Novel Heteroatom-containing Vitamin D_{3} Analogs: Efficient Synthesis of 1 $\alpha, 25$-Dihydroxyvitamin \mathbf{D}_{3}-26,23-lactam

Yuko Kato, Yuichi Hashimoto and Kazuo Nagasawa*

Institute of Molecular and Cellular Biosciences, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 1130032, Japan. Tel. +81(3)-5841-7848, Fax +81(3) 5841-8495.

* Author to whom correspondence should be addressed; e-mail: nagasawa@iam.u-tokyo.ac.jp.

Received: 13 May 2003; in revised form: 20 May 2003 / Accepted: 21 May 2003 / Published: 30 June 2003

Abstract

Vitamin D_{3} and its synthetic analogs are promising compounds for controlling various types of cell differentiation. In this article, we describe the synthesis of novel vitamin D_{3} analogs containing heteroatoms in their side chains - so-called vitamin D_{3} lactam analogs - via 1,3-dipolar cycloaddition reaction as a key step.

Keywords: Vitamin D_{3}, Vitamin D_{3} analog, lactam, 1,3-dipolar cycloaddition reaction

Introduction

$1 \alpha, 25$-Dihydroxyvitamin $\mathrm{D}_{3}(\mathbf{1})$ has a wide variety of biological activities including the regulation of calcium homeostasis and the control of cellular growth, differentiation and apoptosis [1]. Though many analogs of $\mathbf{1}$ have been synthesized so far, only a few analogs containing nitrogen atoms in their structures have been reported. In the course of our recent studies towards the development of novel vitamin D_{3} analogs, we focused on one of the major metabolites of $\mathbf{1}$, so-called ($23 S, 25 R$)-1 $\alpha, 25-$ dihydroxyvitamin D_{3}-26,23-lactone (2a) which inhibits bone resorption induced by $\mathbf{1}$, while it has very weak binding affinity against vitamin D nuclear receptor [2]. Interestingly, each of the diastereomers of 2a, that are $(23 S, 25 S)-(\mathbf{2 b}),(23 R, 25 R)-(\mathbf{2 c})$, and $(23 R, 25 S)-(\mathbf{2 d})$, has different biological activities. On the basis of the structure of $\mathbf{2}$, we have designed $1 \alpha, 25$-dihydoroxyvitamin D_{3}-26,23-lactam (3) as a
novel vitamin D_{3} analog. Herein we report the efficient synthesis of $(23 S, 25 R)-1 \alpha, 25-$ dihydroxyvitamin D_{3}-26,23-lactam (3a) including its A-ring and CD-ring synthons.

Figure 1

Results and Discussion

1. Synthesis of CD-ring synthon 14

The synthesis of CD-ring synthon $\mathbf{1 4}$ for 3a is summarized in Scheme 1. The reaction of the Inhoffen-Lythgoe diol (5), prepared from vitamin $\mathrm{D}_{2}(\mathbf{4})$, with p-toluenesulfonyl chloride and DMAP followed by protection of the secondary alcohol with TBSOTf and 2,6-lutidine gave silyl ether $\mathbf{6}$ in 75% yield (2 steps). The tosylate $\mathbf{6}$ was converted into the aldehyde $\mathbf{8}$ with the following stepwise reaction: 1) cyanide formation with sodium cyanide and 2) reduction of the resulting cyanide with DIBAH [3]. The aldehyde $\mathbf{8}$ was reacted with N-methylhydroxy amine to give nitrone 9 , which was subsequently reacted with methyl methacrylate (10) to give the four possible diastereomers of isoxazolidine 11. These diastereomers were separated with HPLC and 11a, 11b, 11c and 11d were thus obtained in $26,28,10$ and 10% yields, respectively [4]. The stereochemistries of these compounds were confirmed by NMR techniques. One of the isomers, 11a, which has ($23 S, 25 S$)-stereochemistry, was then carried on to the CD-ring synthon 14 . Thus, the removal of the TBS group of 11a with p toluenesulfonic acid in methanol and reduction of the $\mathrm{N}-\mathrm{O}$ bond with hydrogen in the presence of palladium on carbon gave lactam $\mathbf{1 2}$ in 80% yield. The secondary alcohol of $\mathbf{1 2}$ was oxidized with TPAP-NMO [5] conditions and tertiary alcohol was protected with TMS ether by TMS-imidazole to give ketone $\mathbf{1 3}$ in 80%. Finally, the Wittig reaction of $\mathbf{1 3}$ under the Trost's conditions [6] gave vinyl bromide $\mathbf{1 4}$ in 25% yield while the ketone 13 was recovered in 52%.

Scheme 1

2. Synthesis of A-ring synthon 24 and total synthesis of (23S,25S)-1 $\alpha, 25$-dihydroxyvitamin D_{3}-26,23lactam (3a)

The A-ring synthon 24 was synthesized from (S)-malic acid (15) (Scheme 2). The reduction of 15 with borane-methyl sulfide complex and following protection of the diol with p-anisaldehyde dimethylacetal and camphorsulfonic acid gave alcohol 17 in 59% yield. After oxidation of the primary alcohol of $\mathbf{1 7}$ under Swern conditions, the aldehyde generated was reacted with the methylene Wittig reagent, prepared from methyltriphenylphosphonium bromide and n-butyl lithium, to give $\mathbf{1 8}$ in 73%
yield. The p-methoxybenzylidene acetal of $\mathbf{1 8}$ was selectively reduced with DIBAH at $0^{\circ} \mathrm{C}$ [7] gave alcohol 19 in 70% yield. The oxidation of the primary alcohol of 19 with Dess-Martin reagent [8] followed by propargylation with propargyl bromide and magnesium in the presence of a catalytic amount of mercury chloride gave 21 in 67% yield as a $1: 1$ mixture of diastereomers. The reaction of $\mathbf{2 1}$ with DDQ and subsequent purification on silica gel column gave deprotected diol 23a via acetal 22a and acetal 22b in 25% and 26% yield, respectively. The diol 23a was reacted with TBSOTf and 2,6lutidine gave silyl ether $\mathbf{2 4}$ in 99\% yield.

Scheme 2

With the vinyl bromide 14 (CD-ring synthon) and eneyne 24 (A-ring synthon) in hand, coupling reaction of these segments were examined based upon the palladium catalyzed reaction conditions [6,9]. Coupling reaction of $\mathbf{1 4}$ and 24 in the presence of catalytic amount of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}$ and triphenylposphine in toluene-triethylamine under the reflux conditions gave 25 in 65% yield.

Deprotection of the hydroxyl protecting group was finally performed with HF-pyridine to give ($23 S, 25 S$)-1 $\alpha, 25$-dihydroxyvitamin D_{3}-26,23-lactam (3a) in 42% yield.

Conclusions

In summary, we have designed and synthesized the novel vitamin D_{3} analog $\mathbf{3 a}$ having the lactam moiety on its CD-ring side chain. Our synthesis of 3a features: 1) 1,3-dipolar cycloaddition reaction between $\mathbf{9}$ and $\mathbf{1 0}$, followed by the reduction of an isoxazolidine to form the lactam moiety for $\mathbf{1 4}$ and 2) palladium catalyzed coupling reaction of CD-ring synthon $\mathbf{1 4}$ and A-ring synthon 24 . Since this method provides a variety of vitamin D_{3} lactam analogs, synthetic efforts towards these, including $(23 R, 25 R)-(\mathbf{3 b}),(23 R, 25 S)-(\mathbf{3 c})$, and $(23 S, 25 R)-(\mathbf{3 d})$, continue. Furthermore, the evaluation of the biological activities of synthetic analogs $\mathbf{3}$ in our laboratories is planned.

Experimental

General

Optical rotations were recorded with a JASCO DIP-370 polarimeter. IR spectra were measured with a JASCO VALOR-III FT-IR spectrophotometer. ${ }^{1} \mathrm{H}-\mathrm{and}{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on JNM- $\alpha 500$ instruments at 500 and 125 MHz , respectively. Mass spectra were recorded on JEOL JMA-HX110 spectrometers.
($8 S, 20 R$)-De-A,B-8-Hydroxy-20-(hydroxymethyl)pregnane (5). Vitamin D_{2} (4) (5.00 g, 12.63 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mathrm{~mL})$, and $\mathrm{MeOH}(70 \mathrm{~mL})$ was added. After cooling to $-78^{\circ} \mathrm{C}$, a stream of ozone was passed to the solution for 1 h . The remaining ozone was purged with a stream of N_{2}. After warming up to $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}(1.43 \mathrm{~g}, 37.8 \mathrm{mmol})$ was added and stirred for 1 h . The reaction mixture was then acidified by adding 2 N HCl and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was chromatographed on silica gel ($6: 1$ hexane - ethyl acetate) to give diol $5(2.8 \mathrm{~g}, 75 \%)$ as a white solid.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.09(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=3.3,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=6.6,10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.99(\mathrm{dd}, J=2.6,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.12 \sim 1.92(\mathrm{~m}, 14 \mathrm{H}), 1.03(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.002(\mathrm{~s}, 3 \mathrm{H})$.
($8 S, 20 R$)-De-A,B-8-(tert-Butyldimethylsilyl)oxy-20-[(p-tolylsulfonyl)oxymethyl]pregnane (6). DMAP $(3.7 \mathrm{~g}, 30.2 \mathrm{mmol})$ and $p-\mathrm{TsCl}(3.8 \mathrm{~g}, 19.63 \mathrm{mmol})$ was added to a solution of $5(3.2 \mathrm{~g}, 15.10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. After stirring overnight at room temperature, the reaction mixture was poured into water (110 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with water, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(70 \mathrm{~mL})$ and then 2,6-lutidine ($4.5 \mathrm{~mL}, 38.99 \mathrm{mmol}$) and TBSOTf $(5.3 \mathrm{~mL}, 23.11 \mathrm{mmol})$ was added. After stirring at room temperature for 30 min , the solution was cooled to $0^{\circ} \mathrm{C}$, satuated NaHCO_{3} was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to give 5 as a colorless oil ($4.29 \mathrm{~g}, 99 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.72(\mathrm{dd}, J=1.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~m}$, $1 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~m}, 1 \mathrm{H}), 1.35(\mathrm{~m}, 3 \mathrm{H}), 1.25(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.002(\mathrm{~s}, 3 \mathrm{H})$.
(8S,20R)-De-A,B-8-(tert-Butyldimethylsilyl)oxy-20-(cyanomethyl)pregnane (7). To a solution of 6 $(2.00 \mathrm{~g}, 4.17 \mathrm{mmol})$ in DMSO (30 mL) was added $\mathrm{NaCN}(270 \mathrm{mg}, 5.42 \mathrm{mmol})$ and the resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h . The reaction mixture was poured into water (60 mL) and the organics were extracted with ethyl acetate. The extracts were washed with water and brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to give $7(1.02 \mathrm{~g}, 72 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.01(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{dd}, J=4.0$, $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{dd}, J=6.6,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.10 \sim 2.00(\mathrm{~m}, 20 \mathrm{H}), 1.14(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H})$.
(8S,20R)-De-A,B-8-(tert-Butyldimethylsilyl)oxy-20-(formylmethyl)pregnane (8). To a solution of DIBAH (1 M in hexane) $(6.1 \mathrm{~mL}, 6.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added a solution of $7(1.02 \mathrm{~g}, 3.05$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with dropwise and the mixture was stirred for 1 h . The reaction mixture was quenched by the addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the resulting mixture was diluted with ether, and then stirred for another 30 min . The mixture was dried over MgSO_{4} and filtered through a pad of Celite, and the filtrates were concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to give aldehyde $8(595 \mathrm{mg}, 58 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.75(\mathrm{dd}, J=1.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=2.0,13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.03 \sim 2.20(\mathrm{~m}, 20 \mathrm{H}), 1.00(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}), 0.002(\mathrm{~s}$, $3 \mathrm{H})$.
(8S,20R)-De-A,B-8-(tert-Butyldimethylsilyl)oxy-20-[4-(2,5-dimethyl-5-isoxazolidinecarboxylic acid methyl ester)methyl]pregnane (11). To a mixture of $\mathbf{8}(595 \mathrm{mg}, 2.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added N-methyl hydroxylamine hydrochloride ($184 \mathrm{mg}, 3.19 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(1.0 \mathrm{~mL})$, and the
resulting mixture was stirred at room temperature for 3 h . To the reaction mixture was added saturated NaHCO_{3}, and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over MgSO_{4} and concentrated in vacuo. The residue was dissolved in toluene (17 mL) and methyl methacrylate (10) $(1.0 \mathrm{~mL}, 9.32 \mathrm{mmol})$ was added, and the resulting mixture was heated at $90^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was concentrated in vacuo, and the residue was purified by HPLC using a PEGASIL Silica 605 column ($\phi 20 \times 150 \mathrm{~mm}$, Senshu Pak.) and elution with 15% ethyl acetate in hexane to give 11a ($316.6 \mathrm{mg}, 26 \%$), 11b ($343.6 \mathrm{mg}, 28 \%$), 11c ($116.5 \mathrm{mg}, 10 \%$) and $\mathbf{1 1 d}(125.5 \mathrm{mg}, 10 \%)$, respectively.

11a (23S, 25S): $[\alpha]^{24}{ }_{\mathrm{D}}=+112.4^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.67$ (s, 3H), 2.57 (br s, 1H), 2.46 (dd, $J=3.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{dd}, J=7.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{br} \mathrm{d}, J=$ $13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~m}, 4 \mathrm{H}), 1.21(\mathrm{~m}, 2 \mathrm{H}), 1.11$ $(\mathrm{m}, 2 \mathrm{H}), 1.01(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H}),-0.01(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 175.67,77.25,76.99,76.74,69.36,66.95,57.37,53.03,52.57,45.87,43.27$, $42.17,40.73,38.06,34.35,34.03,27.61,25.77,24.37,23.01,18.85,17.99,17.61,13.74,-4.82,-5.21$; IR (neat) $3318,2952,2856,1738 \mathrm{~cm}^{-1} ; m / z 468(\mathrm{M}+\mathrm{H})^{+}$.

11b $(23 R, 25 R):[\alpha]^{24}{ }_{\mathrm{D}}=-26.7^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.68$ (s, 3H), $2.57(\mathrm{dd}, J=9.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.30(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{br} \mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.80(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~m}, 3 \mathrm{H}), 1.23(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~m}, 2 \mathrm{H}), 1.00$ $(\mathrm{m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 6 \mathrm{H}),-0.01(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 9 \mathrm{H}),{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 175.69,69.35,68.00,57.42,52.97,52.54,47.64,43.93,42.22,40.66,38.83,34.52,34.34$, $27.56,25.77,24.29,23.02,19.60,17.99,17.60,13.65,-4,83,-5.21$; IR (neat) $3287,2951,2857,1738$ $\mathrm{cm}^{-1} ; m / z 468(\mathrm{M}+\mathrm{H})^{+}$.

11c $(23 S, 25 R):[\alpha]^{24}{ }_{\mathrm{D}}=+62.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.85$ $(\mathrm{dd}, J=6.1,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{br} \mathrm{d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-$ $1.42(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.37-0.99(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H}),-$ $0.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.47,77.24,76.99,76.74,69.36,66.78,57.31,53.02$, $52.50,46.82,43,84,42.18,40.69,38.38,37.60,34.34,34.14,29.66,27.66,25.77,24.92,24.83,23.00$, $22.62,19.05,18.90,18.00,17.60,14.08,13.72,-4.81,-5.21$; IR (neat) $3790,2951,2856,2777,1739$ $\mathrm{cm}^{-1} ; m / z 468(\mathrm{M}+\mathrm{H})^{+}$.

11d $(23 R, 25 S):[\alpha] 24 \mathrm{D}=+16.9\left(\mathrm{c} 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\mathrm{CDCl} 3) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.91$ (dd, J = 6.1, $12.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.81-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.47(\mathrm{~m}, 2 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 6 \mathrm{H}), 1.12-0.97(\mathrm{~m}, 3 \mathrm{H}), 0.92(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H})$, $-0.01(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.84,77.25,76.99,76.74,69.38,67.03,57.42,53.01$, $52.48,47.77,44.88,42.24,40.68,39.26,34.37,34.06,31.56,29.67,27.51,25.78,24.86,23.03,22.62$, $19.39,18.00,17.61,14.08,13.68,-4.81,-5.19$; IR (neat) $3307,2951,2856,2360,1738 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z} 468$ $(\mathrm{M}+\mathrm{H})+$.
(8S,20R,23S,25S)-De-A,B-8,25-Dihydroxy-cholestane-26,23-N-methyl lactam (12). To a solution of 11a ($316.6 \mathrm{mg}, 0.68 \mathrm{mmol}$) in $\mathrm{MeOH}(25 \mathrm{~mL})$ was added a catalytic amount of $\mathrm{p}-\mathrm{TsOH}$ and the resulting mixture was stirred for 12 h . The reaction mixture was diluted with ethyl acetate and the saturated NaHCO_{3} was added. The resulting mixture was extracted with ethyl acetate and the organics was washed with brine, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was chromatographed on silica gel ($5: 1$ hexane:ethyl acetate) to give the alcohol ($218.7 \mathrm{mg}, 91 \%$) as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=+145.9(\mathrm{c} 1.0, \mathrm{CHCl} 3) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}$, $3 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.38(\mathrm{dd}, J=9.0,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=8.2,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{br} \mathrm{d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.54-0.93(\mathrm{~m}, 11 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 175.71,69.26,66.90,57.24,52.60,52.59,45.83,43.28,41.91,40.41,38.06$, $34.03,33.54,27.45,24.36,22.47,18.77,17.38,13.51$; IR (neat) $3526,2948,2867,2360,1737 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z} 354(\mathrm{M}+\mathrm{H})^{+}$. A mixture of the alcohol $(218.7 \mathrm{mg}, 0.62 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(100 \mathrm{mg})$ in EtOH $(15 \mathrm{~mL})$ was stirred under H_{2} atmosphere for 12 h . The reaction mixture was filtered through a pad of Celite and the filtrates were concentrated in vacuo to give $\mathbf{1 2}(180 \mathrm{mg}, 90 \%)$ as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=$ $+145.9^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $2.38(\mathrm{dd}, J=9.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=8.0,13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{br} \mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.69$ $(\mathrm{m}, 3 \mathrm{H}), 1.54-0.93(\mathrm{~m}, 11 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta 175.71,69.26,66.90,57.24,52.60,52.59,45.83,43.28,41.91,40.41,38.06,34.03,33.54,27.45$, 24.36, 22.47, 18.77, 17.38, 13.51; IR (neat) 3381, 2936, 2867, 2242, $1680 \mathrm{~cm}^{-1} ; m / z 324(\mathrm{M}+\mathrm{H})^{+}$.
(20R, 23S, 25S)-De-A,B-25-Trimethylsilylhydroxy-cholestane-8-one-26,23-N-methyl lactam (13). To a solution of $\mathbf{1 2}(212 \mathrm{mg}, 0.66 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added tetra-n-propylammonium perruthenate ($12 \mathrm{mg}, 0.66 \mathrm{mmol}$), 4-methylmorpholine N -oxide ($310 \mathrm{mg}, 2.64 \mathrm{mmol}$) and molecular sieves 4A powder, and the whole mixture was stirred for 2 h at room temperature. The reaction mixture was loaded on the silica gel column chromatography ($1: 2$ hexane - ethyl acetate) to give the ketone (219 mg , quant. yield) as a colorless oil. A mixture of the ketone ($95 \mathrm{mg}, 0.3 \mathrm{mmol}$) and TMSimidazole ($0.22 \mathrm{~mL}, 1.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was stirred for 12 h at room temperature. The reaction mixture was cooled at $0^{\circ} \mathrm{C}$ and water was added to the mixture. The organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was chromatographed on silica gel ($2: 1$ hexane - ethyl acetate) to give $\mathbf{1 3}$ ($107 \mathrm{mg}, 91 \%$) as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=+36.0^{\circ}\left(c \quad 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.55(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.46$ (dd, $J=8.0,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-1.20(\mathrm{~m}, 19 \mathrm{H}), 1.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.66(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H}) ;$ ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 211.49,174.56,76.24,61.95,57.11,53.90,49.81,43.41,40.89,39.74,39.03$, $32.47,27.94,27.70,25.54,23.96,19.04,18.68,12.53,1.75$; IR (neat) $3035,2957,2360,1705 \mathrm{~cm}^{-1}$; $\mathrm{m} / \mathrm{z} 394(\mathrm{M}+\mathrm{H})^{+}$.
(7E)-(20R, 23S,25S)-De-A,B-8-Bromomethylidene-25-trimethylsilylhydroxy-cholestane-26,23-N-methyl lactam (14). To an emulsion of bromomethyltriphenylphosphonium bromide ($327 \mathrm{mg}, 0.75 \mathrm{mmol}$) in toluene (2 mL) was added lithium hexamethyldisilazane (1 M in THF) $(0.74 \mathrm{~mL}, 0.74 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$
and the mixture was warmed up to $0^{\circ} \mathrm{C}$ and stirred for 10 min . After cooling to $-78^{\circ} \mathrm{C}$, to the resulting solution was added $13(60.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ in toluene (1 mL) with dropwise, and the mixture was stirred at the same temperature for 2 h . To the reaction mixture was added saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and warmed up to room temperature. The resulting mixture was extracted with ethyl acetate and the organic layer was washed with brine, dried over MgSO_{4} and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane) to give $\mathbf{1 4}(8.4 \mathrm{mg}, 12 \%)$ and $\mathbf{1 3}(32 \mathrm{mg}, 52 \%)$ was recovered. $[\alpha]^{24}{ }_{\mathrm{D}}=+79.47^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.56(\mathrm{~s}, 1 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 2.80$ $(\mathrm{m}, 1 \mathrm{H}), 2.68(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{dd}, J=6.0,12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-1.10(\mathrm{~m}, 18 \mathrm{H}), 0.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.49(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 174.79,144.73,97.70,56.27,55.89,53.93,45.52$, $43.38,39.90,39.80,32.92,30.97,29.69,28.01,27.70,25.58,22.48,21.98,18.76,11.87$; IR (neat) $3734,2952,1700,1635,1507 \mathrm{~cm}^{-1} ; m / z 470,472(\mathrm{M}+\mathrm{H})^{+}$.
(2S)-2,4-Diol butanol anisilidene (17). To a solution of boranemethyl sulfide complex ($100 \mathrm{~mL}, 1 \mathrm{~mol}$) in THF (200 mL) was added the solution of (S)-malic acid (15) $(50 \mathrm{~g}, 373 \mathrm{mmol})$ in THF $(400 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ with dropwise over 3 h , and the resulting mixture was stirred for another 12 h at room temperature. The reaction mixture was re-cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{MeOH}(400 \mathrm{~mL})$ was added. The organics were evaporated in vacuo and the residue was dissolved in $\mathrm{MeOH}(300 \mathrm{~mL})$ and evaporated in vacuo. The same sequences (addition of MeOH and concentration of organics) were repeated three times. The residue was dissolved in $\mathrm{MeOH}(300 \mathrm{~mL})$ and $p-\mathrm{TsOH}(200 \mathrm{mg})$ was added, and the mixture was evaporated in vacuo to give $\mathbf{1 6}(50.63 \mathrm{~g}, 99 \%)$ as a colorless oil. To a solution of $\mathbf{1 6}(15 \mathrm{~g}, 141 \mathrm{mmol})$ in $\mathrm{MeOH}(240 \mathrm{~mL})$ was added CSA $(3.3 \mathrm{~g}, 14 \mathrm{mmol})$ and the mixture was heated at $90^{\circ} \mathrm{C}$ for 1 h . The resulting mixture was cooled to room temperature, and the organics were evaporated in vacuo. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 4-methoxybenzaldehyde dimethylacetal ($30 \mathrm{~mL}, 170 \mathrm{mmol}$) was added to the solution, and the resulting mixture was stirred for 6 h . To the reaction mixture was added saturated NaHCO_{3}, and the organic layer was extracted with ethyl acetate and washed with brine. The aqueous layer was extracted twice with ethyl acetate. The combined organic layers were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography (2:1 hexane - ethyl acetate) to give $17(18.23 \mathrm{~g}, 26 \%)$ as a pale yellow oil.
(3S)-3,5-Diol-1-pentene anisilidene (18). To a solution of $(\mathrm{COCl})_{2}(6.0 \mathrm{~mL}, 67.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 $\mathrm{mL})$ was added DMSO ($12.0 \mathrm{~mL}, 168.5 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min . To the resulting mixture was added $17(8.23 \mathrm{~g}, 33.7 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and the mixture was stirred for $40 \mathrm{~min} . \mathrm{Et}_{3} \mathrm{~N}(470 \mathrm{~mL}, 337 \mathrm{mmol})$ was added and whole mixture was warmed to room temperature, and then stirred for another 30 min . Water (20 mL) was added and the organic layer was extracted with ethyl acetate. The extracts were washed with brine, dried over MgSO_{4}, filtered and evaporated in vacuo. The residue in THF solution was added to a solution of methylphosphoniumylide in THF prepared from methylphosphonium bromide ($16.6 \mathrm{~g}, 46.5 \mathrm{mmol}$) and $n-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $30 \mathrm{~mL}, 45 \mathrm{mmol})$ in THF $(250 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and the whole mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and at room temperature for another 1 h . After cooling to $0^{\circ} \mathrm{C}$, water was added, and the organics were
extracted with ethyl acetate. The extracts were washed with brine, dried over MgSO_{4}, filtered and evaporated in vacuo. The residue was chromatographed on silica gel ($10: 1$ hexane - ethyl acetate) to give $18(2.77 \mathrm{~g}, 38 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) 7.44(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 2 \mathrm{H}), 5.99(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{dd}, J=13.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=13.1,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.36(\mathrm{dd}, J=12.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~m}, 1 \mathrm{H})$.
(3S)-3-Methoxyphenylmethylyloxy-5-hydroxy-1-pentene (19). To a solution of $\mathbf{1 8}(2.77 \mathrm{~g}, 12.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(130 \mathrm{~mL})$ was added DIBAH $(0.95 \mathrm{M}$ in hexane, $66 \mathrm{~mL}, 63 \mathrm{mmol})$ dropwise at $-20^{\circ} \mathrm{C}$ and the mixture was stirred for 2 h . 2-Propanol was added, then water and silica gel. The resulting slurry was diluted with ethyl acetate and stirred at room temperature for another 1 h . The slurry was filtered through a pad of Celite and the filtrates were concentrated in vacuo. The residue was purified by silica gel column chromatography ($10: 1$ hexane - ethyl acetate) to give 19 ($1.15 \mathrm{~g}, 41 \%$) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.14(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.68(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~m}, 2 \mathrm{H})$, $4.46(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3,90(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 1.75(\mathrm{~m}$, $1 \mathrm{H}), 1.67(\mathrm{~m}, 1 \mathrm{H})$.
(3S)-3-[(Methoxyphenylmethylyl)oxyl-5-formyl-1-pentene (20). A mixture of $\mathbf{1 9}$ ($1.15 \mathrm{~g}, 5.17 \mathrm{mmol}$), $\mathrm{NaHCO}_{3}(1.7 \mathrm{~g}, 20.68 \mathrm{mmol})$ and Dess-Martin periodinane $(4.4 \mathrm{~g}, 10.34 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ was stirred for 1 h . The reaction mixture was directly loaded on a silica gel column (10:1 hexane ethyl acetate) and purified to give $20(990 \mathrm{mg}, 89 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.48$ (s, $1 \mathrm{H}), 7.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97$ $(\mathrm{d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~m}, 1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.2(\mathrm{~m}, 1 \mathrm{H})$.
(3S)-3-[(Methoxyphenylmethylyl)oxyl]-5-hydroxy-1-octen-7-yne (21). To a mixture of Mg (220 mg , $2.25 \mathrm{mmol})$ and $\mathrm{HgCl}_{2}(25 \mathrm{mg}, 0.09 \mathrm{mmol})$ in ether $(40 \mathrm{~mL})$ was added propargyl bromide $(0.75 \mathrm{~mL}$, 9.9 mmol) at room temperature until the Mg was dissolved. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathbf{2 0}$ $(495 \mathrm{mg}, 2.25 \mathrm{mmol})$ in ether (25 mL) was added dropwise. After being stirred for 15 min , saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added to the reaction mixture. The organics were extracted with ethyl acetate and washed with brine. The extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography ($8: 1$ hexane - ethyl acetate) to give $\mathbf{2 1}$ ($393.1 \mathrm{mg}, 67 \%$) as a colorless oil.
(3S,5R)-3,5-Dihydroxy-1-octen-7-yne (23a). To a solution of $21(741.5 \mathrm{mg}, 2.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50$ $\mathrm{mL})$ was added DDQ $(953 \mathrm{mg}, 4.2 \mathrm{mmol})$ at room temperature. After being stirred for 1 h , the reaction mixture was quenched by the addition of saturated NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography ($8: 1$ hexane - ethyl acetate) to give 23a ($98.7 \mathrm{mg}, 25 \%$) and 22b ($189 \mathrm{mg}, 26 \%$) as colorless oils. 23a: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.94(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~d}, J=10.2 \mathrm{~Hz}$,
$2 H), 4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~m}, 1 \mathrm{H})$, $1.73(\mathrm{~m}, 1 \mathrm{H})$.
(3S,5R)-3,5-Di[(t-butyldimethylsilyl)oxyl]-1-octen-7-yne (24). To a solution of 23a (98.7 mg, 0.70 $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ was added 2,6-lutidine ($0.25 \mathrm{~mL}, 2.1 \mathrm{mmol}$) and TBSOTf $(0.4 \mathrm{~mL}, 1.75$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min at room temperature. The reaction mixture was re-cooled to $0^{\circ} \mathrm{C}$, and saturated NaHCO_{3} was added. The organics were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was chromatographed on silica gel (hexane) to give $24(248.2 \mathrm{mg}, 96 \%)$ as a colorless oil. $[\alpha]^{24}{ }_{\mathrm{D}}=-5.19^{\circ}\left(c 0.7, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 5.57(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H})$, $3.82(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 1 \mathrm{H}), 0.78(\mathrm{~m}, 18 \mathrm{H}), 0.03(\mathrm{~m}$, $12 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 141.90,114.25,81.47,71.65,70.07,68.13,45.89,27.98,25.92,25.85$, 3.76, -4.15, -4.45, -4.58; IR (neat) $3315,2956,2930,2888,2858,1749,1624,1508 \mathrm{~cm}^{-1} ; \mathrm{m} / \mathrm{z} 369$ $(\mathrm{M}+\mathrm{H})^{+}$.
(23S,25S)-1 α,3-Di[(t-butyldimethylsilyl)oxyl]-25-(trimethylsilyl)oxyl vitamin D_{3} 26,23-N-methyl lactam (25). A mixture of $\mathrm{Pd}_{2}(\mathrm{dba})_{3} \mathrm{CHCl}_{3}(2 \mathrm{mg}, 0.002 \mathrm{mmol}), \mathrm{PPh}_{3}(5 \mathrm{mg}, 0.19 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.8$ $\mathrm{mL})$ in toluene $(0.8 \mathrm{~mL})$ was stirred for 10 min at room temperature. To the resulting mixture was added $\mathbf{1 4}(13.8 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $24(8 \mathrm{mg}, 0.02 \mathrm{mmol})$ in toluene $(0.8 \mathrm{~mL})$ dropwise, and the whole mixture was heated at $110^{\circ} \mathrm{C}$ for 4 h . The reaction mixture was diluted with hexane and concentrated in vacuo. The residue was purified by silica gel column chromatography (hexane) to give $\mathbf{2 5}(9.4 \mathrm{mg}, 62 \%)$ as a colorless oil. Ketone $\mathbf{1 4}(4.7 \mathrm{mg}, \mathbf{3 3 \%}$) and enyne $\mathbf{2 4}$ were recovered (2.7 mg , 37\%).
(23S,25S)-1 α, 25-Dihydroxy vitamin D_{3}-26,23-N-methyl lactam (3a). A mixture of $\mathbf{2 5}$ ($4.7 \mathrm{mg}, 0.0062$ $\mathrm{mmol})$ and HF pyridine $(1 \mathrm{~mL})$ in THF $(2 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was stirred for 6 h . The reaction mixture was quenched with saturated NaHCO_{3} and the organics were extracted with ethyl acetate. The extracts were dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica gel column chromatography $\left(9: 1 \mathrm{CHCl}_{3}-\mathrm{MeOH}\right)$ to give 3 a as a pale yellow oil ($1.5 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 6.37(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.23(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.82(\mathrm{~s}, 3 \mathrm{H}), 2.61-0.70(\mathrm{~m}, 33 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.58(\mathrm{~s}, 3 \mathrm{H}) ; \mathrm{m} / \mathrm{z}$ $458(\mathrm{M}+\mathrm{H})^{+}$.

References

1. Bouillon, R.; Okamura, W. H.; Norman, A. W. Structure-function relationships in the Vitamin D endocrine system. Endocrine Rev., 1995, 16, 200-257.
2. Ishizuka, S.; Norman, A. W. The difference of biologial activity among four diastereoisomers of 1 $\alpha, 25$-dihydroxycholecalciferol-26,23-lactone. J. Steroid. Biochem., 1986, 25, 505-510.
3. Iwasaki, H.; Hosotani, R.; Miyamoto, Y.; Nakano, Y. Stereoselective synthesis and structural establishment of (25S)-24,24-difluoro-1 $\alpha, 25,26$-trihydroxyvitamin D_{3}, a major metabolite of 24,24-difluoro-1 $\alpha, 25$-dihydroxyvitamin D_{3}. Tetrahedron., 1998, 54, 14705-14724.
4. Wovkulich, P. M.; Barcelos, F.; Batcho, A. D.; Sereno, J. F.; Baggiolini, E. G.; Hennessy, B. M.; Uskokovic, M. R. Stereoselective total synthesis of $1 \alpha, 25 S, 26$-trihydroxycholeccalciferol. Tetrahedron, 1984, 40, 2283-2296.
5. Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. Preparation and use of tetra-nbutylammonium per-ruthenate (TBAP reagent) and tetra-n-propylammonium per-ruthenate (TPAP reagent) as new catalytic oxidants for alcohols. J. Chem. Soc., Chem. Commun., 1987, 1625-1627.
6. Trost, B. M.; Dumas, J.; Villa, M. New strategies for the synthesis of vitamin D metabolites via Pd- catalyzed reactions. J. Am. Chem. Soc., 1992, 114, 9836-9845.
7. Hatakeyama, S.; Sakurai, K.; Saijo, K.; Takano, K. Enantioselective synthesis of ($6 S, 7 S, 9 R, 10 R$)-6,9-epoxynonadec-18-ene-7,10-diol, a marine natural product. Tetrahedron Lett., 1985, 26, 13331336.
8. Dess, D. B.; Martin, J. C. A useful 12-I-5 triacetoxyperiodinane (the Dess-Martin periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-I-5 species. J. Am. Chem. Soc., 1991, 113, 7277-7287.
9. Ikeda, M.; Takahashi, K.; Dan, A.; Koyama, K.; Kubota, K.; Tanaka, T.; Hayashi, M. Synthesis and biological evaluations of A-ring isomers of 26,26,26,27,27,27-hexafluoro-1,25dihydroxyvitamin D_{3}. Bioorg. Med. Chem., 2000, 8, 2157-2166.
© 2003 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.
