel HF biomarkers.

Abbreviations: ACC: American College of Cardiology; ACE: angiotensin-converting enzyme; ADM:
adrenomedullin; AHA: American Heart Association; ANP: atrial-type natriuretic peptide; ARB:
angiotensin receptor blocker; BACH: Biomarkers in Acute Heart Failure; bio-ADM: bioactive ami-
dated ADM; BNP: B-type natriuretic peptide; CAP: community acquired pneumonia; CD146: cluster
of differentiation 146, also known as the melanoma cell adhesion molecule (MCAM) or cell sur-
face glycoprotein MUC18; CD146-L: long CD146 isoform; CGRP: calcitonin gene-related peptide;
CKD: chronic kidney disease; COPD: chronic obstructive pulmonary disease; ESC: European Society
of Cardiology; Gal-3: galectin-3; GDF-15: growth differentiation factor 15; GH: growth hormone;
HE4: human epididymis protein 4; HF: heart failure; H-FABP: heart fatty acid-binding protein;
HFpEF: heart failure with preserved ejection fraction; HFrEF: heart failure with reduced ejection
fraction; hsTn: high sensitivity cardiac troponin; IGF-1: insulin-like growth factor 1; IGFBP-7: insulin
like growth factor-binding protein 7; IL-6: interleukin-6; LV: left ventricle; LVAD: left ventricular
assist device; miRNA: microRNA; MR-proADM: mid-regional pro-ADM; MR-proANP: mid-regional
pro-ANP; NT-proANP: N-terminal prohormone of ANP; NT-proBNP: N-terminal prohormone of
BNP; OPLAH: 5-oxoprolinase, ATP-hydrolyzing; PCT: procalcitonin; PKG: protein kinase G; sCD146:
soluble CD146; sST2: soluble ST2; ST2: suppression of tumorigenicity 2; TIMP-2: tissue inhibitor of
metalloproteinase 2; TMAO: trimethylamine N-oxide; TNF-R 1a: tumor necrosis factor alpha recep-
tor 1; WFDC2: whey acidic protein four-disulfide core domain 2, WAP-4C

ARTICLE HISTORY

Received 20 November 2017
Revised 8 March 2018
Accepted 30 March 2018
Published online 14 April
2018

KEYWORDS

Biomarkers; heart failure;
fibrosis; inflammation;
cell death

Heart failure: a complex syndrome

Heart failure (HF) is a complex syndrome that is

characterized by reduced cardiac function and results in

insufficient cardiac output to meet peripheral tissue

metabolic demands [1,2]. It is prevalent in Western soci-

ety, with more than 8% of the population aged 75 and

older being diagnosed with HF [1,3,4]. Reduced cardiac

output leads to the accumulation of fluid in lungs and
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other tissues, resulting in breathlessness, peripheral

edema, and fatigue [1]. Thus, HF is not limited to cardiac

dysfunction but also affects extra-cardiac organs and tis-

sues. Due to different etiologies and underlying patho-

physiological processes, HF is a heterogeneous disease,

and plasma biomarkers could potentially contribute to

the improvement of patient stratification and to guide

therapy. In clinical association studies, many potential HF

biomarkers have been identified and investigated for

their diagnostic and prognostic values. Despite these

efforts, limited progress has been made in introducing

these novel biomarkers into daily clinical practice.

Because HF can affect multiple organs, and these novel

biomarkers are not exclusively expressed in the heart, it

is difficult to draw conclusions from their plasma levels

and to directly associate the levels with specific indices

of cardiac remodeling and function. This issue needs to

be clarified, and most likely it will require preclinical

investigations in animal models of HF in addition to clin-

ical studies. Numerous excellent reviews that discuss HF

biomarkers have been published [5–8], and this review is

not meant to provide a complete overview of novel HF

markers. Instead, we will briefly describe some novel

(and established) HF biomarkers, and discuss them par-

ticularly in light of their (non-) cardiac nature and poten-

tial involvement in other diseases and conditions. We

will outline challenges and pitfalls that we face and dis-

cuss why research should focus not only on clinical stud-

ies but also on preclinical studies using animal models.

Heart failure pathology

HF is the end-stage syndrome of most cardiovascular

diseases, including myocardial infarction, hypertension,

aortic stenosis, valve insufficiencies, and arrhythmias

[1,3,9]. These diseases increase cardiac stress; to cope

with this stress and to maintain cardiac function, mor-

phological, structural, and functional alterations occur

in the heart, a process termed cardiac remodeling [10].

Excessive extracellular matrix production (fibrosis) by

fibroblasts and myofibroblasts, cardiomyocyte growth

(hypertrophy), and infiltration of immune cells and ele-

vated inflammation are the main processes that under-

lie cardiac remodeling [11–14]. Initially, these processes

are beneficial and can be considered compensatory

mechanisms, but with sustained cardiac stress, remodel-

ing mechanisms eventually become pathological and

reduce cardiac function [10–14]. Ongoing cardiac fibro-

sis results in stiffening of the cardiac muscular wall,

which affects cardiac relaxation and contraction, may

limit oxygen and nutrient diffusion and can disturb car-

diac electrophysiology and induce rhythm disturbances

[11]. Pathological cardiomyocyte hypertrophy limits car-

diac function through alterations in Ca2þ handling,

changes in excitation–contraction coupling, sarcomere

dysfunction, increased oxidative stress, and metabolic

and energetic remodeling [11–14]. A vicious cycle is set

up in which further deterioration of cardiac function

stimulates further remodeling, which eventually may

result in decompensated HF [11,15].

Different etiologies of HF result in different types of

remodeling. For instance, myocardial infarction activates

inflammatory pathways, stimulates replacement fibrosis

and may drive eccentric hypertrophy, resulting in HF

with reduced ejection fraction (HFrEF). Hypertension, on

the other hand, may drive concentric hypertrophy and

interstitial fibrosis, resulting in HF with preserved ejec-

tion fraction (HFpEF). Today HFpEF, which is often the

result of hypertension, obesity, and aging, is becoming

more prevalent [16]. A systemic proinflammatory state

that causes coronary microvascular endothelial inflam-

mation has been proposed as one of the main mecha-

nisms that drive HFpEF development [9]. Coronary

microvascular endothelial inflammation is believed to

disturb the nitric oxide balance, protein kinase G (PKG)

activity in adjacent cardiomyocytes may drive sarco-

meric alterations, and, together with enhanced intersti-

tial fibrosis, they promote diastolic dysfunction [9]. For

HFrEF, therapeutic options that include b-blockers,

angiotensin-converting-enzyme (ACE) inhibitors, and

angiotensin receptor blockers (ARBs), which can slow

down disease progression, are available; however, none

of the current therapies have been shown to be suc-

cessful in clinical trials with HFpEF. Together, this exem-

plifies that HF is not a single syndrome but a complex

disorder, and we urgently need methods to distinguish

the different HF modalities and underlying processes.

In addition to the clinical investigation, echocardiog-

raphy is an important tool to diagnose HF, and it can be

used to distinguish certain types of HF and to monitor

disease progression [1,17]. However, it does not provide

insight in the underlying molecular and cellular proc-

esses. Plasma biomarkers have the potential to provide

information about specific processes (e.g. interstitial/

replacement fibrosis, endothelial dysfunction, and

pathological hypertrophy) that drive cardiac dysfunc-

tion and the transition from compensated to decom-

pensated HF in the individual HF patient; they may also

add prognostic value and help in guiding therapy.

Established heart failure biomarkers

Cardiac strain markers

Several biomarkers have been included in the guidelines

for HF treatment of the European Society of Cardiology

(ESC) and American Heart Association (AHA) [1,2].

CRITICAL REVIEWS IN CLINICAL LABORATORY SCIENCES 247



The scientific evidence for the use of natriuretic peptide

levels is overwhelming and their use in the clinic is

widely established [18]. The two most important var-

iants, atrial-type natriuretic peptide (ANP) and B-type

natriuretic peptide (BNP), are mainly produced and

secreted by the atria and ventricles, respectively [18].

Cardiac wall stress, generating mechanical strain in car-

diomyocytes, enhances the production and secretion of

these peptides [19–21]. ANP and BNP are synthesized as

proANP and proBNP precursor proteins; upon secretion

into the circulation, the N-terminal inactive domains

(NT-proANP and NT-proBNP) are cleaved off, releasing

the active ANP and BNP hormones [22,23]. ANP and

BNP reduce peripheral vascular resistance and blood

pressure by inducing a shift in fluid from the intravascu-

lar to the extravascular compartment, by promoting

natriuresis, and by reducing the sympathetic tonus in

peripheral vessels [18,24]. ANP and BNP are removed

from the circulation by receptor-mediated internaliza-

tion and metabolism and via proteolytic degradation by

neprilysin (also termed neutral endopeptidase). Due to

faster clearance of ANP by both pathways, the circulat-

ing half-life of ANP is only 3–5min as compared to

23min for BNP. Because of its very short half-life and its

instability in plasma, ANP is not an attractive biomarker;

thus either BNP or NTproBNP (half-life 60–120min) are

currently being used as biomarkers [23,25]. The stable

mid-region of NT-proANP, MR-proANP, is also men-

tioned in the ESC guidelines for diagnostic and prog-

nostic purposes, particularly in acute HF [1,26].

Plasma levels of natriuretic peptides are widely used

in the diagnosis of patients who are suspected to have

HF and are valuable in the evaluation of patients with

both HFrEF and HFpEF [1,27]. Normal levels of natri-

uretic peptides largely exclude the presence of HF, and

therefore levels are particularly useful to rule out HF,

especially in the acute setting [1,27–30].

The levels of natriuretic peptides can be influenced

by other syndromes and diseases, and kidney dysfunc-

tion is an important factor that may elevate natriuretic

peptide levels [31]. In addition, obesity may be associ-

ated with lower natriuretic peptide concentrations and

this may modestly reduce the diagnostic sensitivity in

morbidly obese patients [32]. Importantly, with the

positive results of clinical HF trials with entresto

(LCZ-696) [33,34], the introduction of this drug in daily

clinical HF practice will make the interpretation of BNP

levels in such treated patients more difficult. Entresto is

made up of the angiotensin-receptor blocker (ARB), val-

sartan, and the neprilysin inhibitor prodrug, sacubitril;

the latter inhibits degradation of natriuretic peptides,

thereby enhancing their beneficial effect during cardiac

stress [35]. The concept that the lower the BNP levels in

chronic HF patients, the better the prognosis during

treatment monitoring will no longer hold true in these

patients. Because NT-proBNP and MR-proANP are not

subject to breakdown by neprilysin, these biomarkers

can still be used for patient monitoring in this set-

ting [36].

Cardiac injury markers

Troponin I and T are another pair of proteins that are

mentioned in the HF guidelines [1,2]. Troponins are

released upon myocardial damage and elevated plasma

levels of troponin point to acute coronary syndrome or

pulmonary embolism as the cause of acute decompen-

sation [1,37]. Like natriuretic peptides, the advantage of

troponins is the cardiac origin of these proteins;

although skeletal muscle also contains troponins, these

isoforms are not detected by the cardiac specific iso-

form assays [38,39]. With the development of high sen-

sitivity cardiac troponin (hsTn) tests, elevated levels of

cardiac troponin can be measured in the absence of

acute myocardial damage, in particular in patients with

stable chronic HF [37]. It has been suggested that tro-

ponins are also released during chronic low-grade car-

diac ischemia, necrosis, apoptosis, and autophagy

[1,37]. Therefore, hsTn can be elevated because of

ongoing myocardial damage, which is present in

patients with non-acute chronic HF, in the absence of a

clear episode of myocardial ischemia [1,37]. The

example of troponin shows that, although a marker can

be tissue specific, in this case, cardiac specific, it is not

necessarily disease specific (e.g. elevated in both acute

myocardial ischemia due to myocardial infarction and

chronic low grade myocardial damage in HF). Because

dead cardiac myocytes are not renewed but are

replaced by fibrosis [11], it is tempting to suggest that

cardiac troponins could be considered as plasma bio-

markers of ongoing replacement fibrosis in HF

(Figure 1).

The impasse of novel HF biomarkers

Extracellular matrix turnover and

remodeling markers

Both natriuretic peptides and troponins show that dif-

ferent biomarkers provide different types of informa-

tion. Therefore, a multi-marker approach has been

suggested to combine the information provided by

established and novel HF biomarkers to improve the

current management and evaluation of HF patients. For

this purpose, besides natriuretic peptides and tropo-

nins, the biomarkers, galectin-3 (Gal-3), and soluble
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suppression of tumorigenicity 2 (sST2), were included in

the American College of Cardiology (ACC)/AHA HF

guidelines as markers of myocardial fibrosis, with a class

IIb recommendation, to be considered for additional

risk stratification of HF patients [1,2]. Gal-3 and sST2

and their relation to HF have been extensively investi-

gated and reviewed [6,7,40–42]. The inclusion of these

novel biomarkers in official guidelines supports their

possible additive value, but despite numerous years of

intense investigations, the potential of these biomarkers

remains vague.

Fibrosis marker Gal-3

Galectin-3 (Gal-3) is a marker of organ fibrosis, including

cardiac fibrosis [7,43]. Plasma levels are increased in

patients with HF and can have additional prognostic

value to NT-proBNP levels [7,44]. Many clinical associ-

ation studies have shown that plasma levels of Gal-3 are

associated with cardiac function and LV-filling pressures

[45,46]. Moreover, studies in animal models of HF

revealed that Gal-3 was involved in cardiac remodeling,

and both genetic disruption and pharmacological inhib-

ition of Gal-3 resulted in reduced cardiac remodeling,

including myocardial fibrosis [43,47–52]. However,

because HF is a multi-organ syndrome, other organs

could also contribute to increased Gal-3 levels in HF.

Gal-3 is expressed in multiple tissues and in different

types of cells, including macrophages, eosinophils, neu-

trophils, and mast cells [47,53]. Gal-3 is also involved in

renal fibrosis, as shown by several animal studies [51,54],

and plasma levels of Gal-3 are increased in several other

diseases, including chronic obstructive pulmonary dis-

ease (COPD), and several types of cancer [55–57].

Therefore, it is likely that the observed increases in

plasma levels of Gal-3 in HF are associated with

increased cardiac Gal-3 production, but also with pro-

duction in other organs and/or tissues. In line with this,

Gal-3 is associated with HF comorbidities, including

obesity [58]. Unfortunately, the HF clinical association

studies and animal studies that have been performed do

not provide full clarity on this matter. In some clinical

studies, Gal-3 plasma levels were not directly related to

specific cardiac parameters of HF, including echocardio-

graphic parameters [59]. Moreover, a study in which

endomyocardial biopsies were taken from dilated and

inflammatory cardiomyopathy patients revealed that

Gal-3 levels in these biopsies did not reflect plasma Gal-

3 levels [60]. Finally, in HF patients with elevated Gal-3

plasma levels prior to heart transplantation, the levels

did not decline post-transplantation, which indicated

that other non-cardiac sources were predominantly

responsible for elevated Gal-3 plasma levels in these

patients [61]. Altogether, Gal-3 is not a cardiac-specific

Heart

Other

organs &

�ssues

Natriure�c pep�des

Cardiac strain

Circula�ng biomarker

plasma levels

HsTn/ H-FABP

Cardiomyocyte injury

Gal-3 / sST2 / HE4

Fibrosis

IL-6 / GDF-15 / PCT / ADM

Inflamma�on

CD146

Endothelial dysfunc�on

Metabolic profile / IGFBP-7 /

5-oxoprolinase

Metabolic dysfunc�on

Replacement fibrosis

Figure 1. Novel heart failure biomarkers are not cardiac specific. A schematic depiction of the contribution of the heart and other
organs and tissues to circulating plasma levels of several protein/peptide heart failure (HF) biomarkers. Only a selection of bio-
markers is cardiac specific and many (novel) HF biomarkers are also produced in other organs and tissues. Within the boxes, the
names of the biomarkers and associated processes are shown. Abbreviations are explained in the text.
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marker and it is unclear which organs and tissues con-

tribute to the increased Gal-3 plasma levels, and to what

extent, in HF. The use of Gal-3 as a biomarker for stratifi-

cation of HF patients and as a marker of cardiac remod-

eling should therefore be interpreted in view of this

possible multi-organ contribution.

Fibrosis marker sST2

Some of the issues discussed above also apply to sST2.

Several clinical studies have shown that sST2 plasma

levels are increased in patients with both acute and

chronic HF and are predictive for HF outcome [62,63]. In

both humans and mice, sST2 plasma levels are tempor-

arily increased post-myocardial infarction, indicating

that it could also act as a marker for myocardial injury

[64]. ST2 has four isoforms, including sST2, ST2L, ST2V,

and ST2LV; ST2L is the transmembrane isoform, and

sST2 lacks transmembrane properties [41]. ST2L can

interact with interleukin-33 (IL-33), and the ST2/IL33

interaction is involved in several diseases, including car-

diovascular disease [41,42]. Triggered by cardiac strain

or myocardial injury, cardiomyocytes and cardiac fibro-

blasts produce IL-33, which, by binding to ST2L, exerts

cardioprotective effects by reducing cardiac hyper-

trophy and myocardial fibrosis [41,42]. sST2 is also pro-

duced by cardiomyocytes and cardiac fibroblasts, but it

is associated with adverse cardiac remodeling via its

competitive binding to IL-33, thereby limiting the pro-

tective effects of the ST2L/IL33 interaction [41,42,65].

Thus a relationship exists between sST2 and cardiac

dysfunction [41,66]. A recent study showed that sST2

plasma levels normalized within 3months post-implant-

ation of a left ventricular assist device (LVAD) in end-

stage HF patients [67]; this indicates that unloading the

heart by LVAD placement lessens fibrosis. Because these

are end-stage HF patients, many of whom will have

multi-organ involvement, this finding may not be lim-

ited to the heart. In the ACC/AHA HF guidelines, sST2

has been included as a biomarker for myocardial fibro-

sis for further stratification of HF patients [1,2]. Like Gal-

3, increased sST2 plasma levels are also present in other

diseases, including gastric cancer, breast cancer, nephr-

opathy and liver disease [68–71]. Thus, although sST2 is

able to promote cardiac remodeling locally, plasma lev-

els of sST2 may be influenced by production in other

organs in HF patients; hence circulating levels do not

necessarily mirror cardiac production and remodeling.

Fibrosis marker HE4

The marker human epididymis protein 4 (HE4) is a

recently discovered novel HF biomarker. HE4 is also

known as the whey acidic protein four-disulfide core

domain 2 (WFDC2 or WAP-4C). Though the exact func-

tion of HE4 is yet unknown, a role for HE4 in fibrosis for-

mation has been suggested because it shows

similarities to extracellular proteinase inhibitors [72,73].

In a mouse model of renal disease, reduced fibrosis was

observed in mice treated with HE4-neutralizing antibod-

ies [74]. In patients with both acute and chronic HF,

HE4 levels were correlated with HF severity and could

predict outcome in a multivariable model [75,76]. In

both studies, HE4 levels in HF were correlated with Gal-

3 and, therefore, probably with organ fibrosis. HE4,

however, is not cardiac specific; its expression was first

identified in the epididymis and later in many other tis-

sues and organs [72,77,78]. Moreover, HE4 plasma levels

are associated with several types of cancer [77–79],

including ovarian cancer [80], and with chronic kidney

disease (CKD) severity [81]. The association of HE4 levels

with kidney function has also been replicated in cohorts

comprised of acute and chronic HF patients [75,76]. It

has been suggested that the elevated levels of HE4 in

CKD patients may complicate its use in monitoring

patients with epithelial ovarian cancer [82], and the

same is probably true in the HF setting. These multi-dis-

ease effects on HE4 plasma levels will mean that HE4

will not be useful for HF diagnosis, but, as part of a

multi-biomarker model, it may have potential in the

stratification of HF patients. HE4 has been included in

such a model as an instrument to identify populations

with a distinct therapy response. Patients with acute HF

were investigated for response to treatment with the

selective A1 adenosine receptor antagonist, rolofylline;

in this study, the authors assessed tools to distinguish

responders from non-responders to therapy [83]. A

multi-marker model, including HE4 plasma levels, tumor

necrosis factor alpha receptor 1 (TNF-R 1a), sST2 and

total cholesterol, appeared to be superior to clinical

characteristics, including age, sex, and cardiac function,

to differentiate non-responders from responders. This

study showed that multi-marker tools provide opportu-

nities to improve clinical testing of novel drugs [83].

Moreover, this study is an example of how plasma bio-

markers can be used in a multi-marker setting for strati-

fication of HF patients.

Metabolic markers

Metabolic marker IGFBP-7

Insulin-like growth factor-binding protein 7 (IGFBP-7)

can bind to insulin-like growth factor 1 (IGF-1) and, by

regulating the activity of the growth hormone/insulin-

like growth factor-1 (GH/IGF-1) system, it influences

growth in various tissues. Its affinity for IGF-1 is
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relatively low compared to other IGFBPs [84,85]. It has,

however, strong affinity for insulin, thereby reducing

the binding of insulin to its receptor [86]. Interestingly,

IGFBP-7 was investigated in an HF mouse model in

which IGFBP-7 expression and plasma levels were

increased in relation to cardiac hypertrophy, which

showed a link between IGFBP-7 and HF development

[87]. IGFBP-7 levels were also elevated in serum of

patients with both HFrEF and HFpEF [88–90], and levels

in these patients were also associated with prognosis

[88,89]. As a biomarker, IGFBP-7 may be interesting

especially for the HFpEF population [90]. First, IGFBP-7

has been associated with diastolic dysfunction, an

important characteristic of HFpEF patients [88–90].

Second, IGFBP-7 levels were associated with insulin

resistance and metabolic syndrome risk [91], which

were associated with HFpEF development by causing

chronic low-grade inflammation [9]. It has been sug-

gested that, in a multi-marker approach, IGFBP-7 levels

can be used to link abnormalities in cardiac function

and morphology to disturbances in the metabolic status

of patients [90]. Further investigations will be needed to

establish this association with HFpEF. Urinary IGFBP-7

levels are, together with tissue inhibitor of metallopro-

teinase 2 (TIMP-2), predictive for acute kidney injury in

decompensated HF and post-coronary artery bypass

surgery [92–95]. Thus, in addition to being a plasma

biomarker, levels in other body fluids such as urine can

provide diagnostic and/or prognostic information about

patients. Again, IGFBP-7 serum levels have also been

associated with several other diseases, amongst them

endometriosis, soft tissue sarcoma, and COPD [96–98].

Cardiac injury markers

Cell death marker H-FABP

Heart fatty acid-binding protein (H-FABP), which is pro-

duced predominantly in the heart, shows similarities to

troponins as a marker. In cardiomyocytes, H-FABP is

involved in cardiac metabolism through supplying mito-

chondria with long-chain fatty acids [99]. H-FABP is

released upon ischemic myocardial damage and has

been shown to be a myocardial injury marker in mice

and in humans, especially in the early hours after myo-

cardial infarction [100–103]. Interestingly, the prognos-

tic capacity of H-FABP appears to be more accurate

than hsTn levels; moreover, this also applies to patients

with suspected acute coronary syndrome but with

negative troponin levels [99,104]. Also, non-acute HF

patients show ongoing myocardial damage and there-

fore, like hsTn, H-FABP is increased in chronic HF

patients and will be a potential biomarker of myocardial

damage [105,106]. It has been suggested that H-FABP is

involved in a vicious cycle of deterioration in HF

patients because extracellular H-FABP affects cardiac

contraction by reducing intracellular Ca2þ, which leads

to more damage and therefore more extracellular H-

FABP [99]. Indeed, increased H-FABP levels were

observed in HF patients with ongoing myocardial dam-

age, and these levels were prognostic for HF outcome

[105,106]. Importantly, myocyte H-FABP levels are also

influenced by exercise, plasma lipid levels, and PPAR-

alpha agonists; hence, its intracellular levels reflect

metabolic capacity [107]. In accordance with this, H-

FABP
�/� mice showed a reduced tolerance to physical

activity and were rapidly exhausted by exercise [108]. In

cardiac tissue, reduced fatty acid uptake was observed

in these H-FABP
�/� mice [109]. Although speculative,

this suggests that the H-FABP/troponin plasma ratio

could provide information about cardiomyocyte meta-

bolic function in HF patients; thus, plasma H-FABP may

not be limited to being a marker of only myocar-

dial damage.

Inflammation markers

Inflammation marker IL-6

Inflammation is an important process in HF, and sub-

stances related to inflammation, such as interleukin-6

(IL-6), could serve as HF biomarkers [5,110]. In the acute

phase after myocardial infarction, IL-6 elevation is bene-

ficial because it induces anti-apoptotic mechanisms in

cardiomyocytes, and it is believed to limit infarct size

[110]. However, IL-6 can also alter Ca2þ handling, and

long-term IL-6 signaling is associated with depressed

cardiomyocyte function, myocardial hypertrophy, and

decreased contractility [110,111]. Limiting the long-term

effects of IL-6 on the failing heart by blockade of the IL-

6 receptor could therefore result in improved cardiac

function, and the IL-6 receptor has been identified as an

HF treatment target [112]. In an ischemia/reperfusion

mouse model of HF, IL-6 receptor blockade resulted in

neither reduced cardiac remodeling nor smaller infarct

size; however, treatment was started during the acute

phase, which could explain why no effects were

observed [113]. Also, in humans, inhibition of IL-6 has

been tested, but it was not able to improve coronary

flow reserve in patients post-myocardial infarction [114].

Nevertheless, because IL-6 has been shown to be

involved in HF development, and because levels of this

inflammatory marker are increased in HF and are able

to predict HF outcome in various types of HF

[5,115–119], it could serve as an HF biomarker. The use

of IL-6 in a multi-biomarker model has been suggested
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[120], but circulating IL-6 levels are also affected by fac-

tors like stress, physical exercise, gender and age [119].

Moreover, circulating levels are also increased in non-

HF patients; for example, elevated IL-6 plasma levels

were predictive for post-operative complications in

patients post-abdominal surgery [121], and IL-6 levels

were associated with outcome in acute stroke patients

[122]. Thus, in HF, IL-6 could be a marker of inflamma-

tion in a multi-marker model, but this should be com-

plemented by other markers to provide specificity and

exclude other causes of elevated IL-6 levels.

Inflammation marker GDF-15

Growth differentiation factor 15 (GDF-15) is another

inflammatory protein associated with HF. GDF-15 is a

member of the transforming growth factor-beta super-

family [123]. Several studies have shown the involve-

ment of GDF-15 in cardiac remodeling. In mouse

cardiomyocytes cultured in vitro, GDF-15 expression

and secretion were readily upregulated by ischemia/

reperfusion stress, which was suggestive of autocrine/

paracrine functions [124]. Mice lacking GDF-15 were

more prone to ischemia/reperfusion damage, which

indicated that GDF-15 could have cardioprotective

effects (in contrast to other markers like Gal-3 and sST2)

[124]. In particular, GDF-15 deficient mice showed

increased recruitment of polymorphonuclear leukocytes

to the infarct zone and had a higher chance to develop

myocardial rupture [125]. GDF-15 also appears to be

involved in myocardial hypertrophy, most likely through

SMAD protein activation [126]. In patient cohorts, it was

shown that circulating levels of GDF-15 were independ-

ent risk predictors for cardiovascular outcome

[127–129]. Circulating levels are also associated with

other diseases, for example, pulmonary embolism [130],

pulmonary arterial hypertension [131], pneumonia,

renal disease, and sepsis [132]. Plasma levels of GDF-15

cannot be directly associated with myocardial inflam-

mation, but in a multi-marker model GDF-15, could

improve risk prediction as a marker of general inflam-

mation [133].

Inflammation marker PCT

Procalcitonin (PCT) is an inflammatory marker that has

been associated with HF and that is under clinical evalu-

ation [134]. PCT, the prohormone of calcitonin, is

secreted by different types of cells from numerous

organs in response to proinflammatory stimulation. PCT

levels are strongly elevated in bacterial infections and it

is an early marker for systemic inflammation, infection,

and sepsis; potentially it could be used to monitor

patients and guide antibiotic therapy [135]. The half-life

of PCT is about 24 h, and the molecule is stable both in

vivo and in vitro [136]. PCT was originally postulated to

be a proxy for unrecognized infection in acute HF [135].

Based on the BACH (Biomarkers in Acute Heart Failure)

trial, PCT was also included in the ESC-HF guidelines for

the potential assessment of acute HF patients with sus-

pected coexisting infection, particularly for the differen-

tial diagnosis of pneumonia and to guide antibiotic

therapy [137]. Mollar et al. [138] showed that PCT con-

centrations were also raised in patients admitted with

acute HF with no evidence of infection and that it was

associated with renal dysfunction and surrogates of

venous congestion and inflammation. PCT has been

shown to have prognostic value in acute HF patients,

but whether this relates to concomitant infection rather

than systemic inflammation requires further investiga-

tion [134]. Currently, the IMPACT-EU study (clinicaltrials.-

gov; NCT02392689), a large, multicenter, randomized

controlled trial, is underway to compare PCT-guided

patient management with standard management in

emergency department patients with acute dyspnea

and/or acute HF [134]. This study should confirm

whether PCT-guided antibiotic therapy will improve

patient outcome by early identification of acute HF

patients with elevated PCT.

Inflammation marker ADM

Another member of the calcitonin gene-related peptide

(CGRP) superfamily and potential HF biomarker is adre-

nomedullin (ADM) [139]. ADM is a 52-amino acid multi-

functional peptide that exhibits vasodilatory potential

and increases renal blood flow, natriuresis, and diuresis.

Also, anti-inflammatory, anti-apoptotic, and proliferative

properties have been linked to ADM, and it therefore

appears to exhibit protective functions under diverse

pathological conditions [139]. ADM is produced as a

precursor protein called preproadrenomedullin in

numerous tissues including adrenal glands, endothe-

lium, vascular smooth muscles, renal parenchyma, and

cardiomyocytes. This protein undergoes complex proc-

essing, first generating pro-ADM, which subsequently is

cleaved into multiple peptides including mid-regional

proADM (MR-proADM) and ADM; the latter can exist in

both a bioactive amidated form (bio-ADM) and a gly-

cated inactive form [140]. Whether MR-proADM has bio-

logical activity is unclear, but because it is more stable

than ADM, it is the preferred biomarker. Like PCT, MR-

proADM is strongly elevated in sepsis and could be

used as a prognostic marker and to guide the diagnosis

and treatment of sepsis [140]. MR-proADM lacks specifi-

city for the diagnosis of HF, but the BACH study demon-

strated that MR-proADM had superior accuracy for
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predicting 90-day mortality compared with BNP in

acute HF [141]. Recently, a sandwich immunoassay has

been developed to measure bio-ADM in plasma. Like

MR-proADM, bio-ADM levels in acute HF patients were

predictive for 30-day outcomes in these emergency

department patients [142]. MR-proADM was also pre-

dictive for cardiovascular events in the general popula-

tion [143]. Adrenomedullin is a substrate of neprilysin

and hence its levels may be affected by treatment with

neprilysin inhibitors; it has been suggested that the

positive effects of neprilysin inhibition by sacubitril may

be due in part to the inhibition of adrenomedullin and

other bioactive peptides [144]. Despite many studies,

there is no evidence yet that MR-proADM or bio-ADM

can be used in a biomarker-guided therapeutic strategy.

Endothelial dysfunction

Endothelial dysfunction marker CD146

Cardiovascular diseases, including HF, are also charac-

terized by endothelial damage [145,146]. Therefore,

increased levels of a marker of endothelial cell damage

could be a marker of disease severity. Moreover, such a

biomarker could provide additional information about

endothelial status. Different etiologies of endothelial

injury are thought to result in the expression of differ-

ent endothelial markers [146]. A novel marker of endo-

thelial damage is soluble CD146 (sCD146; CD146,

cluster of differentiation 146), which is a part of the

junction between endothelial cells and which is respon-

sible for maintaining tissue architecture [147].

Mechanical disruption of endothelial junctions probably

results in shedding of the long CD146 isoform (CD146-

L) present on endothelial cells, which results in sCD146

that can be found in the circulation [146,148]. sCD146

promotes angiogenesis, but also seems to be a marker

of endothelial damage, atherosclerosis, and plaque

instability [149–152]. In patients with acutely decom-

pensated HF, circulating sCD146 levels were increased

and could aid in diagnosing acute HF in patients who

were difficult to stratify based on NT-proBNP levels only

(e.g. in patients with NT-proBNP levels that were not

high enough to include, but also not low enough to

exclude, HF) [153]. In animal models of cardiac pressure

overload, LV CD146 gene expression was increased and

correlated with lung weight and therefore with lung

congestion [153]. Also, in patients with pulmonary

edema, the severity of the disease on chest radiography

was associated with plasma levels of sCD146 [154].

Interestingly, in a human model of peripheral venous

congestion applied to one of the upper extremities of

patients with chronic HF, sCD146 plasma levels

increased whilst NT-proBNP remained stable [155]. It

appears that circulating sCD146 levels can be related to

peripheral vascular stretch, and moreover, that it is a

marker of systemic congestion. Its plasma levels are also

increased in liver cirrhosis, renal failure, atherosclerosis,

and COPD [152,156–159]. Therefore, sCD146 seems to

be a general marker of congestion and endothelial sta-

tus in HF, but also in other diseases.

Looking beyond circulating proteins:

microRNAs and metabolites as HF biomarkers

microRNAs

In addition to using circulating proteins as HF bio-

markers, recently several other circulating substances

have been marked as potential novel HF biomarkers,

including circulating microRNAs (miRNAs). The functions

of miRNAs in HF, their role in the circulation and their

potential as biomarkers are still elusive [160]. MiRNAs,

which are post-transcriptional regulators of gene

expression, were originally identified as regulators of

embryonic development, including cardiac develop-

ment [160]. Only later, a link between activation of the

fetal gene program, miRNAs, and HF development was

suggested [160–162]. For some solitary miRNAs, a role

in pathological cardiac remodeling in animal models

was found [160,163–166]. Also, in humans, the relation-

ship between miRNAs and cardiac remodeling has been

investigated. For example, myocardial and circulating

miRNA-21 were both associated with the degree of

myocardial fibrosis [167]. Several other studies showed

associations between circulating miRNAs, including

miR-20a, miR208b, and miR-34a, and processes of car-

diac remodeling, making them potentially interesting

biomarkers [168,169]. The miRNAs, miR-22-3p, miR-

148b-3p, and miR-409-3p, were also associated with HF

[170,171]. Interestingly, in human HF, decreased levels

of a cluster of circulating miRNAs were associated with

acute HF and were inversely correlated with biomarkers

associated with worse clinical outcome [172,173]. Also,

lower miRNA levels were associated with worsening of

renal function [174]. When this set of circulating

miRNAs identified in human samples was investigated

in several rodent HF models, the observations in

humans could not be replicated [175]. However, closer

examination revealed that these miRNAs in humans

were downregulated, particularly in acute HF, and not,

or to a much lesser extent, in chronic HF. Moreover, a

clear association with decreased circulating miRNAs and

hemodilution, as a result of fluid overload, was

observed in decompensated acute HF patients; this

could at least partially explain the lowered circulating
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miRNA levels [176]. Also, comorbidities such as diabetes

were present in the human HF cohort that were absent

in the animal models. Therefore, in HF animal models,

the cardiac phenotype was investigated without the

influence of other HF comorbidities that may strongly

affect miRNA levels. These results strongly hint that

these miRNAs do not solely reflect cardiac function.

Metabolites

Metabolic dysfunction is prevalent in HF and subse-

quent changes in metabolite profiles could potentially

be used as HF biomarkers [177]. In HF, both myocardial

and systemic changes in glucose oxidation, catabolism,

b-oxidation, and the urea cycle are responsible for

observed alterations in metabolite levels [177]. Several

studies have shown that a collection of metabolites can

serve as diagnostic tools for HF [178–181]. However,

changes in metabolite profiles seem not to be disease

specific, because similar differences were observed in

serum samples of patients with diseases such as non-

Hodgkin lymphoma, congestive HF, and community-

acquired pneumonia (CAP) [182]. In separate studies,

the levels of the metabolite, trimethylamine N-oxide

(TMAO), were shown to be associated with the outcome

in both acute HF and CAP patients [183,184]. This is not

surprising because systemic metabolic dysfunction is a

general process that can be observed in other diseases.

A recent study by van der Pol et al. identified the gene,

OPLAH, which encodes 5-oxoprolinase (5-oxoprolinase,

ATP-hydrolyzing), as a cardiac fetal-like gene that was

suppressed in HF [185]. OPLAH functions to scavenge

toxic 5-oxoproline, and diminished levels of OPLAH in

animal HF models resulted in elevated levels of 5-oxo-

proline and associated oxidative stress in cardiac tissue.

This could be reversed by cardiac-specific overexpres-

sion of OPLAH. Not only cardiac, but also plasma levels

of 5-oxoproline were elevated in animals. Importantly,

plasma 5-oxoproline levels were also elevated in acute

HF patients, and patients with elevated levels showed a

worse outcome. Although OPLAH is not exclusively

expressed in the heart, cardiac levels are relatively high

and hence 5-oxoproline levels in the plasma may be

predominantly from cardiac expression. This makes 5-

oxoproline a potentially interesting metabolite and bio-

marker that may be less affected by interference from

non-cardiac sources as compared to other metabolites.

The promise and major hurdle of

new biomarkers

As discussed above, plasma biomarkers have the poten-

tial to provide information about specific processes

(e.g. cardiac strain, interstitial/replacement fibrosis,

endothelial dysfunction, and pathological hypertrophic

processes) that drive cardiac dysfunction in the individ-

ual HF patient; they may provide added prognostic

value and could be used to improve and guide therapy.

However, one major pitfall in this line of reasoning

is that, except for cardiac strain and cardiomyocyte-

specific cell death, these cellular and molecular processes

are general processes and hence hallmarks of patho-

physiological processes in other organs and tissues.

Because HF is a multi-system disease affecting many tis-

sues and organs throughout the body and because it is

strongly associated with comorbidities, it is likely that

these stress-related processes are also induced in non-

cardiac tissues in these patients. Therefore, circulating

levels of these plasma biomarkers in HF may demon-

strate not only cardiac production but also production in

other stressed tissues. Because these biomarkers monitor

not only cardiac stress but also stress in other organs

and tissues, it is not surprising that they have a strong

prognostic value. Thus, although these novel biomarkers

can provide insights in specific pathological processes,

the lack of cardiac and/or HF specificity, as depicted in

Figure 1 and Table 1, appears to hamper their clinical

use. We postulate that this is the main reason why only

the cardiac-specific HF biomarkers, especially natriuretic

peptides and troponins, have found their way to the

clinic, whereas non-cardiac specific markers are still

under evaluation. This emphasizes that we must look at

a different aspect of these novel biomarkers in order to

exploit their potential. This will require more in-depth

research as discussed below.

Include preclinical studies in animals in the

investigation of novel HF biomarkers

In a scientific statement from the AHA, criteria for the

evaluation of novel biomarkers of cardiovascular risk

have been proposed [186]. It is important to determine

their clinical utility and, moreover, to determine

whether the novel biomarker improves clinical out-

comes in a cost-effective way. In a recent paper, Ahmad

et al. stated that novel biomarkers should be

approached in a more systematic manner with a focus

on the clinical utility of the markers [187]. These import-

ant improvements in clinical biomarker research should

be embraced.

We propose an additional pillar of HF biomarker

research that has been largely neglected, namely, pre-

clinical investigations (Figure 2). As described in this

review, a major issue is that most novel biomarkers are

not cardiac and/or HF specific but are also associated

with diseases affecting other organs and tissues.
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Currently, plasma levels of novel biomarkers are investi-

gated in human clinical cohorts, providing at best asso-

ciations, whilst plasma biomarkers are rarely

investigated in HF animal models (preclinical studies),

which could provide more causal insights. A simple

PubMed search showed about ten times more pub-

lished HF biomarker studies in patient cohorts as com-

pared to preclinical HF biomarker studies. In contrast,

investigations of cardiac remodeling processes such as

cardiac hypertrophy and fibrosis are much more equally

distributed between preclinical and clinical studies.

Decreasing the gap between preclinical and clinical HF

biomarker studies could provide more mechanistic

insights required for proving causality (Figure 2).

Preclinical animal studies could also provide us with

accurate information regarding the exact tissue and cell

sources that contribute to the HF biomarker plasma lev-

els. Moreover, animal studies are well suited to investi-

gate the effects of comorbidities on the plasma levels

of biomarkers and to investigate time-related changes

both in plasma and in other tissues (Figure 2). In clinical

studies, we will at best be able to perform this in

Table 1. Overview of selected (novel) heart failure biomarkers and associated conditions besides heart failure.

Heart failure biomarker group Biomarkers Biomarker level also associated with: References

Biochemical strain Natriuretic peptides
(i.e. BNP, NT-proBNP)

Fluid overload
Obesity (lowering of levels)
Kidney dysfunction

[18,22–24,26,31,32,192]

Cardiomyocyte injury hsTn Myocardial infarction [37–39]
H-FABP Myocardial infarction [99–103,105,106]

Extracellular matrix turnover
and remodeling

Gal-3 Kidney fibrosis
Kidney dysfunction
COPD
Breast cancer
Gastric cancer
Obesity

[7,43–58]

sST2 Breast cancer
Gastric cancer
Diabetic nephropathy
Liver failure

[41,42,62–66,68–71]

HE4 Ovarian cancer
Kidney fibrosis
Kidney dysfunction
Colorectal cancer

[72–82]

Inflammation IL-6 Infection
Post-surgery
Stroke

[110,111,115–119,121]

GDF-15 Pulmonary embolism
Pulmonary arterial hypertension
Pneumonia
Renal disease
Sepsis

[126–132]

PCT Bacterial infection
Pneumonia
Systemic inflammation
Sepsis
Kidney dysfunction
Venous congestion

[134,135,137,138]

ADM Sepsis
Diabetic retinopathy
Pneumonia
COPD

[139,141–143,193–195]

Metabolism IGFBP-7 Hepatocellular carcinoma
Insulin resistance
Metabolic syndrome
Kidney injury
Endometriosis
Diabetic hemodialysis
Soft tissue sarcoma
COPD

[87,91–98]

Endothelial dysfunction CD146 Pulmonary edema
Peripheral venous congestion
Liver cirrhosis
Kidney dysfunction
Atherosclerosis
COPD

[146,148–159]

ADM: adrenomedullin; BNP: brain natriuretic peptide; CD146: cluster of differentiation 146; COPD: chronic obstructive pulmonary disease; Gal-3: galectin-3;
GDF-15: growth differentiation factor 15; HE4: human epididymis protein 4; H-FABP: heart fatty acid-binding protein; hsTn: high sensitivity cardiac tropo-
nin; IGFBP-7: insulin-like growth factor-binding protein 7; IL-6: interleukin 6; NT-proBNP: N-terminal prohormone of brain natriuretic peptide; PCT: procalci-
tonin; sST2: soluble suppression of tumorigenicity 2.
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end-stage patients postmortem, but this will not pro-

vide information about the dynamics during HF devel-

opment. Therefore, we suggest expanding translational

animal experiments in which novel biomarkers can be

studied at multiple levels. In line with clinical studies,

these preclinical studies should be performed in a sys-

tematic manner and reported following guidelines such

as the ARRIVE guidelines for animal studies [188]. It will

also be crucial to invest in appropriate reagents to

study biomarkers in animal models. So far, this has

been a major limitation in animal studies, and even

established HF biomarkers such as NT-proBNP and NT-

proANP are seldom measured in mouse or rat studies

because of the lack of good and affordable reagents

(e.g. ELISA kits). Obviously, the small plasma volumes

also make it challenging to measure these biomarkers

in small animals. We believe that the current HF bio-

marker impasse can be broken by investing in preclin-

ical studies to improve our understanding of these

biomarkers, which finally could result in exploiting their

full clinical potential.

Discussion

Established HF plasma biomarkers have proven their

utility in the evaluation of HF patients, and novel HF

biomarkers could further improve stratification of these

patients. In the past decades, many novel HF bio-

markers have been discovered and investigated in clin-

ical trials. Despite these major efforts, only two novel

biomarkers, Gal-3 and sST2, have been included in the

ACC/AHA HF guidelines, but also their clinical value is

still uncertain. Although these biomarkers can show

specific molecular and cellular processes (e.g. fibrosis,

hypertrophy), they lack cardiac and/or HF specificity. In

Figure 1, a schematic depiction of the cardiac and non-

cardiac specificity of HF plasma biomarkers is shown.

This helps to explain why the investigated novel HF bio-

markers have not yet been accepted into clinical use.

Therefore, as depicted in Figure 2, we suggest including

more in-depth preclinical investigations in animal mod-

els to gain insight into the relationship between plasma

biomarker levels and the processes of cardiac remodel-

ing, and into the potential contribution of other

affected organs and tissues. Eventually, this should

result in multi-biomarker models. To increase the pre-

dictive value of multi-marker panels requires a compre-

hensive evaluation of a broad set of biomarkers that

represent the many pathophysiological pathways

involved in HF, as described here. Serial evaluation of

multi-marker panels is needed to maximize their prog-

nostic utility [189]. These models could be used both to

determine the right therapy regime and to guide ther-

apy. The idea of a multi-biomarker model is not new,

but to date, no real advances have been made in devel-

oping these types of models. This is most likely because

of our lack of understanding of the contributions of

other tissues to biomarker levels, and preclinical studies

will therefore be indispensable.

We suggest that analyzing non-cardiac specific HF

biomarkers in a cardiac-specific way could be another

way forward. Visualizing the local cardiac presence of

these proteins and substances, for instance by using

specific tracers in cardiac imaging, could provide dir-

ect information about the ongoing cardiac remodel-

ing processes. Gal-3 could, for example, serve as a

marker of myocardial fibrosis. This approach sounds

futuristic, but for Gal-3, these types of tracers already

exist [190,191]. Further research is needed to fully

investigate this potential path to the utilization of

non-cardiac specific biomarkers in a cardiac-spe-

cific manner.

In conclusion, most novel HF biomarkers provide evi-

dence of specific molecular and cellular processes, but

in a non-cardiac specific fashion. Therefore, it is still

unclear whether altered plasma biomarker levels repre-

sent solely cardiac production and can be directly asso-

ciated with the degree of cardiac remodeling. Clinical

association studies will not provide sufficient informa-

tion to solve these issues, because cardiac samples are

often not available and full body biomarker profiling

will not be realistic or may be impossible. As shown in

Figure 2, we therefore propose that comprehensive

Biomarker

research

Clinical

studies

Preclinical

studies

Reclassifica�on

Discrimina�on

Callibra�on

Mechanis�c insights

Tissue contribu�ons

Effects of specific

comorbidi�es

Mul�ple HF models

Valida�on studies

Clinical relevance

Accuracy

Figure 2. Two pillars of HF biomarker research. HF plasma
biomarkers are currently predominantly investigated in clinical
cohorts. Despite these investigations, progression in the clin-
ical use of HF biomarkers is limited. Systematic improvements
in clinical HF biomarker research have therefore been included
to generate the required information [186,187]. We now pro-
pose an additional pillar of HF biomarker research, namely,
the preclinical pillar, to provide additional information from
studies in animals that should enhance our understanding,
and together should pave the way to finally exploit these
novel biomarkers. As in clinical studies, this will require
systematic approaches and reports as indicated.
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biomarker plasma and tissue profiling in preclinical HF

models, in addition to biomarker plasma profiling in

clinical cohorts, is necessary to fully reveal the potential

of these HF biomarkers.
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