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ABSTRACT In order to ensure that Inertial Navigation System/Global Positioning System integrated navigation system
(INS/GPS) can still provide high precision positioning results when GPS outages, a novel hybrid algorithm based on Gated
Recurrent Unit (GRU) and interacting multiple model adaptive robust cubature Kalman filter (IMM-ARCKF) is proposed.
Firstly, the IMM-ARCKF algorithm is proposed to solve the uncertainty of system model and measurement noise statics in
the application of INS/GPS on the road. Then, GRU neural network is introduced into INS/GPS system which includes two
modes of training and prediction. When GPS signal can be received, the GRU neural network works in the training mode.
When GPS outages , the GRU neural network predicts the GPS position increment. Finally, the effectiveness of the
algorithm is evaluated by the experiment and analysis. From the data of the experiment, the proposed algorithm can
improve the positioning accuracy during GPS outages.
INDEX TERMS integrated navigation, cubature Kalman filter, GPS outages, Gated Recurrent Unit .

I. INTRODUCTION
The INS/GPS system has been used in more and more
fields for its numerous advantages, especially in the
military and civilian fields[1]. In terms of performance,
GPS works well in long-term positioning. However, the
GPS signal is easily blocked and the receiver positioning
frequency is low. As an independent system, INS does not
rely on external information when positioning, but its
measurement error will accumulate over time during which
more and more positioning errors will be produced in the
integration calculation process. Therefore, the overall
performance of INS/GPS integrated navigation system is
far better than that of independent systems[2][3].

At present, the data fusion algorithms commonly used in
INS/GPS systems are Kalman Filter (KF) and Extended
Kalman Filter (EKF)[4]. EKF is an improvement on the
traditional KF. EKF linearizes the state equation and the
observation equation through first-order Taylor
decomposition[5]. Both KF and EKF transform the problem
into a linear Gaussian model, so the analytical form in the
Bayesian recursive formula can be directly solved, which is
convenient for calculation. As for the case of nonlinearity,
EKF has the effect of linear error in addition to a large
amount of calculation, so the Unscented Kalman filter (UKF)
is proposed. UKF uses a series of determined samples to
approximate the probability density distribution of a

nonlinear function[6]. However, for the high-dimensional
state model, the above filtering algorithms are prone to a
non-positive definite covariance matrix[7]. Proposed by
Arasaratnam et al., Cubature Kalman filtering (CKF) is based
on the third-order spherical radial volume criterion and uses a
set of volume points to approximate the state mean and
covariance of a nonlinear system with additional Gaussian
noise. CKF is the closest approximation algorithm to
Bayesian filtering in theory and is a powerful tool to solve
nonlinear system state estimation[8][9]. CKF has the same
weight for each integral point , which is positive. Therefore,
the numerical stability of CKF is stronger than that of
UKF[10]. However, affected by the uncertainty of system
model and the uncertainty of measurement noise statics, the
robustness is reduced and even the filter is failing. In recent
years, many scholars have proposed many improved CKF
algorithms to solve the above problems. Zhao et al. proposed
an adaptive robust square root CKF algorithm based on the
strong tracking filter principle and derived a suboptimal
unbiased constant noise statistical estimator based on the
maximum posterior principle[11]. To prevent the decrease of
the positioning accuracy caused by the abnormal value in the
measurement, Liu et al. used Huber M estimation technology
to enhance the structure of the standard CKF[12]. Cui et al.
proposed a robust Cubature Kalman filter (RCKF), which
reused diffuse sigma points and approximate residuals in the
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prediction phase of CKF in the case of colored measurement
noise and missing observed values[13]. Interactive multiple
model is an effective method in maneuvering target tracking.
The model can be combined with many algorithms to meet
different application requirements [14][15]. In literature [16],
the fuzzy adaptive Kalman filtering (FAKF) algorithm and
the adaptive interactive multiple model (AIMM) were
combined to solve the problem that the prior information was
inconsistent with the actual environment. Firstly, FAKF
algorithm was used to calculate the rough statistical
characteristics of noise. Secondly AIMM was used to
determine the number of sub-filters according to the rough
statistical characteristics . Finally, the localization results
were solved. In literature [17], in order to improve the
performance of SINS/DVL integrated navigation system,
IMM-RKF algorithm was proposed. According to two
different integrated navigation models, two different noise
covariance is calculated. Then IMM algorithm was used to
estimate the more real noise covariance matrix. The IMM-
ARCKF algorithm can effectively solve the problem of
measurement noise statistical characteristic inaccuracy in
underwater environment.

Recently, artificial intelligence (AI) and big data have
been applied in more extensive fields. Many scholars have
applied AI methods to integrated navigation system, which
can reduce the positioning error during GPS downtime[18].
In literature[19], multilayer feed-forward neural networks
with a back propagation learning algorithm was used to fuse
INS and DGPS data. Literature [20] proposed an
ANN+GPS/INS system to solve the problem of large
positioning error and fast drift caused by GPS signal loss in
low-level GPS/INS systems. The system adopted multilayer
perceptron structure neural network to construct the

INSO P  module. The positioning accuracy was improved
and the system drift was prevented effectively. In literature
[21], a data fusion algorithm based on radial basis function
neural network (RBFNN) was proposed which adopted

INSP P structure. INSP stood for INS position which was
the input of the network. P represented corresponding
position error which was the output. Considering the
relationship between INS error and past value, input delay
neural network (IDNN) was used in literature [22]. The
algorithm modeled the error of INS position and velocity
according to the current and past information of position
and velocity. The network output was INS error. Literature
[23] combined strong tracking Kalman filter (STKF) and
wavelet neural network (WNN) algorithm. STKF was used
to replace the traditional KF algorithm and WNN was used
for training and prediction. The system useed the

( ) ( )INS INSP P P C  structure. The past value of STKF was
the input, and the current value was the expected output.
When the GPS outages, trained WNN was used to replace
STKF. In literature [24], a fusion algorithm based on back
propagation neural network (BPNN) was proposed. The
system adopted INS GPSO T P  structure, and the model of
the relationship between the speed of INS system, output of

INS measurement unit and GPS fault duration and GPS
position increment was established. In Literature [25], a
dual optimization scheme was designed by combing CKF,
MLP and RBF. Firstly, CKF was added to MLP as an
optimizer, which can adaptively estimate the weight of
MLP. Then, RBF and CKF were used for error estimation.
In reference [26], to improve the navigation accuracy, the
regression fuzzy wavelet neural network (RFWNN) was
added to the INS/GPS system to compensate the speed and
position errors of INS/GPS. Most of the neural networks
mentioned above, such as RBF and MLP, belong to static
networks. The main disadvantage of these networks is that
they only use information from the last step and cannot
store more information in the past. Since GRU is used for
events related to time series, we use GRU for INS/GPS
system.

The interacting multiple model robust adaptive cubature
Kalman filter based on GRU (GRU/IMM-ARCKF) is
proposed. When GPS signal acquisition is normal, the
fusion algorithm uses the IMM-ARCKF algorithm and
the GRU is trained at the same time. When GPS signals
cannot be obtained normally, GRU is used to predict GPS
position increment. The pseudo GPS position is obtained by
integrating the position increment.

Other parts are as follows: Section II derives the
traditional CKF algorithm and the proposes IMM-ARCKF
algorithm; Section III discusses the GRU-aided integrated
navigation algorithm; In section IV, the simulation results
and experimental results are analyzed. Finally, the
conclusion is given.

II. IMM-ARCKF
When the system model error and noise statistical error
exist in high dynamic scene, the traditional CKF algorithm
is easy to make the positioning error larger. To overcome
the uncertainty of measurement noise statistics, Huber M-
estimation is adopted to allow the measurement noise
covariance to be automatically adjusted. To overcome the
error of the system model, an adaptive factor is used to
adjust the state covariance matrix. When the GPS/INS
system is applied in actual scenarios, the above two
uncertainties will exist simultaneously. Therefore,
interacting multiple model is used to combine RCKF and
ACKF. According to the information of each sub-filter,
such as the covariance of the innovation matrix, the mode
probability of each sub-filter is calculated. Finally, the state
estimation of ACKF and RCKF are weighted by probability
to obtain the final state estimation. IMM-ARCKF not only
overcomes partial limitations of traditional CKF, but also
combines the advantages of ACKF and RCKF to improve
the adaptability and robustness of the system.

A. TRADITIONAL CKF
In actual applications, INS is generally not used alone. Its
measurement error will accumulate with time, eventually
leading to divergence of positioning results. Therefore,
IMM-ARCKF is proposed to optimize the combination of
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GPS and INS system. The linear error equation of INS
is[27]:
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where L and  represent the error of longitude and
latitude, and h represents the error of altitude. The
superscript 'n' represents the navigation frame (N-frame),
and the subscript 'e' represents the earth frame (e-frame).

n
ie is the rotation rate of the earth, and n

ie is its error.
 stands for misalignment angle vector. n

bC is the direction
cosine matrix.

The traditional CKF is as follows. Nonlinear dynamic
equation:

 1 1k k kx f x w   (6)

 k k kz h x v  (7)

where kx represents the state vector of m dimension in
the k epoch; kz stands for n dimensional measurement;

1kw  is the system noise. Its mean is 0. Its covariance is

1kQ  ; kv stands for measurement noise whose mean is 0.
And its covariance is kR ;  f  and  h  represent nonlinear
equation of state and system measurement equation
respectively.

Time update:
(1) Decomposition
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where m is the number of basic cubature points.

(3)Propagation cubature points
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(5)Predicted state error covariance
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Measurement update
(1)Decomposition
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(5)Innovation covariance
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(6)Cross-covariance matrix
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(7)Kalman gain
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(8)Updating the state
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(9)Updating the state covariance matrix

1 1
zz T

k kk k k k k kP P G P G   (22)

B. ROBUST CKF
In dynamic systems, large observation errors are inevitable.
The on-line adaptive adjustment ability of the system is
very important. Robust M estimation can be used for
adaptive estimation of unknown prior states and
measurements[28]. The expression in the measurement
update process is updated as:
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where kR is the adjusted kR . kR can be calculated from

equal weight matrix H using contrast M estimation
method.

1
kR H  (24)

To ensure that the diagonal elements of H are positive,
we use Huber method to calculate H .
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where iih is the diagonal element of H , and ijh is the
off-diagonal element. ii is the diagonal element of kR ,
and ij is the off-diagonal element of kR .
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v k k ii

P  (27)

where c is a constant, between 1.3 and 2.0. Robust CKF
algorithm alleviates the impact of statistical uncertainty of
measurement noise on system performance. The real-time
adjustment of measurement noise statistics is realized.

C. ADAPTIVE CKF
When the error of the dynamic model in a integrated
navigation system is large compared with the real model, it
may affect all state estimation results. Adaptive adjustment
factors were used to modify the state error covariance [29]:
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where k is the adaptive factor which is derived as follows.

Calculate the predicted residual vector :
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Assuming that the estimated covariance matrix of the
prediction residual vector is 1
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adaptive factor should meet the following equation:
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Continue derivation:
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Since 0 1k  [30], the value of k is as follows:
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kR exists in both numerator and denominator of the
above formula. Then the approximate optimal adaptive
factor calculated as follows:
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D. IMM-ARCKF
From the above analysis, it can be concluded that RCKF
mainly alleviates the impact of measurement noise
statistical uncertainty while ACKF mainly alleviates the
impact of system model error uncertainty. Therefore, IMM
fusion algorithm is used to combine ACKF and RCKF. The
flow chart is as follows:

FIGURE 1.  Flow chart of IMM-ARCKF algorithm.

In the proposed IMM-ARCKF algorithm, ACKF filter
and RCKF filter run in parallel. And the two filters have
different models. Then the model probability is calculated
based on the measurement error covariance matrix of
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ACKF and RCKF. Finally, the state results of ACKF filter
and RCKF filter are fused .

(1)Initialization
Markov transition matrix and probability of initial mode
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where  ija is the transfer probability. 0 is the mode
probability, which describes the reliability probability of
each sub-filter at the current moment. And meet

1,0 2,0+ =1  .
(2)Update model probability
The model probability is an important index to fuse the

state estimation results of subfilters.
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where ,j k is the likelihood function. d is the
normalization factor, calculated as follows:
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where
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,1
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is the innovation covariance matrix in ACKF

filter.
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is the innovation covariance matrix of RCKF

filter.
From the above derivation, it can be seen that the smaller

the innovation matrix is, the more the subfilter corresponds
to the actual system, and the larger ,j k will be. Therefore,
the value of 0 corresponding to the subfilter is larger.
When the error of process model is larger than the
statistical error of measurement noise, the model
probability of ACKF is larger. Conversely, when the error
of measurement noise statistics is greater than the error of
the process model, the modal probability of RCKF is larger.

(3)Redistribution
,ˆ j kx and ,j kP are redistributed and then used as the initial

value of the sub-filter at the next moment.
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where i=1,2; ,ij kh is the mixed probability.

,
, 1 , 2 ,

,

, 1ij j k
ij k j k j k

i k

a
h h h

d


   (47)

(4)The fusion results
Through the calculated model probability and the

estimated state results of the two sub-filters, the final state
estimation fusion is performed:

2

, ,
1

ˆ ˆk j k j k
j

x x 


 (48)

 2

, , , ,
1

ˆ ˆ ˆ ˆ
T

k j k j k k j k k j k
j

P P x x x x 


          (49)

(5)Flow of IMM-ARCKF algorithm
a Initialization
The initialization of 0,    A  can be done by formula

(39). Then the ACKF filter and RCKF filter are initialized
to obtain the 0

,ˆi kx and 0
,i kP of each filter

b ACKF and RCKF run in parallel
ACKF and RCKF reduce the impact of uncertainty of

system model and uncertainty of measurement noise
statistics on filtering performance respectively. Their
respective models are different. ACKF and RCKF run in
parallel, and then the state of each subfilter and
corresponding error covariance matrix are obtained.

c Multifilter fusion
According to Equations (48)-(49), the final estimation

result of IMM-ARCKF algorithm is calculated.
d Repeat steps b and c until the positioning is complete.

III. GRU-DIDED THE INS/GPS

A. GATED RECURRENT UNIT
If we deal with problems related to the timeline of events,
such as pedestrian trajectory prediction, vehicle trajectory
prediction, natural language processing, text processing,
etc., traditional neural networks are unable to perform it. It
is therefore proposed that recurrent neural network
( RNN)[31]. GRU control process is similar to RNN. Both
of them process data flowing through cells during forward
propagation. The difference is that the structure and
operation of cells in GRU are different from that in
RNN[32]. GRU is a variant of the Long-Term Memory
(LSTM) that merges the input gates and forgetting gates,
and merges the memory state and the hidden state. GRU
has much fewer parameters than LSTM, and the training
speed is faster [33]. The hidden layer unit in the GRU
neural network introduces a gating unit, and its structure is
as follows[34]:
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FIGURE 2.  The GRU module.

The calculation process is as follows:
  1,t z t tz W h x   (50)

  1,t r t tr W h x   (51)

  1tanh * ,t t t th W r h x  (52)

  11 * *t t t t th z h z h    (53)
In the figure tz and tr represent update and reset gates

respectively. The greater the value of the update gate, the
more information was brought in from the previous
moment. The smaller the value of the reset door, the less
information from the previous moment was written.

B. GRU-ADIED INS/GPS
In this paper, GRU is applied to INS/GPS integrated
navigation system and INSO P structure is proposed. As
shown in Figure (3) and (4). When the GPS signal is
properly acquired, the GRU is trained. In this stage, INS
and GPS information are fused through IMM-ARCKF to
obtain positioning results. In addition, the yaw angle INS
and velocity INSV of INS and the angular velocity  and
specific force f of IMU are taken as input, and the output
is the position increment of GPS. When GPS signals cannot
be obtained, GRU is used for prediction. The INS ,

INSV , and f are input into the trained GRU to obtain
the predicted GPS increment. The pseudo GPS position is
obtained after integrating this value, and then it is sent to
IMM-ARCKF.

FIGURE 3.  The training phase.

FIGURE 4.  The predicting phase.

It is worth noting that the neural network not only uses
the information of the previous one-step, but also takes

        3  2  1  x t x t x t x t   as the input.

IV. PERFORMANCE EVALUATION

A. PERFORMANCE VERIFICATION OF IMM-ARCKF
In this section, IMM-ARCKF is compared with the
classical CKF, ACKF and RCKF through numerical
simulation experiments and on-board experiments to verify
the effectiveness of the IMM-ARCKF. The root mean
square error (RMSE) is used as a metric to compare the
performance of these algorithms and verify the
effectiveness of the proposed algorithm. We performed 50
independent Monte Carlo simulations for performance
comparisons.

E-N-U geographic coordinate system is adopted for
INS/GPS integrated navigation system. INS/GPS integrated
navigation process model is composed of INS mechanical
calibration equation and inertial sensor error equation. The
system state vector is defined as:

  [          
               ]

E N U E N U

x y z x y z

x t v v v L h        

  



   (54)

where, (   )E N U   represent the attitude Angle error ;
(   )E N Uv v v   stand for velocity error; (   )L h  

stand for position error;    x y z   stand for gyro constant

drift;    x y z   stand for accelerometer constant drift.
The observation vector is:

[      

          ]

E E N N U U
gps ins gps ins gps ins

T
gps ins gps ins gps ins

z v v v v v v

L L h h 

   

   (55)
The discretized state equation is:

, 1 1 1k k k k kX X W     (56)
The observation equation is:

k k k kz H x v  (57)
Where  6 3 6 6 6 60   0kH I   and kv is the measurement
noise matrix.
(1) Simulation and analysis

Assume that the fixed-wing aircraft performs
maneuverable flight, which consists of various actions. In
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Figure (5), the flight path of the aircraft is designed. Table 1
is the simulation parameter. The filtering cycle is 1s and the
simulation time is 1000s.

FIGURE 5.  Simulated flight trajectory.

TABLE I
THE SIMULATION INITIALIZATION PARAMETERS

Initial position

East longitude 37.7050°

North latitude 112.7196°

Altitude 500m

Initial velocity

East 0 m/s

North 0m/s

Up 150m/s

Initial attitude

Pitch 0°

Roll 0°

Yaw 0°

Initial velocity

error

East 0.4 m/s

North 0.3 m/s

Up 0.4 m/s

Initial position

error

East longitude 12m

North latitude 12m

Altitude 15m

Initial attitude

error

Yaw 1.5’

Pitch 1’

Roll 1.5’

Gyro

parameters

Constant drift 0.1°/h

Random walk coefficient 0.05 °/ h

Sampling frequency 20Hz

Zero-bias 1 × 10−3 g

Accelerometer

parameters

Random walk coefficient 1 × 10−4 g× s

Sampling frequency 20Hz

Initial Marcov

Transition matrix

0.4  0.6
0.6  0.4

A  
  
 

Initial mode

probability
0

0.4
0.6


 

  
 

The following is the comparative simulation results of a
Monte Carlo (MC) run. Figure (6) depicts the attitude RMSE
of CKF, ACKF, RCKF and IMM-ARCKF in a Monte Carlo
simulation. From the figure, the attitude RMSE of ACKF,
RCKF and the IMM-ARCKF are all smaller than the
classical CKF within 100 to 1000 seconds. The attitude
RMSE of IMM-ARCKF is the smallest. Figure (7) and figure
(8) are the velocity RMSE and position RMSE obtained by
CKF,, ACKF, RCKF and IMM-ARCKF in a Monte Carlo
simulation. The velocity error and position error trends of the
above four methods are similar to the attitude error, among
which the velocity and position error of the IMM-ARCKF is
much smaller than that of the other methods. Table II lists the
RMSEs of attitude, velocity and position of CKF, ACKF,
RCKF and IMM-ARCKF in a Monte Carlo simulation. The
positioning accuracy of the IMM-ARCKF is at least 40.1%
higher than that of the classical CKF.

FIGURE 6.  Attitude RMSEs by CKF, ACKF,RCKF and IMM-ARCKF
for the simulation case.

Simulation results show that IMM-ARCKF in this paper
can well combine the advantages of ACKF and RCKF, thus
significantly improving the navigation accuracy of INS/GPS
integration.
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FIGURE 7.  Velocity RMSEs by CKF , ACKF,RCKF and IMM-ARCKF
for the simulation case.

FIGURE 8.  Position RMSEs by CKF, ACKF,RCKF and IMM-ARCKF
for the simulation case.

TABLE II
THE MEAN ROOT MEAN SQUARE ERRORS OF CKF, RCKF , ACKF AND

IMM-ARCKF IN ATTITUDE, VELOCITY AND POSITION

CKF ACKF RCKF IMM-ARCKF

Attitude

(〞)

Yaw 11.6019 9.0620 8.8719 6.6628

Pitch 9.3725 7.2801 7.1317 5.6938

Roll 8.8766 7.2542 7.1273 5.2618

Velocity East 0.0827 0.0662 0.0650 0.0504

(m/s) North 0.1269 0.0994 0.0991 0.0721

Up 0.1272 0.1021 0.0991 0.0721

Position

(m)

Longitude 5.9053 4.6587 4.4839 3.4925

latitude 9.6435 7.8424 7.3763 5.4548

Altitude 9.6221 7.8220 7.3672 5.4560

Figure (9) - Figure (11) shows the average RMSE of 50
Monte Carlo calculations. It can be seen that IMM-ARCKF
has high precision , and shows better stability and robustness
compared with the standard CKF algorithm and RCKF
algorithm.

FIGURE 9.  Mean of attitude RMSE for 50 Monte Carlo simulations.

FIGURE 10.  Mean of velocity RMSE for 50 Monte Carlo simulations.

FIGURE 11.  Mean of position RMSE for 50 Monte Carlo simulations.

(2)The first experiment and analysis
As shown in figure (12), the vehicle is equipped with an

INS/GPS integrated navigation system. The experimental
instruments include the iN5620 integrated navigation
receiver and I50 small intelligent RTK receiver.
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The vehicle trajectory is shown in figure (13). The
vehicle navigation test was conducted in Jinzhong city,
Shanxi Province. The initial position was at North latitude
37°44'44.4", East longitude 112°42'07.3". The horizontal
position error of GPS receiver is 4m. The height error is 7m,
and the speed error is 0.05 m/s. The test time is 1000s and
the filtering period is 1s. The initial velocities of east, north,
and up are 10m/s, 10m/s, and 0m/s, respectively. The
gyroscopic constant drift is 0.1◦/h. The accelerometer zero
bias is 310 g . The initial position error of the vehicle is

 12 ,12 ,15m m m . The initial speed error is

 0.3 / ,0.4 / ,0.3 /m s m s m s , and the initial attitude error is

 1 ,1.5 ,1   .

FIGURE 12.  Test vehicle with equipment.

FIGURE 13.  The vehicle trajectory of the first test.

Figure (14) and figure (15) respectively depict the
longitude and latitude errors of the classical CKF, ACKF,
RCKF and the IMM-ARCKF in the on-board experiment.
Within 100s to 1000s, the longitude error of classical CKF
is between (-24.9m,25.0m) and latitude error is between
(-25.0m,20.0m). ACKF and RCKF improve the positioning
accuracy to some extent. The longitude error of the
proposed IMM-ARCKF algorithm is within (-5.3m, 5.1m),

and the latitude error is between (-5.5m, 5.2m). The
longitude and latitude error of IMM-ARCKF algorithm is
much smaller than that of classical CKF,ACKF and RCKF.
Therefore, IMM-ARCKF has stronger adaptability and
robustness, and higher navigation accuracy.

FIGURE 14.  Longitude error.

FIGURE 15.  Latitude error.

Table III shows the mean root mean square error of
longitude and latitude of CKF, RCKF, ACKF and IMM-
ARCKF. It can be seen that the positioning accuracy of
IMM-ARCKF is obviously better than that of traditional
CKF algorithm.

TABLE III
THE MEAN ROOT MEAN SQUARE ERRORS OF CKF, RCKF , ACKF AND

IMM-ARCKF IN LONGITUDE AND LATITUDE

CKF ACKF RCKF
IMM-

ARCKF

Longitude (m) 9.1113 5.9753 5.0811 3.5948

Latitude (m) 8.4930 5.5030 6.2807 3.6497

B. GRU/-IMM-ARCKF COMPARED WITH OTHER
ALGORITHM
The training of neural network needs a lot of data, so the
distance of this experiment is long. The experimental
trajectory is shown in Figure (16). The black part is the
process of artificial outages. When the GPS receiver is
working normally, the system is in loose coupling mode
and GRU is trained. When GPS is interrupted artificially,
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GRU makes prediction and outputs the INCREMENT of
GPS. The whole process took 3,000 seconds.

FIGURE 16.  The vehicle trajectory of the second test.

(1)Parameter training of GRU
The model was designed to consist of two GRU layers

and a full connection layer activated by the SOFTMAX
function. The learning rate was set at 0.001. Using the
RMSE as the criterion for selecting parameters. In practice,
we usually evaluate the generalization ability of learning
methods by testing errors. When training the GRU, we need
to determine the parameters such as the number of hidden
units and the time step size. If it is too much, it will
consume a lot of time and real time performance
degradation. Based on the RMSE, the performance of
several time step sizes and the number of hidden units is
evaluated. To select the appropriate parameters. Figure (17)
shows the performance differences of different parameters.

It can be intuitively seen that when the step size is 4 and
the hidden cell is 64, the RMSE in each direction is lower,
so this combination is selected.

FIGURE 17. Performance comparison of different parameter.

(2) The second experiment and analysis
To evaluate the overall performance of the GRU/IMM-

ARCKF, an actual road experiment is carried out after the
parameters are selected. During the experiment, three
segments were set up for 60 seconds, 100 seconds and 200
seconds respectively. And compared with the algorithm
IMM-ARCKF, RBF/IMM-ARCKF and the proposed
algorithm.

FIGURE 18. Positioning results in 60s outages.

Figure (18) is positioning results figure in 60s outages.
The black line in the figure is the reference trajectory. The
green one represents the traditional IMM-ARCKF
algorithm. The red one represents the RBF/IMM-ARCKF,
and the blue one represents the proposed GRU/IMM-
ARCKF. In Figure (18), the positioning error of each
algorithm increases with the increase of time during GPS
interruption. But the error increase of each algorithm is
obviously different. The position error of IMM-ARCKF
increases the fastest while that of GRU/IMM-ARCKF is the
slowest. Compared with IMM-ARCKF and RBF/IMM-
ARCKF, the GRU/IMM-ARCKF has higher positioning
accuracy. Table IV shows that the maximum positioning
error of the GRU/IMM-ARCKF is 17.83 meters, which is
39.51meters smaller than the maximum error of IMM-
ARCKF algorithm.

FIGURE 19. Positioning results in 100s outages.

Figure (19) is a positioning results in 100s outages.The
mean positioning error of GRU/ IMM-ARCKF is 13.72
meters, and that of RBF/ IMM-ARCKF is 24.46 meters.
The comparison shows that the performance of GRU
network is obviously better than RBF network.

Figure (20) is a positioning results in 100s outages.
Because of the long outage time, the error of each algorithm
increases continuously. The mean positioning error of the
IMM-ARCKF algorithm is as high as 201.86 meters, the
mean positioning error of the RBF/IMM-ARCKF is 130.74
meters, while the mean positioning error of the GRU/IMM-
ARCKF is only 20.16 meters. It fully embodies the
advantage of GRU neural network to assist integrated
navigation system after GPS signal loss.
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FIGURE 20. Positioning results in 2100s outages.

MATLAB 2014 software was used in the simulation
experiment. Many simulation experiments were carried out
on a portable computer (16G, Intel Core i7-10750H CPU
@2.60GHZ), and the running time of the corresponding
program was statistically analyzed. Table V shows the
comparison of calculation time between the two algorithms.

TABLE IV
THE ERROR COMPARISON OF SEVERAL ALGORITHMS WHEN GPS OUTAGES

Algorithm IMM-ARCKF
RBF

/IMM-ARCKF

GRU

/IMM-ARCKF

Max Mean Max Mean Max Mean

#1 56.98 27.57 35.06 19.69 17.83 6.68

#2 138.11 98.56 61.92 24.46 25.61 13.72

#3 351.38 201.86 241.59 130.74 58.26 20.16

TABLE V
TIME CONSUMPTION OF DIFFERENT ALGORITHMS.

Algorithm Time(ms)

CKF 11.32

GRU/IMM-ARCKF 19.85

V. CONCLUSION

In this paper, IMM-ARCKF algorithm based on GRU is
proposed. IMM-ARCKF algorithm mainly solves the
uncertainty of system model and noise statistics in the
actual system, and improves the robustness and adaptability
of the system. GRU neural network can greatly reduce the
position error of vehicles in complex urban environment.
The performance of GRU/IMM-ARCKF in the case of GPS
outages is analyzed. When GPS cannot be properly
acquired, the system is in the training stage. The predicted
position increment can be obtained by inputting the

measurements of specific force, velocity, yaw Angle, and
angular velocity into the trained model. After integrating
the increment, the predicted GPS position is obtained.
Compared with IMM-ARCKF , RBF/ IMM-ARCKF and
GRU/IMM-ARCKF, the positioning accuracy of GRU/
IMM-ARCKF is higher in complex environment. The
effectiveness and superiority of the algorithm are proved.
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